Mephedrone and Alcohol Interactions in Humans

Esther Papaseit, Clara Pérez-Mañá, Elizabeth B de Sousa Fernandes Perna, Eulalia Olesti, Julian Mateus, Kim Pc Kuypers, Eef L Theunissen, Francina Fonseca, Marta Torrens, Jan G Ramaekers, Rafael de la Torre, Magí Farré, Esther Papaseit, Clara Pérez-Mañá, Elizabeth B de Sousa Fernandes Perna, Eulalia Olesti, Julian Mateus, Kim Pc Kuypers, Eef L Theunissen, Francina Fonseca, Marta Torrens, Jan G Ramaekers, Rafael de la Torre, Magí Farré

Abstract

Mephedrone (4-MMC, mephedrone) is a synthetic cathinone derivative included in the class of new psychoactive substances. It is commonly used simultaneously with alcohol (ethanol). The aim of the present study was to evaluate the interactions on subjective, cardiovascular and hormone effects and pharmacokinetics between mephedrone and alcohol in humans. Eleven male volunteers participated as outpatients in four experimental sessions in a double-blind, randomized, cross-over, and placebo-controlled clinical trial. Participants received a single oral dose of 200 mg of mephedrone plus 0.8 g/kg of alcohol (combination condition); 200 mg of mephedrone plus placebo alcohol (mephedrone condition); placebo mephedrone plus 0.8 g/kg of ethanol (alcohol condition); and placebo mephedrone plus placebo alcohol (placebo condition). Outcome variables included physiological (blood pressure, heart rate, temperature, and pupil diameter), psychomotor (Maddox wing), subjective (visual analogue scales, Addiction Research Center Inventory 49 item short form, and Valoración de los Efectos Subjetivos de Sustancias con Potencial de Abuso questionnaire), and pharmacokinetic parameters (mephedrone and ethanol concentrations). The study was registered in ClinicalTrials.gov, number NCT02294266. The mephedrone and alcohol combination produced an increase in the cardiovascular effects of mephedrone and induced a more intense feeling of euphoria and well-being in comparison to the two drugs alone. Mephedrone reduced the sedative effects produced by alcohol. These results are similar to those obtained when other psychostimulants such as amphetamines and 3,4-methylenedioxymethamphetamine are combined simultaneously with alcohol. The abuse liability of mephedrone combined with alcohol is greater than that induced by mephedrone alone.

Keywords: 4-methylmethcathinone (mephedrone); alcohol (ethanol); interaction; new psychoactive substance; pharmacokinetics; pharmacologic effects.

Copyright © 2020 Papaseit, Pérez-Mañá, de Sousa Fernandes Perna, Olesti, Mateus, Kuypers, Theunissen, Fonseca, Torrens, Ramaekers, de la Torre and Farré.

Figures

Figure 1
Figure 1
Time course of drug effects (n = 11, mean, standard error) on physiological and psychomotor performance (differences from baseline). □ mephedrone + alcohol; ○ mephedrone; ◊ alcohol; Δ placebo; Significant differences between mephedrone vs mephedrone + alcohol (a: p

Figure 2

Time course of drug effects…

Figure 2

Time course of drug effects (n = 11, mean, standard error) on subjective…

Figure 2
Time course of drug effects (n = 11, mean, standard error) on subjective effects (differences from baseline). □ mephedrone + alcohol; ○ mephedrone; ◊ alcohol; Δ placebo; Significant differences between mephedrone vs mephedrone + alcohol (a: p

Figure 3

Plasma concentration over time curves…

Figure 3

Plasma concentration over time curves of mephedrone (left) and ethanol (right) (n =…

