Serine racemase: a key player in apoptosis and necrosis

Nadia Canu, Maria Teresa Ciotti, Loredano Pollegioni, Nadia Canu, Maria Teresa Ciotti, Loredano Pollegioni

Abstract

A fine balance between cell survival and cell death is required to sculpt the nervous system during development. However, an excess of cell death can occur following trauma, exposure to neurotoxins or alcohol, and some developmental and neurodegenerative diseases, such as Alzheimer's disease (AD). N-Methyl-D-aspartate receptors (NMDARs) support synaptic plasticity and survival of many neuronal populations whereas inappropriate activation may promote various forms of cell death, apoptosis, and necrosis representing the two extremes of a continuum of cell death processes both "in vitro" and "in vivo." Hence, by identifying the switches controlling pro-survival vs. apoptosis and apoptosis vs. pro-excitotoxic outcome of NMDAR stimulation, NMDAR modulators could be developed that selectively block the cell death enhancing pro-survival signaling or synaptic plasticity mediated by NMDAR. Among these modulators, a role is emerging for the enzyme serine racemase (SR) that synthesizes D-serine, a key co-agonist with glutamate at NMDAR. This review summarizes the experimental evidence from "in vitro" neuronal cultures-with special emphasis on cerebellar granule neurons (CGNs)-and "in vivo" models of neurodegeneration, where the dual role of the SR/D-serine pathway as a master regulator of apoptosis and the apoptosis-necrosis shift will be discussed.

Keywords: D-serine; NMDAR; apoptosis-necrosis shift; neurodegeneration; neurological disorders; review; serine racemase.

Figures

Figure 1
Figure 1
Reactions catalyzed by serine racemase: (A) racemization; (B) α, β-elimination. Lys56 of SR binds the PLP cofactor, forming an internal aldimine; then SR reacts with L-serine to yield an external aldimine; α-proton abstraction from this intermediate gives a resonance-stabilized carbanion. Two alternative pathways are possible starting from this intermediate (see text for details).
Figure 2
Figure 2
Scheme illustrating the main pro-survival and pro-death signals triggered by NMDAR activity.
Figure 3
Figure 3
Dimeric structure of human SR and details of the active site. PLP is shown in orange, malonate in red, and Mn2+ as red sphere.

References

    1. Adams S. M., de Rivero Vaccari J. C., Corriveau R. A. (2004). Pronounced cell death in the absence of NMDA receptors in the developing somatosensory thalamus. J. Neurosci. 24, 9441–9450 10.1523/JNEUROSCI.3290-04.2004
    1. Akbulut K. G., Guney S., Cetin F., Agun H. N., Aktas S. H., Akbulut H. (2013). Melatonin delays brain aging by decreasing the nitric oxide level. Neurophysiology 45, 187–192 10.1007/s11062-013-9368-3
    1. Alavez S., Blancas S., Morán J. (2006). Effect of NMDA antagonists on the death of cerebellar granule neurons at different ages. Neurosci. Lett. 398, 241–245 10.1016/j.neulet.2006.01.002
    1. Amadoro G., Ciotti M. T., Costanzi M., Cestari V., Calissano P., Canu N. (2006). NMDA receptor mediates tau-induced neurotoxicity by calpain and ERK/MAPK activation. Proc. Natl. Acad. Sci. U.S.A. 103, 2892–2897 10.1073/pnas.0511065103
    1. Amadoro G., Serafino A. L., Barbato C., Ciotti M. T., Sacco A., Calissano P., et al. (2004). Role of N-terminal tau domain integrity on the survival of cerebellar granule neurons. Cell Death Differ. 11, 217–230 10.1038/sj.cdd.4401314
    1. Andorfer C., Acker C. M., Kress Y., Hof P. R., Duff K., Davies P. (2005). Cell-cycle reentry and cell death in transgenic mice expressing nonmutant human tau isoforms. J. Neurosci. 25, 5446–5454 10.1523/JNEUROSCI.4637-04.2005
    1. Aoki C., Fujisawa S., Mahadomrongkul V., Shah P. J., Nader K., Erisir A. (2003). NMDA receptor blockade in intact adult cortex increases trafficking of NR2A subunits into spines, postsynaptic densities, and axon terminals. Brain Res. 963, 139–149 10.1016/S0006-8993(02)03962-8
