The vitamin D for COVID-19 (VIVID) trial: A pragmatic cluster-randomized design

Rui Wang, Victor DeGruttola, Quanhong Lei, Kenneth H Mayer, Susan Redline, Aditi Hazra, Samia Mora, Walter C Willett, Davaasambuu Ganmaa, JoAnn E Manson, Rui Wang, Victor DeGruttola, Quanhong Lei, Kenneth H Mayer, Susan Redline, Aditi Hazra, Samia Mora, Walter C Willett, Davaasambuu Ganmaa, JoAnn E Manson

Abstract

Objectives: To determine the effect of vitamin D supplementation on disease progression and post-exposure prophylaxis for COVID-19 infection. We hypothesize that high-dose vitamin D3 supplementation will reduce risk of hospitalization/death among those with recently diagnosed COVID-19 infection and will reduce risk of COVID-19 infection among their close household contacts.

Methods: We report the rationale and design of a planned pragmatic, cluster randomized, double-blinded trial (N = 2700 in total nationwide), with 1500 newly diagnosed individuals with COVID-19 infection, together with up to one close household contact each (~1200 contacts), randomized to either vitamin D3 (loading dose, then 3200 IU/day) or placebo in a 1:1 ratio and a household cluster design. The study duration is 4 weeks. The primary outcome for newly diagnosed individuals is the occurrence of hospitalization and/or mortality. Key secondary outcomes include symptom severity scores among cases and changes in the infection (seroconversion) status for their close household contacts. Changes in vitamin D 25(OH)D levels will be assessed and their relation to study outcomes will be explored.

Conclusions: The proposed pragmatic trial will allow parallel testing of vitamin D3 supplementation for early treatment and post-exposure prophylaxis of COVID-19. The household cluster design provides a cost-efficient approach to testing an intervention for reducing rates of hospitalization and/or mortality in newly diagnosed cases and preventing infection among their close household contacts.

Keywords: COVID-19; Cluster randomization; Early treatment; Prophylaxis; SARS-CoV-2; Vitamin D.

Copyright © 2020. Published by Elsevier Inc.

Figures

Fig. 1
Fig. 1
Schematic of VIVID design.