Figure 3
Plasma concentration over time curves of mephedrone (left) and ethanol (right) (n = 11, mean, standard error). ○ mephedrone; ◊ alcohol; □ mephedrone + alcohol.
Similar articles
Cited by
References
    1. Advisory Council on the Misuse of Drugs [ACMD]. (2010). ACMD report on the consideration of the cathinones, Available at: https://www.gov.uk/government/uploads/system/uploads/attachment_data/fil....
    1. Baumann M. H., Ayestas M. A. , Jr., Partilla J. S., Sink J. R., Shulgin A. T., Daley P. F., et al. (2012). The designer methcathinone analogs, mephedrone and methylone, are substrates for monoamine transporters in brain tissue. Neuropsychopharmacol. 37, 1192–203. 10.1038/npp.2011.304 - DOI - PMC - PubMed
    1. Baumann M. H., Partilla J. S., Lehner K. R. (2013). Psychoactive “bath salts”: not so soothing. Eur. J. Pharmacol. 698, 1–5. 10.1016/j.ejphar.2012.11.020 - DOI - PMC - PubMed
    1. Bretteville-Jensen A. L., Tuv S. S., Bilgrei O. R., Fjeld B., Bachs L. (2013). Synthetic cannabinoids and cathinones: prevalence and markets. Forensic. Sci. Rev. 25, 7–26. - PubMed
    1. Carhart-Harris R. L., King L. A., Nutt D. J. (2011). A web-based survey on mephedrone. Drug Alcohol Depend. 118, 19–22. 10.1016/j.drugalcdep.2011.02.011 - DOI - PubMed
Show all 75 references
Associated data
[x]
Cite
Copy Download .nbib
Format: AMA APA MLA NLM
Figure 2
Figure 2
Time course of drug effects (n = 11, mean, standard error) on subjective effects (differences from baseline). □ mephedrone + alcohol; ○ mephedrone; ◊ alcohol; Δ placebo; Significant differences between mephedrone vs mephedrone + alcohol (a: p

Figure 3

Plasma concentration over time curves…

Figure 3

Plasma concentration over time curves of mephedrone (left) and ethanol (right) (n =…

Figure 3
Plasma concentration over time curves of mephedrone (left) and ethanol (right) (n = 11, mean, standard error). ○ mephedrone; ◊ alcohol; □ mephedrone + alcohol.
Figure 3
Figure 3
Plasma concentration over time curves of mephedrone (left) and ethanol (right) (n = 11, mean, standard error). ○ mephedrone; ◊ alcohol; □ mephedrone + alcohol.

