Specific activation and targeting of cytotoxic lymphocytes through chimeric single chains consisting of antibody-binding domains and the gamma or zeta subunits of the immunoglobulin and T-cell receptors

Z Eshhar, T Waks, G Gross, D G Schindler, Z Eshhar, T Waks, G Gross, D G Schindler

Abstract

The generation of tumor-specific lymphocytes and their use in adoptive immunotherapy is limited to a few malignancies because most spontaneous tumors are very weak or not at all immunogenic. On the other hand, many anti-tumor antibodies have been described which bind tumor-associated antigens shared among tumors of the same histology. Combining the variable regions (Fv) of an antibody with the constant regions of the T-cell receptor (TCR) chains results in chimeric genes endowing T lymphocytes with antibody-type specificity, potentially allowing cellular adoptive immunotherapy against types of tumors not previously possible. To generalize and extend this approach to additional lymphocyte-activating molecules, we designed and constructed chimeric genes composed of a single-chain Fv domain (scFv) of an antibody linked with gamma or zeta chains, the common signal-transducing subunits of the immunoglobulin receptor and the TCR. Such chimeric genes containing the Fv region of an anti-trinitophenyl antibody could be expressed as functional surface receptors in a cytolytic T-cell hybridoma. They triggered interleukin 2 secretion upon encountering antigen and mediated non-major-histocompatibility-complex-restricted hapten-specific target cell lysis. Such chimeric receptors can be exploited to provide T cells and other effector lymphocytes, such as natural killer cells, with antibody-type recognition directly coupled to cellular activation.

References

    1. J Immunol. 1991 Dec 15;147(12):4263-70
    1. Nature. 1985 Mar 28-Apr 3;314(6009):330-4
    1. J Immunol. 1992 Apr 1;148(7):2181-5
    1. Cell. 1992 Mar 6;68(5):889-97
    1. J Exp Med. 1992 May 1;175(5):1381-90
    1. Eur J Immunol. 1976 Jul;6(7):511-9
    1. Science. 1986 Sep 19;233(4770):1318-21
    1. Cancer Surv. 1985;4(2):359-75
    1. Biochem Biophys Res Commun. 1987 Dec 31;149(3):960-8
    1. Annu Rev Immunol. 1988;6:251-81
    1. Proc Natl Acad Sci U S A. 1988 Aug;85(16):5879-83
    1. Science. 1988 Oct 21;242(4877):423-6
    1. Transplant Proc. 1989 Feb;21(1 Pt 1):127-30
    1. Cell. 1989 Sep 8;58(5):911-21
    1. EMBO J. 1989 Dec 1;8(12):3651-6
    1. Proc Natl Acad Sci U S A. 1989 Dec;86(24):10024-8
    1. Cell. 1990 Mar 23;60(6):929-39
    1. J Biol Chem. 1990 Apr 15;265(11):6448-52
    1. J Natl Cancer Inst. 1990 Jul 18;82(14):1191-7
    1. Nature. 1990 Sep 13;347(6289):189-91
    1. Cell. 1991 Mar 8;64(5):1037-46
    1. Cell. 1991 Mar 8;64(5):891-901
    1. Proc Natl Acad Sci U S A. 1991 May 1;88(9):3842-6
    1. Science. 1991 Jun 21;252(5013):1657-62
    1. Annu Rev Immunol. 1991;9:457-92
    1. J Clin Oncol. 1992 Feb;10(2):180-99
    1. Proc Natl Acad Sci U S A. 1981 Apr;78(4):2502-6
    1. J Immunol Methods. 1983 Dec 16;65(1-2):55-63
    1. Science. 1984 Sep 28;225(4669):1487-9
    1. Proc Natl Acad Sci U S A. 1991 Oct 15;88(20):8905-9

Source: PubMed

3
Předplatit