    1. Balan L., Foltyn V. N., Zehl M., Dumin E., Dikopoltsev E., Knoh D., et al. (2009). Feedback inactivation of D-serine synthesis by NMDA receptor-elicited translocation of serine racemase to the membrane. Proc. Natl. Acad. Sci. U.S.A. 106, 7589–7594 10.1073/pnas.0809442106
    1. Balázs R., Hack N., Jørgensen O. S., Cotman C. W. (1989). N-methyl-D-aspartate promotes the survival of cerebellar granule cells: pharmacological characterization. Neurosci. Lett. 101, 241–246 10.1016/0304-3940(89)90539-9
    1. Balázs R., Jørgensen O. S., Hack N. (1988). N-methyl-D-aspartate promotes the survival of cerebellar granule cells in culture. Neuroscience 27, 437–451 10.1016/0306-4522(88)90279-5
    1. Balu D. T., Li Y., Puhl M. D., Benneyworth M. A., Basu A. C., Takagi S., et al. (2013). Multiple risk pathways for schizophrenia converge in serine racemase knockout mice, a mouse model of NMDA receptor hypofunction. Proc. Natl. Acad. Sci. U.S.A. 110, E2400–E2409 10.1073/pnas.1304308110
    1. Bano D., Young K. W., Guerin C. J., Lefeuvre R., Rothwell N. J., Naldini L., et al. (2005). Cleavage of the plasma membrane Na+/Ca2+ exchanger in excitotoxicity. Cell 120, 275–285 10.1016/j.cell.2004.11.049
    1. Bartlett T. E., Wang Y. T. (2013). The intersections of NMDAR-dependent synaptic plasticity and cell survival. Neuropharmacology 74, 59–68 10.1016/j.neuropharm.2013.01.012
    1. Baumgart F., Manchenõ J. M., Rodriguez-Crespo I. (2007). Insights into the activation of brain serine racemase by the multi-PDZ domain glutamate receptor interacting protein, divalent cations and ATP. FEBS J. 274, 4561–4571 10.1111/j.1742-4658.2007.05986.x
    1. Bazán-Peregrino M., Gutiérrez-Kobeh L., Morán J. (2007). Role of brain-derived neurotrophic factor in the protective action of N-methyl-D-aspartate in the apoptotic death of cerebellar granule neurons induced by low potassium. J. Neurosci. Res. 85, 332–341 10.1002/jnr.21112
    1. Berliocchi L., Bano D., Nicotera P. (2005). Ca2+ signals and death programmes in neurons. Philos. Trans. R. Soc. Lond. B Biol. Sci. 360, 2255–2258 10.1098/rstb.2005.1765
    1. Billard J. M. (2013). Serine racemase as a prime target for age-related memory deficits. Eur. J. Neurosci. 37, 1931–1938 10.1111/ejn.12226
    1. Bonfoco E., Krainc D., Ankarcrona M., Nicotera P., Lipton S. A. (1995). Apoptosis and necrosis: two distinct events induced, respectively, by mild and intense insults with N-methyl-D-aspartate or nitric oxide/superoxide in cortical cell cultures. Proc. Natl. Acad. Sci. U.S.A. 92, 7162–7166 10.1073/pnas.92.16.7162
    1. Borsello T., Di Luzio A., Ciotti M. T., Calissano P., Galli C. (2000). Granule neuron DNA damage following differentation in adult rats cerebellar cortex: a lesion model. Neuroscience 95, 163–171 10.1016/S0306-4522(99)00397-8
    1. Campanini B., Spyrakis F., Peracchi A., Mozzarelli A. (2013). Serine racemase: a key player in neuron activity and in neuropathologies. Front. Biosci. (Landmark Ed). 18, 1112–1128 10.2741/4167
    1. Campbell D. S., Holt C. E. (2003). Apoptotic pathway and MAPKs differentially regulate chemotropic responses of retinal growth cones. Neuron 37, 939–952 10.1016/S0896-6273(03)00158-2
    1. Canu N., Barbato C., Ciotti M. T., Serafino A., Dus L., Calissano P. (2000). Proteasome involvement and accumulation of ubiquitinated proteins in cerebellar granule neurons undergoing apoptosis. J. Neurosci. 20, 589–599
    1. Canu N., Calissano P. (2006). Role of the ubiquitin proteasome-system during neuronal death, in The Proteasome in Neurodegeneration, eds Stefanis L., Keller J. (New York, NY: Springer Science+Business Media. Inc; ), 133–148 ISBN: 978-0-387-28499-6.
