Safety and feasibility of fasting in combination with platinum-based chemotherapy

Tanya B Dorff, Susan Groshen, Agustin Garcia, Manali Shah, Denice Tsao-Wei, Huyen Pham, Chia-Wei Cheng, Sebastian Brandhorst, Pinchas Cohen, Min Wei, Valter Longo, David I Quinn, Tanya B Dorff, Susan Groshen, Agustin Garcia, Manali Shah, Denice Tsao-Wei, Huyen Pham, Chia-Wei Cheng, Sebastian Brandhorst, Pinchas Cohen, Min Wei, Valter Longo, David I Quinn

Abstract

Background: Short-term starvation prior to chemotherapy administration protects mice against toxicity. We undertook dose-escalation of fasting prior to platinum-based chemotherapy to determine safety and feasibility in cancer patients.

Methods: 3 cohorts fasted before chemotherapy for 24, 48 and 72 h (divided as 48 pre-chemo and 24 post-chemo) and recorded all calories consumed. Feasibility was defined as ≥ 3/6 subjects in each cohort consuming ≤ 200 kcal per 24 h during the fast period without excess toxicity. Oxidative stress was evaluated in leukocytes using the COMET assay. Insulin, glucose, ketones, insulin-like growth factor-1 (IGF-1) and IGF binding proteins (IGFBPs) were measured as biomarkers of the fasting state.

Results: The median age of our 20 subjects was 61, and 85 % were women. Feasibility criteria were met. Fasting-related toxicities were limited to ≤ grade 2, most commonly fatigue, headache, and dizziness. The COMET assay indicated reduced DNA damage in leukocytes from subjects who fasted for ≥48 h (p = 0.08). There was a non-significant trend toward less grade 3 or 4 neutropenia in the 48 and 72 h cohorts compared to 24 h cohort (p = 0.17). IGF-1 levels decreased by 30, 33 and 8 % in the 24, 48 and 72 h fasting cohorts respectively after the first fasting period.

Conclusion: Fasting for 72 h around chemotherapy administration is safe and feasible for cancer patients. Biomarkers such as IGF-1 may facilitate assessment of differences in chemotherapy toxicity in subgroups achieving the physiologic fasting state. An onging randomized trial is studying the effect of 72 h of fasting.

Trial registration: NCT00936364 , registered propectively on July 9, 2009.

Keywords: Chemotherapy; Fasting; Insulin-like growth factor; Neutropenia; Oxidative stress.

Figures

Fig. 1
Fig. 1
Schema of the trial design; cohorts and strategy for escalating fasting duration. R24r signifies 24 hours of fasting without planned food, only rescue. R48r is 48 hours of fasting prior to chemotherapy, without planned food, only rescue. If safety or feasibility failed in the cohort of 48 hours fasting, we planned a “de-escalation” to a 48 hour fasting period with planned rescue food: R48p. However, if 48 hours fasting was safe and feasible, we would escalate to 72 hours fasting, broken down as 48 hours before chemotherapy and 24 hours after, R48/24r
Fig. 2
Fig. 2
DNA damage in host cells was measured using peripheral blood mononuclear cells from study subjects using the COMET assay
Fig. 3
Fig. 3
Olive moments, indicating DNA damage in peripheral blood mononuclear cells, are shown here by cohort, comparing the chemotherapy-free baseline (BL) to a sample taken after fasting, but before chemotherapy (C1D1 = cycle 1, day 1) and 24 hours after chemotherapy (C1D2 = cycle 1, day 2) and again after fasting but before chemotherapy (C2D1 = cycle 2, day 1). The difference comparing the 48 + 72 hour cohorts to the 24 hour cohort is p=0.08 by F test with ANOVA

