Biodistribution and dosimetry of (177)Lu-tetulomab, a new radioimmunoconjugate for treatment of non-Hodgkin lymphoma

Ada H V Repetto-Llamazares, Roy H Larsen, Camilla Mollatt, Michael Lassmann, Jostein Dahle, Ada H V Repetto-Llamazares, Roy H Larsen, Camilla Mollatt, Michael Lassmann, Jostein Dahle

Abstract

The biodistribution of the anti-CD37 radioimmunoconjugate (177)Lu-tetraxetan-tetulomab ((177)Lu-DOTA-HH1) was evaluated. Biodistribution of (177)Lu-tetraxetan-tetulomab was compared with (177)Lu-tetraxetan-rituximab and free (177)Lu in nude mice implanted with Daudi lymphoma xenografts. The data showed that (177)Lu-tetulomab had a relevant stability and tumor targeting properties in the human lymphoma model. The half-life of (177)Lu allowed significant tumor to normal tissue ratios to be obtained indicating that (177)Lu-tetraxetan-tetulomab could be suitable for clinical testing. The biological and effective half-life in blood was higher for (177)Lu-tetraxetan-tetulomab than for (177)Lu-tetraxetan-rituximab. The biodistribution of (177)Lu-tetraxetan-tetulomab did not change significantly when the protein dose was varied from 0.01 to 1 mg/kg. Dosimetry calculations showed that the absorbed radiation doses to normal tissues and tumor in mice were not significantly different for (177)Lu-tetraxetan-tetuloma b and (177)Lu-tetraxetan-rituximab. The absorbed radiation doses were extrapolated to human absorbed radiation doses. These extrapolated absorbed radiation doses to normal tissues for (177)Lu-tetraxetan-tetulomab at an injection of 40 MBq/kg were significantly lower than the absorbed radiation doses for 15 MBq/kg Zevalin, suggesting that higher tumor radiation dose can be reached with (177)Lu-tetraxetan-tetulomab in the clinic.

Figures

Fig. (1)
Fig. (1)
Biodistribution (kBq/g) of 177Lu-tetulomab (A) and 177Lurituximab (B) in female nude mice with Daudi tumor xenografts. The data were normalized to an injected activity of 1 MBq per mouse (40 MBq/kg). Error bars correspond to standard error.
Fig. (2)
Fig. (2)
Dose rate (mGy/h) for key organs estimated from biodistributions of 177Lu-tetulomab (A) and 177Lu-rituximab (B) in nude mice with Daudi xenografts. The data were normalized to an injected activity of 1 MBq per mouse (40 MBq/kg). Error bars correspond to standard error.
Fig. (3)
Fig. (3)
Dose (Gy) to normal organs for mice with xenografts injected with 177Lu-tetulomab or 177Lu-rituximab. The data were normalized to an injected activity of 1 MBq per mouse (40 MBq/kg). Error bars correspond to standard error.