    1. Canu N., Tufi R., Serafino A. L., Amadoro G., Ciotti M. T., Calissano P. (2005). Role of the autophagic-lysosomal system on low potassium-induced apoptosis in cultured cerebellar granule cells. J. Neurochem. 92, 1228–1242 10.1111/j.1471-4159.2004.02956.x
    1. Cappelletti P., Campomenosi P., Pollegioni L., Sacchi S. (2014). The degradation (by distinct pathways) of human D-amino acid oxidase and its interacting partner pLG72, two key proteins in D-serine catabolism in the brain. FEBS J. 281, 708–723 10.1111/febs.12616
    1. Catts V. S., Weickert C. S. (2012). Gene expression analysis implicates a death receptor pathway in schizophrenia pathology. PLoS ONE 7:e35511 10.1371/journal.pone.0035511
    1. Chessell I. P., Procter A. W., Francis P. T., Bowen D. M. (1991). D-cycloserine, a putative cognitive enhancer, facilitates activation of the N-methyl-D-aspartate receptor-ionophore complex in Alzheimer brain. Brain Res. 565, 345–348 10.1016/0006-8993(91)91668-Q
    1. Chin P. C., Liu L., Morrison B. E., Siddiq A., Ratan R. R., Bottiglieri T., et al. (2004). The c-Raf inhibitor GW5074 provides neuroprotection in vitro and in an animal model of neurodegeneration through a MEK-ERK and Akt-independent mechanism. J. Neurochem. 90, 595–608 10.1111/j.1471-4159.2004.02530.x
    1. Cook S. P., Galve-Roperh I., Martínez del Pozo A., Rodríguez-Crespo I. (2002). Direct calcium binding results in activation of brain serine racemase. J. Biol. Chem. 277, 27782–27792 10.1074/jbc.M111814200
    1. Costa B. M., Yao H., Yang L., Buch S. (2013). Role of endoplasmic reticulum (ER) stress in cocaine-induced microglial cell death. J. Neuroimmune Pharmacol. 8, 705–714 10.1007/s11481-013-9438-8
    1. Curcio L., Podda M. V., Leone L., Piacentini R., Mastrodonato A., Cappelletti P., et al. (2013). Reduced D-serine levels in the nucleus accumbens of cocaine-treated rats hinder the induction of NMDA receptor-dependent synaptic plasticity. Brain 136, 1216–1230 10.1093/brain/awt036
    1. D'Amelio M., Cavallucci V., Middei S., Marchetti C., Pacioni S., Ferri A., et al. (2011). Caspase-3 triggers early synaptic dysfunction in a mouse model of Alzheimer's disease. Nat. Neurosci. 14, 69–76 10.1038/nn.2709
    1. Danysz W., Parsons C. G. (1998). Glycine and N-methyl-D-aspartate receptors: physiological significance and possible therapeutic applications. Pharmacol. Rev. 50, 597–664
    1. Davies C. A., Mann D. M., Sumpter P. Q., Yates P. O. (1987). A quantitative morphometric analysis of the neuronal and synaptic content of the frontal and temporal cortex in patients with Alzheimer's disease. J. Neurol. Sci. 78, 151–164
    1. De Miranda J., Panizzutti R., Foltyn V. N., Wolosker H. (2002). Cofactors of serine racemase that physiologically stimulate the synthesis of the N-methyl-D-aspartate (NMDA) receptor coagonist D-serine. Proc. Natl. Acad. Sci. U.S.A. 99, 14542–14547 10.1073/pnas.222421299