References

    1. Advisory Council on the Misuse of Drugs [ACMD]. (2010). ACMD report on the consideration of the cathinones, Available at: .
    1. Baumann M. H., Ayestas M. A. , Jr., Partilla J. S., Sink J. R., Shulgin A. T., Daley P. F., et al. (2012). The designer methcathinone analogs, mephedrone and methylone, are substrates for monoamine transporters in brain tissue. Neuropsychopharmacol. 37, 1192–203. 10.1038/npp.2011.304
    1. Baumann M. H., Partilla J. S., Lehner K. R. (2013). Psychoactive “bath salts”: not so soothing. Eur. J. Pharmacol. 698, 1–5. 10.1016/j.ejphar.2012.11.020
    1. Bretteville-Jensen A. L., Tuv S. S., Bilgrei O. R., Fjeld B., Bachs L. (2013). Synthetic cannabinoids and cathinones: prevalence and markets. Forensic. Sci. Rev. 25, 7–26.
    1. Carhart-Harris R. L., King L. A., Nutt D. J. (2011). A web-based survey on mephedrone. Drug Alcohol Depend. 118, 19–22. 10.1016/j.drugalcdep.2011.02.011
    1. Caudevilla-Gálligo F., Riba J., Ventura M., González D., Farré M., Barbanoj M. J., et al. (2012). 4-Bromo-2,5-dimethoxyphenethylamine (2C-B): presence in the recreational drug market in Spain, pattern of use and subjective effects. J. Psychopharmacol. 26, 1026–1035. 10.1177/0269881111431752
    1. Ciudad-Roberts A., Camarasa J., Ciudad C. J., Pubill D., Escubedo E. (2015). Alcohol enhances the psychostimulant and conditioning effects of mephedrone in adolescent mice; postulation of unique roles of D3 receptors and BDNF in place preference acquisition. Br. J. Pharmacol. 172, 4970–4984. 10.1111/bph.13266
    1. Ciudad-Roberts A., Duart-Castells L., Camarasa J., Pubill D., Escubedo E. (2016). The combination of alcohol with mephedrone increases the signs of neurotoxicity and impairs neurogenesis and learning in adolescent CD-1 mice. Toxicol. Appl. Pharmacol. 293, 10–20. 10.1016/j.taap.2015.12.019
    1. Corkery J. M., Loi B., Claridge H., Goodair C., Schifano F. (2017). Deaths in the lesbian, gay, bisexual and transgender United Kingdom communities associated with GHB and precursors. Curr. Drug Metab. 19, 1086–1099. 10.2174/1389200218666171108163817
    1. Cosbey S. H., Peters K. L., Quinn A., Bentley A. (2013). Mephedrone (methylmethcathinone) in toxicology casework: a Northern Ireland perspective. J. Anal. Toxicol. 37, 74–82. 10.1093/jat/bks094
    1. Crime Survey for England and Wale (CSEW) (2018). Drug Misuse: Findings from the 2017/18 Crime Survey for England and Wales, Available at: .
    1. Dargan P. I., Albert S., Wood D. M. (2010). Mephedrone use and associated adverse effects in school and college/university students before the UK legislation change. QJM 103, 875–879. 10.1093/qjmed/hcq134
    1. de la Torre R., Farré M., Roset P. N., López C. H., Mas M., Ortuño J., et al. (2000). Pharmacology of MDMA in humans. Ann. N. Y. Acad. Sci. 914, 225–237. 10.1111/j.1749-6632.2000.tb05199.x
    1. de Sousa Fernandes Perna E. B., Papaseit E., Pérez-Mañá C., Mateus J., Theunissen E. L., Kuypers K., et al. (2016). Neurocognitive performance following acute mephedrone administration, with and without alcohol. J. Psychopharmacol. 30, 1305–1312. 10.1177/0269881116662635
    1. Deluca P., Davey Z., Corazza O., Di Furia L., Farré M., Flesland L. H., et al. (2012). Identifying emerging trends in recreational drug use; outcomes from the psychonaut web mapping project. Prog. Neuropsychopharmacol. Biol. Psychiatry 39, 221–226. 10.1016/j.pnpbp.2012.07.011
    1. Dolder P. C., Strajhar P., Vizeli P., Hammann F., Odermatt A., Liechti M. E. (2017). Pharmacokinetics and pharmacodynamics of lisdexamfetamine compared with D-Amphetamine in healthy subjects. Front. Pharmacol. 8, 617. 10.3389/fphar.2017.00617
    1. Dolder P. C., Müller F., Schmid Y., Borgwardt S. J., Liechti M. E. (2018). Direct comparison of the acute subjective, emotional, autonomic, and endocrine effects of MDMA, methylphenidate, and modafinil in healthy subjects. Psychopharmacol. (Berl.) 235, 467–479. 10.1007/s00213-017-4650-5
    1. Dumont G. J., Kramers C., Sweep F. C., Willemsen J. J., Touw D. J., Schoemaker R. C., et al. (2010). Ethanol co-administration moderates 3,4-methylenedioxymethamphetamine effects on human physiology. J. Psychopharmacol. 24, 165–174. 10.1177/026988110810002