References

    1. Foran JM, Norton AJ, Micallef IN, Taussig DC, Amess JA, Rohatiner AZ, Lister TA. Loss of CD20 expression following treatment with rituximab (chimaeric monoclonal anti-CD20) a retrospective cohort analysis. Br. J. Haematol . 2001;114(4 ):881–883.
    1. Sugimoto T, Tomita A, Hiraga J, Shimada K, Kiyoi H, Kinoshita T, Naoe T. Escape mechanisms from antibody therapy to lymphoma cells downregulation of CD20 mRNA by recruitment of the HDAC complex and not by DNA methylation. Biochem. Biophys Res. Commun . 2009;390(1 ):48–53.
    1. Wada N, Kohara M, Ogawa H, Sugiyama H, Fukuhara S, Tatsumi Y, Kanamaru A, Hino M, Kanakura Y, Morii E, Aozasa K. Change of CD20 Expression in Diffuse Large B-Cell Lymphoma Treated with Rituximab, an Anti-CD20 Monoclonal Antibody: A Study of the Osaka Lymphoma Study Group. Case. Rep. Oncol . 2009;2(3 ):194–202.
    1. Gopal AK, Press OW, Wilbur SM, Maloney DG, Pagel JM. Rituximab blocks binding of radiolabeled anti-CD20 antibodies (Ab) but not radiolabeled anti-CD45 Ab. Blood . 2008;112(3 ):830–835.
    1. Moldenhauer G. CD37. J. Biol. Regul. Homeost. Agents. 2000;14(4 ):281–283.
    1. Press OW, Farr AG, Borroz KI, Anderson SK, Martin PJ. Endocytosis and degradation of monoclonal antibodies targeting human B-cell malignancies. Cancer Res. 1989;49(17 ):4906–4912.
    1. Press OW, Howell-Clark J, Anderson S, Bernstein I. Retention of B-cell-specific monoclonal antibodies by human lymphoma cells. Blood . 1994;83(5 ):1390–1397.
    1. Brown RS, Kaminski MS, Fisher SJ, Chang AE, Wahl RL. Intratumoral microdistribution of [131I]MB-1 in patients with B-cell lymphoma following radioimmunotherapy. Nucl. Med. Biol. 1997;24(7 ):657–663.
    1. Buchsbaum DJ, Wahl RL, Normolle DP, Kaminski MS. Therapy with unlabeled and 131I-labeled pan-B-cell monoclonal antibodies in nude mice bearing Raji Burkitt's lymphoma xenografts. Cancer Res . 1992;52(23 ):6476–6481.
    1. Eary JF, Press OW, Badger CC, Durack LD, Richter KY, Addison SJ, Krohn KA, Fisher DR, Porter BA, Williams DL. Imaging and treatment of B-cell lymphoma. J. Nucl. Med . 1990;31(8 ):1257–1268.
    1. Kaminski MS, Fig LM, Zasadny KR, Koral KF, DelRosario RB, Francis IR, Hanson CA, Normolle DP, Mudgett E, Liu CP. Imaging, dosimetry and radioimmunotherapy with iodine 131I-labeled anti-CD37 antibody in B-cell lymphoma. J. Clin. Oncol . 1992;10(11 ):1696–1711.
    1. Press OW, Eary JF, Badger CC, Martin PJ, Appelbaum FR, Levy R, Miller R, Brown S, Nelp WB, Krohn KA. Treatment of refractory non-Hodgkin's lymphoma with radiolabeled MB-1 (anti-CD37) antibody. J. Clin. Oncol . 1989;7(8 ):1027–1038.
    1. Press OW, Eary JF, Appelbaum FR, Martin PJ, Badger CC, Nelp WB, Glenn S, Butchko G, Fisher D, Porter B. Radiolabeled-antibody therapy of B-cell lymphoma with autologous bone marrow support. N. Engl. J. Med . 1993;329(17 ):1219–1224.
    1. Sharkey RM, Behr TM, Mattes MJ, Stein R, Griffiths GL, Shih LB, Hansen HJ, Blumenthal RD, Dunn RM, Juweid ME, Goldenberg DM. Advantage of residualizing radiolabels for an internalizing antibody against the B-cell lymphoma antigen, CD22. Cancer Immunol. Immunother . 1997;44(3 ):179–188.
    1. Lub-de Hooge MN, Kosterink JG, Perik PJ, Nijnuis H, Tran L, Bart J, Suurmeijer AJ, de JS, Jager PL, de Vries EG. Preclinical characterisation of 111In-DTPA-trastuzumab. Br. J. Pharmacol . 2004;143(1 ):99–106.
    1. Sierra ML, Agazzi A, Bodei L, Pacifici M, Arico D, De CC, Quarna J, Sansovini M, De SM, Paganelli G. Lymphocytic toxicity in patients after peptide-receptor radionuclide therapy (PRRT) with 177Lu-DOTATATE and 90Y-DOTATOC. Cancer Biother. Radiopharm . 2009;24(6 ):659–665.
    1. Kunikowska J, Krolicki L, Hubalewska-Dydejczyk A, Mikolajczak R, Sowa-Staszczak A, Pawlak D. Clinical results of radionuclide therapy of neuroendocrine tumours with 90Y-DOTATATE and tandem 90Y/177Lu-DOTATATE which is a better therapy option? Eur. J. Nucl. Med. Mol. Imaging. 2011;38(10 ):1788–1797.
    1. Lohri A, Forrer F, Campana B, Mamot C, Winterhalder R, Herrmann R, Maecke HR, Muller-Brand J. Radioimmunotherapy (RIT) with 177Lutetium-DOTA-Rituximab (177Lu-D-R): A phase I/II-study in 30 patients with relapsing follicular, mantle cell and other indolent B-cell lymphomas. 50th ASH annual meeting and exposition. 2010
    1. Forrer F, Krenning EP, Kooij PP, Bernard BF, Konijnenberg M, Bakker WH, Teunissen JJ, de JM, van LK, de Herder WW, Kwekkeboom DJ. Bone marrow dosimetry in peptide receptor radionuclide therapy with [177Lu-DOTA(0):Tyr(3)]octreotate. Eur. J. Nucl. Med. Mol. Imaging. 2009;36(7 ):1138–1146.