References

    1. Fauci A.S., Lane H.C., Redfield R.R. Covid-19 - Navigating the uncharted. N. Engl. J. Med. 2020;382(13):1268–1269.
    1. Wang D., Hu B., Hu C., Zhu F., Liu X., Zhang J., Wang B., Xiang H., Cheng Z., Xiong Y., Zhao Y., Li Y., Wang X., Peng Z. Clinical characteristics of 138 hospitalized patients with 2019 novel coronavirus-infected pneumonia in Wuhan, China. JAMA. 2020;323(11):1061–1069.
    1. Greiller C.L., Martineau A.R. Modulation of the immune response to respiratory viruses by vitamin D. Nutrients. 2015;7(6):4240–4270.
    1. Greiller C.L., Suri R., Jolliffe D.A., Kebadze T., Hirsman A.G., Griffiths C.J., Johnston S.L., Martineau A.R. Vitamin D attenuates rhinovirus-induced expression of intercellular adhesion molecule-1 (ICAM-1) and platelet-activating factor receptor (PAFR) in respiratory epithelial cells. J. Steroid Biochem. Mol. Biol. 2019;187:152–159.
    1. Telcian A.G., Zdrenghea M.T., Edwards M.R., Laza-Stanca V., Mallia P., Johnston S.L., Stanciu L.A. Vitamin D increases the antiviral activity of bronchial epithelial cells in vitro. Antivir. Res. 2017;137:93–101.
    1. Hansdottir S., Monick M.M., Lovan N., Powers L., Gerke A., Hunninghake G.W. Vitamin D decreases respiratory syncytial virus induction of NF-kappaB-linked chemokines and cytokines in airway epithelium while maintaining the antiviral state. J. Immunol. 2010;184(2):965–974.
    1. Hansdottir S., Monick M.M., Hinde S.L., Lovan N., Look D.C., Hunninghake G.W. Respiratory epithelial cells convert inactive vitamin D to its active form: potential effects on host defense. J. Immunol. 2008;181(10):7090–7099.
    1. Adams J.S., Ren S., Liu P.T., Chun R.F., Lagishetty V., Gombart A.F., Borregaard N., Modlin R.L., Hewison M. Vitamin d-directed rheostatic regulation of monocyte antibacterial responses. J. Immunol. 2009;182(7):4289–4295.
    1. Laaksi I. Vitamin D and respiratory infection in adults. Proc. Nutr. Soc. 2012;71(1):90–97.
    1. Liu P.T., Stenger S., Li H., Wenzel L., Tan B.H., Krutzik S.R., Ochoa M.T., Schauber J., Wu K., Meinken C., Kamen D.L., Wagner M., Bals R., Steinmeyer A., Zugel U., Gallo R.L., Eisenberg D., Hewison M., Hollis B.W., Adams J.S., Bloom B.R., Modlin R.L. Toll-like receptor triggering of a vitamin D-mediated human antimicrobial response. Science. 2006;311(5768):1770–1773.
    1. Gombart A.F., Pierre A., Maggini S. A review of micronutrients and the immune system-working in harmony to reduce the risk of infection. Nutrients. 2020;12(1)
    1. Belderbos M.E., Houben M.L., Wilbrink B., Lentjes E., Bloemen E.M., Kimpen J.L., Rovers M., Bont L. Cord blood vitamin D deficiency is associated with respiratory syncytial virus bronchiolitis. Pediatrics. 2011;127(6):e1513–e1520.
    1. de Sa Del Fiol F., Barberato-Filho S., Lopes L.C., de Cassia Bergamaschi C. Vitamin D and respiratory infections. J. Infect. Dev. Ctries. 2015;9(4):355–361.
    1. Gibney K.B., MacGregor L., Leder K., Torresi J., Marshall C., Ebeling P.R., Biggs B.A. Vitamin D deficiency is associated with tuberculosis and latent tuberculosis infection in immigrants from sub-Saharan Africa. Clin. Infect. Dis. 2008;46(3):443–446.
    1. Hurwitz J.L., Jones B.G., Penkert R.R., Gansebom S., Sun Y., Tang L., Bramley A.M., Jain S., McCullers J.A., Arnold S.R. Low retinol-binding protein and vitamin D levels are associated with severe outcomes in children hospitalized with lower respiratory tract infection and respiratory syncytial virus or human metapneumovirus detection. J. Pediatr. 2017;187:323–327.
    1. Laaksi I., Ruohola J.P., Tuohimaa P., Auvinen A., Haataja R., Pihlajamaki H., Ylikomi T. An association of serum vitamin D concentrations < 40 nmol/L with acute respiratory tract infection in young Finnish men. Am. J. Clin. Nutr. 2007;86(3):714–717.
    1. Roth D.E., Shah R., Black R.E., Baqui A.H. Vitamin D status and acute lower respiratory infection in early childhood in Sylhet, Bangladesh. Acta Paediatr. 2010;99(3):389–393.
    1. Martineau A.R., Jolliffe D.A., Hooper R.L., Greenberg L., Aloia J.F., Bergman P., Dubnov-Raz G., Esposito S., Ganmaa D., Ginde A.A., Goodall E.C., Grant C.C., Griffiths C.J., Janssens W., Laaksi I., Manaseki-Holland S., Mauger D., Murdoch D.R., Neale R., Rees J.R., Simpson S., Jr., Stelmach I., Kumar G.T., Urashima M., Camargo C.A., Jr. Vitamin D supplementation to prevent acute respiratory tract infections: systematic review and meta-analysis of individual participant data. BMJ. 2017;356:i6583.
    1. Camargo C.A., Jr., Ganmaa D., Frazier A.L., Kirchberg F.F., Stuart J.J., Kleinman K., Sumberzul N., Rich-Edwards J.W. Randomized trial of vitamin D supplementation and risk of acute respiratory infection in Mongolia. Pediatrics. 2012;130(3):e561–e567.
    1. Bergman P., Norlin A.C., Hansen S., Rekha R.S., Agerberth B., Bjorkhem-Bergman L., Ekstrom L., Lindh J.D., Andersson J. Vitamin D3 supplementation in patients with frequent respiratory tract infections: a randomised and double-blind intervention study. BMJ Open. 2012;2(6)