    1. Elliott S., Evans J. (2014). A 3-year review of new psychoactive substances in casework. Forensic. Sci. Int. 243, 55–60. 10.1016/j.forsciint.2014.04.017
    1. European Monitoring Centre for Drugs and Drug Addiction [EMCDDA]. (2010). Risk Assessment Report of a New Psychoactive Substance: 4-Methylmethcathinone (Mephedrone), Available at: .
    1. European Monitoring Centre for Drugs and Drug Addiction [EMCDDA] (2011). Report on the risk assessment of mephedrone in the framework of the Council Decision on new psychoactive substances, Available at: .
    1. European Monitoring Centre for Drugs and Drug Addiction [EMCDDA]. (2014). European Drug Report 2014: Trends and developments, Available at: .
    1. European Monitoring Centre for Drugs and Drug Addiction [EMCDDA]. (2015). European Drug Report 2015: Trends and Developments, Available at: .
    1. European Monitoring Centre for Drugs and Drug Addiction [EMCDDA]. (2016). Hospital emergency presentations and acute drug toxicity in Europe — update from the Euro-DEN Plus research group and the EMCDDA, Available at:.
    1. European Monitoring Centre for Drugs and Drug Addiction [EMCDDA]. (2018). European Drug Report 2019: Trends and developments, Available at: .
    1. European Monitoring Centre for Drugs and Drug Addiction [EMCDDA] (2019). European Drug Report 2019: Trends and Developments. Publications Office of the European Union, Luxembourg. Available at: .
    1. Farré M., de la Torre R., Llorente M., Lamas X., Ugena B., Segura J., et al. (1993). Alcohol and cocaine interactions in humans. J. Pharmacol. Exp. Ther. 266, 1364–1373.
    1. Farré M., de la Torre R., González M. L., Terán M. T., Roset P. N., Menoyo E., et al. (1997). Cocaine and alcohol interactions in humans: neuroendocrine effects and cocaethylene metabolism. J. Pharmacol. Exp. Ther. 283, 164–176. 10.1016/0731-7085(95)01284-r
    1. Farré M., de la Torre R., Mathúna B. O., Roset P. N., Peiró A. M., Torrens M. (2004). Repeated doses administration of MDMA in humans: pharmacological effects and pharmacokinetics. Psychopharmacol. (Berl.) 173, 364–375. 10.1007/s00213-004-1789-7
    1. Farré M., Tomillero A., Pérez-Mañá C., Yubero S., Papaseit E., Roset P. N., et al. (2015). Human pharmacology of 3,4-methylenedioxymethamphetamine (MDMA, ecstasy) after repeated doses taken 4h apart. Eur. Neuropsychopharmacol. 25, 1637–1649. 10.1016/j.euroneuro.2015.05.007
    1. Freeman T. P., Morgan C. J., Vaughn-Jones J., Hussain N., Karimi K., Curran H. V. (2012). Cognitive and subjective effects of mephedrone and factors influencing use of a ‘new legal high’. Addiction 107, 792–800. 10.1111/j.1360-0443.2011.03719.x
    1. González D., Ventura M., Caudevilla F., Torrens M., Farré M. (2013). Consumption of new psychoactive substances in a Spanish sample of research chemical users. Hum. Psychopharmacol. 28, 332–340. 10.1002/hup.2323
    1. Green A. R., King M. V., Shortall S. E., Fone K. C. (2014). The preclinical pharmacology of mephedrone; not just MDMA by another name. Br. J. Pharmacol. 171, 2251–2268. 10.1111/bph.12628
    1. Harris D. S., Baggott M., Mendelson J. H., Mendelson J. E., Jones R. T. (2002). Subjective and hormonal effects of 3,4 methylenedioxymethamphetamine (MDMA) in humans. Psychopharmacol. (Berl). 162, 396–405.
    1. Hernández-López C., Farré M., Roset P. N., Menoyo E., Pizarro N., Ortuño J., et al. (2002). 3,4-Methylenedioxymethamphetamine (ecstasy) and alcohol interactions in humans: psychomotor performance, subjective effects, and pharmacokinetics. J. Pharmacol. Exp. Ther. 300, 236–244. 10.1124/jpet.300.1.236
    1. Higgins S. T., Rush C. R., Bickel W. K., Hughes J. R., Lynn M., Capeless M. A. (1993). Acute behavioral and cardiac effects of cocaine and alcohol combinations in humans. Psychopharmacol. (Berl.) 111, 285–294.
    1. Homman L., Seglert J., Morgan M. J. (2018). An observational study on the sub-acute effects of mephedrone on mood, cognition, sleep and physical problems in regular mephedrone users. Psychopharmacol. (Berl.) 235, 2609–2618. 10.1007/s00213-018-4953-1