    1. Denecker G., Vercammen D., Declercq W., Vandenabeele P. (2001). Apoptotic and necrotic cell death induced by death domain receptors. Cell. Mol. Life Sci. 58, 356–370 10.1007/PL00000863
    1. Desagher S., Severac D., Lipkin A., Bernis C., Ritchie W., Le Digarcher A., et al. (2005). Genes regulated in neurons undergoing transcription-dependent apoptosis belong to signaling pathways rather than the apoptotic machinery. J. Biol. Chem. 280, 5693–5702 10.1074/jbc.M408971200
    1. D'Mello S. R., Galli C., Ciotti T., Calissano P. (1993). Induction of apoptosis in cerebellar granule neurons by low potassium: inhibition of death by insulin-like growth factor I and cAMP. Proc. Natl. Acad. Sci. U.S.A. 90, 10989–10993 10.1073/pnas.90.23.10989
    1. Dumin E., Bendikov I., Foltyn V. N., Misumi Y., Ikehara Y., Kartvelishvily E., et al. (2006). Modulation of D-serine levels via ubiquitin-dependent proteasomal degradation of SR. J. Biol. Chem. 281, 20291–20302 10.1074/jbc.M60197120
    1. Dunlop D. S., Neidle A. (2005). Regulation of serine racemase activity by amino acids. Brain Res. Mol. Brain Res. 133, 208–214 10.1016/j.molbrainres.2004.10.027
    1. Ehmsen J. T., Ma T. M., Sason H., Rosenberg D., Ogo T., Furuya S., et al. (2013). D-serine in glia and neurons derives from 3-phosphoglycerate dehydrogenase. J. Neurosci. 33, 12464–12469 10.1523/JNEUROSCI.4914-12.2013
    1. Esposito S., Pristerà A., Maresca G., Cavallaro S., Felsani A., Florenzano F., et al. (2012). Contribution of serine racemase/D-serine pathway to neuronal apoptosis. Aging Cell 11, 588–598 10.1111/j.1474-9726.2012.00822.x
    1. Faludi G., Mirnics K. (2011). Synaptic changes in the brain of subjects with schizophrenia. Int. J. Dev. Neurosci. 3, 305–309 10.1016/j.ijdevneu.2011.02.013
    1. Fantinato S., Pollegioni L., Pilone M. S. (2001). Engineering, expression and purification of a His-tagged chimeric D-amino acid oxidase from Rhodotorula gracilis. Enzyme Microb. Technol. 29, 407–412 10.1016/S0141-0229(01)00400-8
    1. Foltyn V. N., Bendikov I., De Miranda J., Panizzutti R., Dumin E., Shleper M., et al. (2005). Serine racemase modulates intracellular D-serine levels through an alpha,beta-elimination activity. J. Biol. Chem. 280, 1754–1763 10.1074/jbc.M405726200
    1. Foltyn V. N., Zehl M., Dikopoltsev E., Jensen O. N., Wolosker H. (2010). Phosphorylation of mouse serine racemase regulates D-serine synthesis. FEBS Lett. 584, 2937–2941 10.1016/j.febslet.2010.05.022
    1. Fujii K., Maeda K., Hikida T., Mustafa A. K., Balkissoon R., Xia J., et al. (2006). SR binds to PICK1: potential relevance to schizophrenia. Mol. Psychiatry 11, 150–157 10.1038/sj.mp.4001776
    1. Galli C., Meucci O., Scorziello A., Werge T. M., Calissano P., Schettini G. (1995). Apoptosis in cerebellar granule cells is blocked by high KCl, forskolin, and IGF-1 through distinct mechanisms of action: the involvement of intracellular calcium and RNA synthesis. J. Neurosci. 15, 1172–1179