    1. Claringbold PG, Brayshaw PA, Price RA, Turner JH. Phase II study of radiopeptide 177Lu-octreotate and capecitabine therapy of progressive disseminated neuroendocrine tumours. Eur. J Nucl Med Mol Imaging . 2011;38(2 ):302–311.
    1. Dvorakova Z, Henkelmann R, Lin X, Turler A, Gerstenberg H. Production of 177Lu at the new research reactor FRM-II: Irradiation yield of 176Lu(n,gamma)177Lu. Appl. Radiat. Isot . 2008;66(2 ):147–151.
    1. Schmitt A, Bernhardt P, Nilsson O, Ahlman H, Kolby L, Schmitt J, Forssel-Aronsson E. Biodistribution and dosimetry of 177Lu-labeled [DOTA0,Tyr3]octreotate in male nude mice with human small cell lung cancer. Cancer Biother. Radiopharm . 2003;18(4 ):593–599.
    1. Smeland E, Funderud S, Ruud E, Kiil BH, Godal T. Characterization of two murine monoclonal antibodies reactive with human B cells. Their use in a high-yield, high-purity method for isolation of B cells and utilization of such cells in an assay for B-cell stimulating factor. Scand. J. Immunol. 1985;21(3 ):205–214.
    1. Bernstein ID, Eary JF, Badger CC, Press OW, Appelbaum FR, Martin PJ, Krohn KA, Nelp WB, Porter B, Fisher D. High dose radiolabeled antibody therapy of lymphoma. Cancer Res. 1990;50(3 Suppl ):1017s–1021s.
    1. Lindmo T, Bunn PA., Jr Determination of the true immunoreactive fraction of monoclonal antibodies after radiolabeling. Methods Enzymol . 1986;121:678–691.
    1. National Nuclear Data CenterENSDF Decay Data in the MIRD (Medical Internal Radiation Dose). Format for 177Lu. 2012.
    1. Yuan J. Estimation of variance for AUC in animal studies. J. Pharm. Sc . 1993;82(7 ):761–763.
    1. Miller WH, Hartmann-Siantar C, Fisher D, Descalle MA, Daly T, Lehmann J, Lewis MR, Hoffman T, Smith J, Situ PD, Volkert WA. Evaluation of beta-absorbed fractions in a mouse model for 90Y, 188Re, 166Ho, 149Pm, 64Cu, and 177Lu radionuclides. Cancer Biother. Radiopharm . 2005;20(4 ):436–449.
    1. Sparks RB, and Aydogan B. Comparison of the Effectiveness of Some Common Animal Data Scaling Techniques in Estimating Human Radiation Dose. Sixth International Radiopharmaceutical Dosimetry Symposium Oak Ridge. Oak Ridge Associated Uni-versities. 1999:705–716.
    1. Snyder WS, Ford MR, Warner GG, Watson SB. MIRD Pamphlet #11: S, Absorbed Dose per Unit Cumulated Activity for Selected Radionuclides and Organs (PART 1) 1975
    1. Radiation Dose Assessment Resource (RADAR) -Available Phantoms. . 2012.
    1. Basic anatomical and physiological data for use in radiological protection: reference values. A report of age- and gender-related differences in the anatomical and physiological characteristics of reference individuals. ICRP Publication 89. Ann. ICRP. 2002;32(3-4 ):5–265.
    1. Basic anatomical and physiological data for use in radiological protection: reference values. A report of age- and gender-related differences in the anatomical and physiological characteristics of reference individuals. ICRP Publication 89. Ann. ICRP. 1995;25(2 )
    1. ICRP Publication 23. Task Group Report on Reference Man. 1975.
    1. Vallabhajosula S, Goldsmith SJ, Hamacher KA, Kostakoglu L, Konishi S, Milowski MI, Nanus DM, Bander NH. Prediction of myelotoxicity based on bone marrow radiation-absorbed dose: radioimmunotherapy studies using 90Y- and 177Lu-labeled J591 antibodies specific for prostate-specific membrane antigen. J Nucl Med . 2005;46(5 ):850–858.
    1. Stillebroer AB, Zegers CM, Boerman OC, Oosterwijk E, Mulders PF, O'Donoghue JA, Visser EP, Oyen WJ. Dosimetric analysis of 177Lu-cG250 radioimmunotherapy in renal cell carcinoma patients: correlation with myelotoxicity and pretherapeutic absorbed dose predictions based on 111In-cG250 imaging. J. Nucl. Med . 2012;53(1 ):82–89.
    1. Winter JN, Inwards DJ, Spies S, Wiseman G, Patton D, Erwin W, Rademaker AW, Weitner BB, Williams SF, Tallman MS, Micallef I, Mehta J, Singhal S, Evens AM, Zimmer M, Molina A, White CA, Gordon LI. Yttrium-90 ibritumomab tiuxetan doses calculated to deliver up to 15 Gy to critical organs may be safely combined with high-dose BEAM and autologous transplantation in relapsed or refractory B-cell non-Hodgkin's lymphoma. J. Clin. Oncol. 2009;27(10 ):1653–1659.
    1. Breeman WA, van der Wansem K, Bernard BF, van GA, Erion JL, Visser TJ, Krenning EP, de JM. The addition of DTPA to [177Lu-DOTA0,Tyr3]octreotate prior to administration reduces rat skeleton uptake of radioactivity. Eur. J Nucl Med Mol Imaging . 2003;30(2 ):312–315.
    1. Muller WA, Linzner U, Schaffer EH. Organ distribution studies of lutetium-177 in mouse. Int. J. Nucl. Med. Biol . 1978;5(1 ):29–31.
    1. U.S. Food and Drug Administration (FDA) - Zevalin Package Insert. 2012.

Source: PubMed

3
Předplatit