    1. Kelly B. C., Wells B. E., Pawson M., Leclair A., Parsons J. T., Golub S. A. (2013). Novel psychoactive drug use among younger adults involved in US nightlife scenes. Drug Alcohol Rev. 32, 588–593. 10.1111/dar.12058
    1. Kobayashi Y., Miyai K., Tsubota N., Watanabe F. (1979). Direct fluorescence polarization immunoassay. Steroids. 34, 829–834.
    1. Kuypers K. P., de la Torre R., Farre M., Pujadas M., Ramaekers J. G. (2013). Inhibition of MDMA-induced increase in cortisol does not prevent acute impairment of verbal memory. Br. J. Pharmacol. 168, 607–617. 10.1111/j.1476-5381.2012.02196.x
    1. Kuypers K. P., Steenbergen L., Theunissen E. L., Toennes S. W., Ramaekers J. G. (2015). Emotion recognition during cocaine intoxication. Eur. Neuropsychopharmacol. 25, 1914–1921. 10.1016/j.euroneuro.2015.08.012
    1. López-Arnau R., Buenrostro-Jáuregui M., Camarasa J., Pubill D., Escubedo E. (2018). Effect of the combination of mephedrone plus ethanol on serotonin and dopamine release in the nucleus accumbens and medial prefrontal cortex of awake rats. Naunyn Schmiedebergs Arch. Pharmacol. 391, 247–254. 10.1007/s00210-018-1464-x
    1. Lamas X., Farré M., Llorente M., Camí J. (1994). Spanish version of the 49-item short form of the addiction research center inventory (ARCI). Drug Alcohol Depend. 35, 203–209.
    1. Liechti M. (2015). Novel psychoactive substances (designer drugs): overview and pharmacology of modulators of monoamine signaling. Swiss Med. Wkly. 145, w14043. 10.4414/smw.2015.14043
    1. Loi B., Corkery J. M., Claridge H., Goodair C., Chiappini S., Gimeno Clemente C., et al. (2015). Deaths of individuals aged 16-24 years in the UK after using mephedrone. Hum. Psychopharmacol. 30, 225–232. 10.1002/hup.2423
    1. Mas M., Farré M., de la Torre R., Roset P. N., Ortuño J., Segura J., et al. (1999). Cardiovascular and neuroendocrine effects and pharmacokinetics of 3, 4-methylenedioxymethamphetamine in humans. J. Pharmacol. Exp. Ther. 290, 136–145.
    1. Maskell P. D., De Paoli G., Seneviratne C., Pounder D. J. (2011). Mephedrone (4-methylmethcathinone)-related deaths. J. Anal. Toxicol. 35, 188–191. 10.1093/anatox/35.3.188
    1. Mayo L. M., de Wit H. (2015). Acquisition of responses to a methamphetamine-associated cue in healthy humans: self-report, behavioral, and psychophysiological measures. Neuropsychopharmacology 40, 1734–1741. 10.1038/npp.2015.21
    1. McCance-Katz E. F., Price L. H., McDougle C. J., Kosten T. R., Black J. E., Jatlow P. I. (1993). Concurrent cocaine-alcohol ingestion in humans: pharmacology, physiology, behavior, and the role of cocaethylene. Psychopharmacol. (Berl.) 111, 39–46.
    1. McGaw C., Kankam O. (2010). The co-ingestion of alcohol and mephedrone: an emerging cause of acute medical admissions in young adults and a potential cause of tachyarrhythmias. West Lond. Med. 2, 9–13.
    1. Melendez-Torres G. J., Bourne A., Hickson F., Reid D., Weatherburn P. (2018). Correlates and subgroups of injecting drug use in UK gay and bisexual men: findings from the 2014 gay men’s sex survey. Drug Alcohol Depend. 187, 292–295. 10.1016/j.drugalcdep.2018.03.014
    1. Mendelson J., Jones R. T., Upton R., Jacob P. (1995). Methamphetamine and alcohol interactions in humans. Clin. Pharmacol. Ther. 57, 559–568.
    1. Mixmag’s Global Drug Survey: The results. (2014). Available at: .
    1. Newcombe R. (2009). Mephedrone: use of mephedrone (M-cat, Meow) in Middlesbrough (Manchester: Lifeline Publications; ). 1–16.
    1. O’Neill C., McElrath K. (2012). Simultaneous use of mephedrone and alcohol: a qualitative study of users’ experiences. J. Addict. Res. Ther. S9, 001. 10.1016/j.drugpo.2010.11.001
    1. Olesti E., Farré M., Papaseit E., Krotonoulas A., Pujadas M., de la Torre R., et al. (2017). Pharmacokinetics of Mephedrone and Its Metabolites in Human by LC-MS/MS. AAPS J. 19, 1767–1778. 10.1208/s12248-017-0132-2
    1. Ordak M., Nasierowski T., Bujalska-Zadrozny M. (2018). The problem of mephedrone in Europe: causes and suggested solutions. Eur. Psychiatry 55, 43–44. 10.1016/j.eurpsy.2018.09.001