    1. Gallo V., Kingsbury A., Balázs R., Jørgensen O. S. (1987). The role of depolarization in the survival and differentiation of cerebellar granule cells in culture. J. Neurosci. 7, 2203–2213
    1. Gelfin E., Kaufman Y., Korn-Lubetzki I., Bloch B., Kremer I., Javitt D. C., et al. (2012). D-serine adjuvant treatment alleviates behavioural and motor symptoms in Parkinson's disease. Int. J. Neuropsychopharmacol. 15, 543–549 10.1017/S1461145711001015
    1. Gillingwater T. H., Wishart T. M. (2013). Mechanisms underlying synaptic vulnerability and degeneration in neurodegenerative disease. Neuropathol. Appl. Neurobiol. 39, 320–334 10.1111/nan.12014
    1. Glazner G. W., Chan S. L., Lu C., Mattson M. P. (2000). Caspase-mediated degradation of AMPA receptor subunits: a mechanism for preventing excitotoxic necrosis and ensuring apoptosis. J. Neurosci. 20, 3641–3649
    1. Goto M., Yamauchi T., Kamiya N., Miyahara I., Yoshimura T., Mihara H., et al. (2009). Crystal structure of a homolog of mammalian serine racemase from Schizosaccharomyces pombe. J. Biol. Chem. 284, 25944–25952 10.1074/jbc.M109.010470
    1. Gould E., Cameron H. A., McEwen B. S. (1994). Blockade of NMDA receptors increases cell death and birth in the developing rat dentate gyrus. J. Comp. Neurol. 340, 551–565 10.1002/cne.903400408
    1. Groc L., Heine M., Cousins S. L., Stephenson F. A., Lounis B., Cognet L., et al. (2006). NMDA receptor surface mobility depends on NR2A-2B subunits. Proc. Natl. Acad. Sci. U.S.A. 103, 18769–18774 10.1073/pnas.0605238103
    1. Hamilton A. M., Zito K. (2013). Breaking it down: the ubiquitin proteasome system in neuronal morphogenesis. Neural Plast. 2013:196848 10.1155/2013/196848
    1. Hardingham G. E., Bading H. (2003). The Yin and Yang of NMDA receptor signalling. Trends Neurosci. 26, 81–89 10.1016/S0166-2236(02)00040-1
    1. Hardingham G. E., Bading H. (2010). Synaptic versus extrasynaptic NMDA receptor signalling: implications for neurodegenerative disorders. Nat. Rev. Neurosci. 11, 682–696 10.1038/nrn2911
    1. Harris C., Maroney A. C., Johnson E. M., Jr. (2002). Identification of JNK-dependent and -independent components of cerebellar granule neuron apoptosis. J. Neurochem. 83, 992–1001 10.1046/j.1471-4159.2002.01219.x
    1. Hatanpää K., Isaacs K. R., Shirao T., Brady D. R., Rapoport S. I. (1999). Loss of proteins regulating synaptic plasticity in normal aging of the human brain and in Alzheimer disease. J. Neuropathol. Exp. Neurol. 58, 637–643 10.1097/00005072-199906000-00008
    1. Henshall D. C., Engel T. (2013). Contribution of apoptosis-associated signaling pathways to epileptogenesis: lessons from Bcl-2 family knockouts. Front. Cell. Neurosci. 7:110 10.3389/fncel.2013.00110
    1. Hensley K., Floyd R. A., Gordon B., Mou S., Pye Q. N., Stewart C., et al. (2002). Temporal patterns of cytokine and apoptosis-related gene expression in spinal cords of the G93A-SOD1 mouse model of amyotrophic lateral sclerosis. J. Neurochem. 82, 365–374 10.1046/j.1471-4159.2002.00968.x