References

    1. Appenroth D, Frob S, Kersten L, et al. Protective effects of vitamin E and C on cisplatin nephrotoxicity in developing rats. Arch Toxicol. 1997;71:677–83. doi: 10.1007/s002040050444.
    1. DeMartinis BS, Bianchi MD. Effect of vitamin C supplementation against cisplatin-induced toxicity and oxidative DNA damage in rats. Pharmacol Res. 2001;44:317–20. doi: 10.1006/phrs.2001.0860.
    1. Yuce A, Atessahin A, Ceribasi AO, Aksakal M. Ellagic acid prevents cisplatin induced oxidative stress in liver and heart tissue of rats. Basic Clin Pharm Toxicol. 2007;101:345–9. doi: 10.1111/j.1742-7843.2007.00129.x.
    1. Block KI, Koch AC, Mead MN, Tothy PK, Newman RA, Gyllenhaal C. Impact of antioxidant supplementation on chemotherapeutic toxicity: a systematic review of the evidence from randomized controlled trials. Int J Cancer. 2008;123:1227–39. doi: 10.1002/ijc.23754.
    1. Raffaghello L, Lee C, Safdie FM, et al. Starvation-dependent differential stress resistance protects normal but not cancer cells against high-dose chemotherapy. Proc Natl Acad Sci. 2008;105:8215-20.
    1. Csizsar A, Labinskyy N, Jimenez R, et al. Anti-oxidative and anti-inflammatory vasoprotective effects of caloric restriction in aging: role of circulating factors and SIRT-1. Mech Age Develop. 2009;130:518–27. doi: 10.1016/j.mad.2009.06.004.
    1. Lee C, Raffaghello L, Brandhorst S, et al. Fasting cycles retard growth of tumors and sensitize a range of cancer cell types to chemotherapy. Sci Transl Med. 2012;4:124–7. doi: 10.1126/scitranslmed.3003293.
    1. Mansell PI, Macdonald IA. The effect of starvation on insulin-induced glucose disposal and thermogenesis in humans. Metabolism. 1990;39:502–10. doi: 10.1016/0026-0495(90)90009-2.
    1. Romijin JA, Godfried MH, Hommes MJT, et al. Decreased glucose oxidation during short-term starvation. Metabolism. 1990;39:525–30. doi: 10.1016/0026-0495(90)90012-2.
    1. NgoTH BRJ, Tymchuk CN, et al. Effect of diet and exercise on serum insulin, IGF-1, and IGFBP-1 levels and growth of LNCaP Cells in Vitro. Cancer Causes Control. 2002;13:929–35. doi: 10.1023/A:1021911517010.
    1. O’Sullivan U, Gluckman PD, Breier BH, et al. Insulin-like growth factor-1 (IGF-1) in mice reduces weight loss during starvation. Endocrinology. 1989;125:2793–4. doi: 10.1210/endo-125-5-2793.
    1. Muzumdar RH, Ma X, Fishman S, Yang X, Atzmon G, et al. Central and opposing effects of IGF-1 and IGF-binding protein-3 on systemic insulin action. Diabetes. 2006;55:2788–96. doi: 10.2337/db06-0318.
    1. Milman S, Atzmon G, Huffman DM, Wan J, Crandall JP, et al. Low insulin-like growth factor-1 level predicts survival in humans with exceptional longevity. Aging Cell. 2014;13:769–71. doi: 10.1111/acel.12213.
    1. Ostling O, Johanson KJ. Biochem Biophys Res Commun. 1984;123:291–8. doi: 10.1016/0006-291X(84)90411-X.
    1. Olive PL, Wlodek D, Durand RE, Banath JP. Factors influencing DNA migration from individual cells subjected to gel electrophoresis. Exp Cell Res. 1992;198:259–67. doi: 10.1016/0014-4827(92)90378-L.
    1. Everitt AV, LeCouteur DG. Life extension by calorie restriction in humans. Ann NY Acad Sci. 2007;1114:428–33. doi: 10.1196/annals.1396.005.
    1. Dunn SE, Ehrlich M, Sharp NJH, et al. A dominant negative mutant of the insulin-like growth factor-1 receptor inhibits the adhesion, invasion and metastasis of breast cancer. Cancer Res. 1998;58:3353–61.
    1. Kritchevsky D. Diet and cancer: what’s next? J Nutr. 2003;133:3827S–9.
    1. Lee C, Safdie FM, Raffaghello L, et al. Reduced levels of IGF-1 mediate differential protection of normal and cancer cells in response to fasting and improve chemotherapeutic index. Cancer Res. 2010;70:1564–72. doi: 10.1158/0008-5472.CAN-09-3228.
    1. Rock CL, Demark-Wahnefried W. Nutrition and survival after the diagnosis of breast cancer: a review of the evidence. J Clin Oncol. 2002;20:3302–16. doi: 10.1200/JCO.2002.03.008.
    1. Chan JM, Gann PH, Giovannucci GL. Role of diet in prostate cancer development and progression. J Clin Oncol. 2005;23:8152–60. doi: 10.1200/JCO.2005.03.1492.
    1. Kjeldsen-Kragh J, Borchgrevink CF, Laerum E, et al. Controlled trial of fasting and one-year vegetarian diet in rheumatoid arthritis. Lancet. 1991;338:899–902. doi: 10.1016/0140-6736(91)91770-U.
    1. Varady KA, Hellerstein MK. Alternate day fasting and chronic disease prevention: a review of human and animal trials. Am J Clin Nutr. 2007;86:7–13.
    1. Weindruch R, Sohal RS. Caloric intake and aging. New Engl J Med. 1997;337:986–94. doi: 10.1056/NEJM199710023371407.
    1. Ngo TH, Barnard RJ, Anton T, Tran C, Elashoff D, Heber D, et al. Effect of isocaloric low-fat diet on prostate cancer xenograft progression to androgen independence. Cancer Res. 2004;64:1252. doi: 10.1158/0008-5472.CAN-03-3830.
    1. Smith WJ, Underwood LE, Clemmons DR. Effects of caloric or protein restriction on insulin-like growth factor-1 (IGF-1) and IGF-binding protein in children and adults. J Clin Endocrinol Metab. 1995;80:443–9.
    1. Cheng C-W, Adams GB, Perin L, et al. Prolonged fasting reduces IGF-1/PKA to promote hematopoietic stem cell-based regeneration and reverse immunosuppression. Cell Stem Cell. 2014;14:810–23. doi: 10.1016/j.stem.2014.04.014.

Source: PubMed

3
Předplatit