    1. Goodall E.C., Granados A.C., Luinstra K., Pullenayegum E., Coleman B.L., Loeb M., Smieja M. Vitamin D3 and gargling for the prevention of upper respiratory tract infections: a randomized controlled trial. BMC Infect. Dis. 2014;14:273.
    1. Camargo C.A., Sluyter J., Stewart A.W., Khaw K.T., Lawes C.M.M., Toop L., Waayer D., Scragg R. Effect of monthly high-dose vitamin D supplementation on acute respiratory infections in older adults: a randomized controlled trial. Clin. Infect. Dis. 2019;71(2):311–317.
    1. Murdoch D.R., Slow S., Chambers S.T., Jennings L.C., Stewart A.W., Priest P.C., Florkowski C.M., Livesey J.H., Camargo C.A., Scragg R. Effect of vitamin D3 supplementation on upper respiratory tract infections in healthy adults: the VIDARIS randomized controlled trial. JAMA. 2012;308(13):1333–1339.
    1. Chen N., Zhou M., Dong X., Qu J., Gong F., Han Y., Qiu Y., Wang J., Liu Y., Wei Y., Xia J., Yu T., Zhang X., Zhang L. Epidemiological and clinical characteristics of 99 cases of 2019 novel coronavirus pneumonia in Wuhan, China: a descriptive study. Lancet. 2020;395(10223):507–513.
    1. Shi Y., Wang Y., Shao C., Huang J., Gan J., Huang X., Bucci E., Piacentini M., Ippolito G., Melino G. COVID-19 infection: the perspectives on immune responses. Cell Death Differ. 2020;27(5):1451–1454.
    1. Mehta S., Giovannucci E., Mugusi F.M., Spiegelman D., Aboud S., Hertzmark E., Msamanga G.I., Hunter D., Fawzi W.W. Vitamin D status of HIV-infected women and its association with HIV disease progression, anemia, and mortality. PLoS One. 2010;5(1):e8770.
    1. Aranow C. Vitamin D and the immune system. J. Investig. Med. 2011;59(6):881–886.
    1. Laird E., Rhodes J., Kenny R.A. Vitamin D and inflammation: potential implications for severity of Covid-19. Ir. Med. J. 2020;113(5):81.
    1. Grant W.B., Lahore H., McDonnell S.L., Baggerly C.A., French C.B., Aliano J.L., Bhattoa H.P. Evidence that vitamin D supplementation could reduce risk of influenza and COVID-19 infections and deaths. Nutrients. 2020;12(4)
    1. Ilie P.C., Stefanescu S., Smith L. The role of vitamin D in the prevention of coronavirus disease 2019 infection and mortality. Aging Clin. Exp. Res. 2020;32(7):1195–1198.
    1. Alipio M. 2020. Vitamin D Supplementation Could Possibly Improve Clinical Outcomes of Patients Infected with Coronavirus-2019 (COVID-19) SSRN.
    1. Lau F., Majumher R., Torabi R., Saeg F., Hoffman R., Cirillo J.D., Greiffenstein P. Vitamin D insufficiency is prevalent in severe COVID-19. medRxiv. 2020 doi: 10.1101/2020.04.24.20075838.
    1. Raharusun P., Priambada S., Budiarti C., Agung E., Budi C. Patterns of COVID-19 mortality and vitamin D: an Indonesian study. SSRN. 2020 (Available at SSRN 3585561. 2020 Apr 26.)
    1. Zeger S.L., Liang K.Y. Longitudinal data analysis for discrete and continuous outcomes. Biometrics. 1986;42(1):121–130.
    1. Jing Q.L., Liu M.J., Zhang Z.B., Fang L.Q., Yuan J., Zhang A.R., Dean N.E., Luo L., Ma M.M., Longini I., Kenah E., Lu Y., Ma Y., Jalali N., Yang Z.C., Yang Y. Household secondary attack rate of COVID-19 and associated determinants in Guangzhou, China: a retrospective cohort study. Lancet Infect. Dis. 2020;20(10):1141–1150.
    1. Shah K., Saxena D., Mavalankar D. Secondary attack rate of COVID-19 in household contacts: systematic review. QJM. 2020 doi: 10.1093/qjmed/hcaa232. (Online ahead of print)
    1. Jeon S., Ko M., Lee J., Choi I., Byun S.Y., Park S., Shum D., Kim S. Identification of antiviral drug candidates against SARS-CoV-2 from FDA-approved drugs. Antimicrob. Agents Chemother. 2020;64(7)
    1. Ventz S., Alexander B.M., Parmigiani G., Gelber R.D., Trippa L. Designing clinical trials that accept new arms: an example in metastatic breast Cancer. J. Clin. Oncol. 2017;35(27):3160–3168.
    1. Latham N.K., Anderson C.S., Reid I.R. Effects of vitamin D supplementation on strength, physical performance, and falls in older persons: a systematic review. J. Am. Geriatr. Soc. 2003;51(9):1219–1226.
    1. Leventis P., Kiely P.D. The tolerability and biochemical effects of high-dose bolus vitamin D2 and D3 supplementation in patients with vitamin D insufficiency. Scand. J. Rheumatol. 2009;38(2):149–153.
    1. Sanders K.M., Stuart A.L., Williamson E.J., Simpson J.A., Kotowicz M.A., Young D., Nicholson G.C. Annual high-dose oral vitamin D and falls and fractures in older women: a randomized controlled trial. JAMA. 2010;303(18):1815–1822.
    1. Castillo M.E., Costa L.M.E., Barrios J.M.V., Diaz J.F.A., Miranda J.L., Bouillon R., Gomez J.M.Q. Effect of calcifediol treatment and best available therapy versus best available therapy on intensive care unit admission and mortality among patients hospitalized for COVID-19: a pilot randomized clinical study. J. Steroid Biochem. Mol. Biol. 2020;203(105751)
    1. LeBlanc E.S., Perrin N., Johnson J.D., Jr., Ballatore A., Hillier T. Over-the-counter and compounded vitamin D: is potency what we expect? JAMA Intern. Med. 2013;173(7):585–586.
    1. Manson J.E., Bassuk S.S. Commentary. Eliminating vitamin D deficiency during the COVID-19 pandemic: a call to action. Metabolism. 2020;112:154322.

Source: PubMed

3
Předplatit