    1. Henson M. A., Roberts A. C., Perez-Otano I., Philpot B. D. (2010). Influence of the NR3A subunit on NMDA receptor functions. Prog. Neurobiol. 91, 23–37 10.1016/j.pneurobio.2010.01.004
    1. Heresco-Levy U., Shoham S., Javitt D. C. (2013). Glycine site agonists of the N-methyl-D-aspartate receptor and Parkinson's disease: a hypothesis. Mov. Disord. 28, 419–424 10.1002/mds.25306
    1. Hetman M., Cavanaugh J. E., Kimelman D., Xia Z. (2000). Role of glycogen synthase kinase-3beta in neuronal apoptosis induced by trophic withdrawal. J. Neurosci. 20, 2567–2574
    1. Hetman M., Kharebava G. (2006). Survival signaling pathways activated by NMDA receptors. Curr. Top. Med. Chem. 6, 787–799 10.2174/156802606777057553
    1. Hikida T., Mustafa A. K., Maeda K., Fujii K., Barrow R. K., Saleh M., et al. (2008). Modulation of D-serine levels in brains of mice lacking PICK1. Biol. Psychiatry 63, 997–1000 10.1016/j.biopsych.2007.09.025
    1. Hwang J. Y., Kim Y. H., Ahn Y. H., Wie M. B., Koh J. Y. (1999). N-Methyl-D- aspartate receptor blockade induces neuronal apoptosis in cortical culture. Exp. Neurol. 159, 124–130 10.1006/exnr.1999.7126
    1. Ikonomidou C., Bosch F., Miksa M., Bittigau P., Vöckler J., Dikranian K., et al. (1999). Blockade of NMDA receptors and apoptotic neurodegeneration in the developing brain. Science 283, 70–74 10.126/science.283.5398.70
    1. Inoue R., Hashimoto K., Harai T., Mori H. (2008). NMDA- and beta-amyloid 1-42-induced neurotoxicity is attenuated in serine racemase knock-out mice. J. Neurosci. 28, 14486–14491 10.1523/JNEUROSCI.5034-08.2008
    1. Ittner L. M., Ke Y. D., Delerue F., Bi M., Gladbach A., van Eersel J., et al. (2010). Dendritic function of tau mediates amyloid-beta toxicity in Alzheimer's disease mouse models. Cell 142, 387–397 10.1016/j.cell.2010.06.036
    1. Jansen K. L., Faull R. L., Dragunow M., Synek B. L. (1990). Alzheimer's disease: changes in hippocampal N-methyl-D-aspartate, quisqualate, neurotensin, adenosine, benzodiazepine, serotonin and opioid receptors an autoradiographic study. Neuroscience 39, 613–627 10.1016/0306-4522(90)90246-Z
    1. Jantas D., Lason W. (2009). Different mechanisms of NMDA-mediated protection against neuronal apoptosis: a stimuli-dependent effect. Neurochem. Res. 34, 2040–2054 10.1007/s11064-009-9991-y
    1. Jellinger K. A. (2001). Cell death mechanisms in neurodegeneration. J. Cell. Mol. Med. 5, 1–17 10.1111/j.1582-4934.2001.tb00134.x
    1. Job V., Pilone M. S., Pollegioni L. (2002). Overexpression of a recombinant wild-type and His-tagged Bacillus subtilis glycine oxidase in Escherichia coli. Eur. J. Biochem. 269, 1456–1463 10.1046/j.1432-1033.2002.02790.x
    1. Johnson J. W., Ascher P. (1990). Voltage-dependent block by intracellular Mg2+ of N-methyl-D-aspartate-activated channels. Biophys. J. 57, 1085–1090 10.1016/S0006-3495(90)82626-6