    1. Pérez-Reyes M., Jeffcoat A. R. (1992). Alcohol/cocaine interaction: cocaine and cocaethylene plasma concentrations and their relationship to subjective and cardiovascular effects. Life Sci. 51, 553–563.
    1. Papaseit E., Farré M., Schifano F., Torrens M. (2014). Emerging drugs in Europe. Curr. Opin. Psychiatry 27, 243–250. 10.1097/YCO.0000000000000071
    1. Papaseit E., Pérez-Mañá C., Mateus J. A., Pujadas M., Fonseca F., Torrens M., et al. (2016). Abuse liability and human pharmacology of mephedrone. Neuropsychopharmacology 41, 2704–2713. 10.1038/npp.2016.75
    1. Papaseit E., Olesti E., de la Torre R., Torrens M., Farre M. (2017). Mephedrone concentrations in cases of clinical intoxication. Curr. Pharm. Des. 23, 5511–5522. 10.2174/1381612823666170704130213
    1. Peiró A. M., Farré M., Roset P. N., Carbó M., Pujadas M., Torrens M., et al. (2013). Human pharmacology of 3,4-methylenedioxymethamphetamine (MDMA, ecstasy) after repeated doses taken 2 h apart. Psychopharmacol. (Berl.) 225, 883–893. 10.1007/s00213-012-2894-7
    1. Poudevida S., Farré M., Roset P. N., Camí J. (2003). Construcción de un cuestionario para la Valoración de los Efectos Subjetivos de Sustancias con Potencial de Abuso (VESSPA): Evaluación del éxtasis. Adicciones 15, 115–126. 10.20882/adicciones.435
    1. Regan L., Mitchelson M., Macdonald C. (2011). Mephedrone toxicity in a Scottish emergency department. Emerg. Med. J. 28, 1055–1058. 10.1136/emj.2010.103093
    1. Rickli A., Hoener M. C., Liechti M. E. (2015). Monoamine transporter and receptor interaction profiles of novel psychoactive substances: para-halogenated amphetamines and pyrovalerone cathinones. Eur. Neuropsychopharmacol. 25, 365–376. 10.1016/j.euroneuro.2014.12.012
    1. Rush C. R., Sullivan J. T., Griffiths R. R. (1995). Intravenous caffeine in stimulant drug abusers: subjective reports and physiological effects. J. Pharmacol. Exp. Ther. 273, 351–358.
    1. Saha K., Partilla J. S., Lehner K. R., Seddik A., Stockner T., Holy M., et al. (2015). ‘Second-generation’ mephedrone analogs, 4-MEC and 4-MePPP, differentially affect monoamine transporter function. Neuropsychopharmacol. 40, 1321–1331. 10.1038/npp.2014.325
    1. Schifano F., Albanese A., Fergus S., Stair J. L., Deluca P., Corazza O., et al. (2011). Mephedrone (4-methylmethcathinone; ‘meow meow’): chemical, pharmacological and clinical issues. Psychopharmacol. (Berl.) 214, 593–602. 10.1007/s00213-010-2070-x
    1. Schifano F., Corkery J., Ghodse A. H. (2012). Suspected and confirmed fatalities associated with mephedrone (4-methylmethcathinone, “meow meow”) in the United Kingdom. J. Clin. Psychopharmacol. 32, 710–714. 10.1097/JCP.0b013e318266c70c
    1. Seibert J., Hysek C. M., Penno C. A., Schmid Y., Kratschmar D. V., Liechti M. E., et al. (2014). Acute effects of 3,4-methylenedioxymethamphetamine and methylphenidate on circulating steroid levels in healthy subjects. Neuroendocrinology 100, 17–25. 10.1159/000364879
    1. Simmler L. D., Buser T. A., Donzelli M., Schramm Y., Dieu L. H., Huwyler J., et al. (2013). Pharmacological characterization of designer cathinones in vitro . Br. J. Pharmacol. 168, 458–470. 10.1111/j.1476-5381.2012.02145.x
    1. Strajhar P., Vizeli P., Patt M., Dolder P. C., Kratschmar D. V., Liechti M. E., et al. (2019). Effects of lisdexamfetamine on plasma steroid concentrations compared with d-amphetamine in healthy subjects: A randomized, double-blind, placebo-controlled study. J. Steroid Biochem. Mol. Biol. 186, 212–225. 10.1016/j.jsbmb.2018.10.016
    1. United Nations Office on Drugs and Crime [UNODC]. (2017). World Drug Report, Available at: .
    1. Vardakou I., Pistos C., Spiliopoulou Ch. (2011). Drugs for youth via Internet and the example of mephedrone. Toxicol. Lett. 201, 191–195. 10.1016/j.toxlet.2010.12.014
    1. Winstock A., Mitcheson L., Ramsey J., Davies S., Puchnarewicz M., Marsden J. (2011). Mephedrone: use, subjective effects and health risks. Addiction 106, 1991–1996. 10.1111/j.1360-0443.2011.03502.x

Source: PubMed

3
Předplatit