    1. Kabashi E., Agar J. N., Taylor D. M., Minotti S., Durham H. D. (2004). Focal dysfunction of the proteasome: a pathogenic factor in a mouse model of amyotrophic lateral sclerosis. J. Neurochem. 89, 1325–1335 10.1111/j.1471-4159.2004.02453.x
    1. Kaminska B., Pyrzynska B., Ciechomska I., Wisniewska M. (2000). Modulation of the composition of AP-1 complex and its impact on transcriptional activity. Acta Neurobiol. Exp. (Wars). 60, 395–402
    1. Kartvelishvily E., Shleper M., Balan L., Dumin E., Wolosker H. (2006). Neuron-derived D-serine release provides a novel means to activate N-methyl-D-aspartate receptors. J. Biol. Chem. 281, 14151–14162 10.1074/jbc.M512927200
    1. Katsuki H., Nonaka M., Shirakawa H., Kume T., Akaike A. (2004). Endogenous D-serine is involved in induction of neuronal death by N-methyl-D-aspartate and simulated ischemia in rat cerebrocortical slices. J. Pharmacol. Exp. Ther. 311, 836–844 10.1124/jpet.104.070912
    1. Katsuki H., Shibata H., Takenaka C., Kume T., Kaneko S., Akaike A. (2003). N-Methyl-D-aspartate receptors contribute to the maintenance of dopaminergic neurons in rat midbrain slice cultures. Neurosci. Lett. 341, 123–126 10.1016/S0304-3940(03)00176-9
    1. Kim P. M., Aizawa H., Kim P. S., Huang A. S., Wickramasinghe S. R., Kashani A. H., et al. (2005). Serine racemase: activation by glutamate neurotransmission via glutamate receptor interacting protein and mediation of neuronal migration. Proc. Natl. Acad. Sci. U.S.A. 102, 2105–2110 10.1073/pnas.0409723102
    1. Klatte K., Kirschstein T., Otte D., Pothmann L., Müller L., Tokay T., et al. (2013). Impaired D-serine-mediated cotransmission mediates cognitive dysfunction in epilepsy. J. Neurosci. 33, 13066–13080 10.1523/JNEUROSCI.5423-12.2013
    1. Kleckner N. W., Dingledine R. (1988). Requirement for glycine in activation of NMDA-receptors expressed in Xenopus oocytes. Science 241, 835–837 10.1126/science.2841759
    1. Kroemer G., Galluzzi L., Vandenabeele P., Abrams J., Alnemri E. S., Baehrecke E. H., et al. (2009). Classification of cell death: recommendations of the Nomenclature Committee on Cell Death 2009. Cell Death Differ. 16, 3–11 10.1038/cdd.2008.150
    1. Labrie V., Roder J. C. (2010). The involvement of the NMDA receptor D-serine/glycine site in the pathophysiology and treatment of schizophrenia. Neurosci. Biobehav. Rev. 34, 351–372 10.1016/j.neubiorev.2009.08.002
    1. Leist M., Single B., Naumann H., Fava E., Simon B., Kühnle S., et al. (1999). Inhibition of mitochondrial ATP generation by nitric oxide switches apoptosis to necrosis. Exp. Cell Res. 249, 396–403 10.1006/excr.1999.4514
    1. Lepsch L. B., Munhoz C. D., Kawamoto E. M., Yshii L. M., Lima L. S., Curi-Boaventura M. F., et al. (2009). Cocaine induces cell death and activates the transcription nuclear factor kappa-B in PC12 cells. Mol. Brain 2:3 10.1186/1756-6606-2-3
    1. Li Z., Jo J., Jia J. M., Lo S. C., Whitcomb D. J., Jiao S., et al. (2010). Caspase-3 activation via mitochondria is required for long-term depression and AMPA receptor internalization. Cell 141, 859–871 10.1016/j.cell.2010.03.053
    1. Lin C. H., Chen P. K., Chang Y. C., Chuo L. J., Chen Y. S., Tsai G. E., et al. (2013). Benzoate, a D-amino acid oxidase inhibitor, for the treatment of early-phase Alzheimer disease: a randomized, double-blind, placebo-controlled trial. Biol. Psychiatry. [Epub ahead of print]. 10.1016/j.biopsych.2013.08.010
    1. Ma T. M., Abazyan S., Abazyan B., Nomura J., Yang C., Seshadri S., et al. (2013). Pathogenic disruption of DISC1-SR binding elicits schizophrenia-like behavior via D-serine depletion. Mol. Psychiatry 18, 557–567 10.1038/mp.2012.97
    1. Magnusson K. R., Brim B. L., Das S. R. (2010). Selective vulnerabilities of N-methyl-D-aspartate (NMDA) receptors during brain aging. Front. Aging Neurosci. 2:11 10.3389/fnagi.2010.00011
    1. Mancini M., Machamer C. E., Roy S., Nicholson D. W., Thornberry N. A., Casciola-Rosen L. A., et al. (2000). Caspase-2 is localized at the Golgi complex and cleaves golgin-160 during apoptosis. J. Cell Biol. 149, 603–612 10.1083/jcb.149.3.603
    1. Mangiarini L., Sathasivam K., Seller M., Cozens B., Harper A., Hetherington C., et al. (1996). Exon 1 of the HD gene with an expanded CAG repeat is sufficient to cause a progressive neurological phenotype in transgenic mice. Cell 87, 493–506 10.1016/S0092-8674(00)81369-0
    1. Marchetti M., Bruno S., Campanini B., Peracchi A., Mai N., Mozzarelli A. (2013). ATP binding to human serine racemase is cooperative and modulated by glycine. FEBS J. 280, 5853–5863 10.1111/febs.12510
    1. Marco S., Giralt A., Petrovic M. M., Pouladi M. A., Martínez-Turrillas R., Martínez-Hernández J., et al. (2013). Suppressing aberrant GluN3A expression rescues synaptic and behavioral impairments in Huntington's disease models. Nat. Med. 19, 1030–1038 10.1038/nm.3246
    1. Mattson M. P., Keler J. N., Begley J. G. (1988). Evidence for synaptic apoptosis. Exp. Neurol. 53, 35–48 10.1006/exnr.1998.6863
    1. Miya K., Inoue R., Takata Y., Abe M., Natsume R., Sakimura K., et al. (2008). Serine racemase is predominantly localized in neurons in mouse brain. J. Comp. Neurol. 510, 641–654 10.1002/cne.21822
    1. Mota S. I., Ferreira I. L., Rego A. C. (2014). Dysfunctional synapse in Alzheimer's disease - a focus on NMDA receptors. Neuropharmacology 76(pt A), 16–26 10.1016/j.neuropharm.2013.08.013
    1. Mothet J. P., Rouaud E., Sinet P. M., Potier B., Jouvenceau A., Dutar P., et al. (2006). A critical role for the glial-derived neuromodulator D-serine in the age-related deficits of cellular mechanisms of learning and memory. Aging Cell 5, 267–274 10.1111/j.1474-9726.2006.00216.x
    1. Mustafa A. K., Ahmad A. S., Zeynalov E., Gazi S. K., Sikka G., Ehmsen J. T., et al. (2010). Serine racemase deletion protects against cerebral ischemia and excitotoxicity. J. Neurosci. 30, 1413–1416 10.1523/JNEUROSCI.4297-09.2010
    1. Mustafa A. K., Kumar M., Selvakumar B., Ho G. P., Ehmsen J. T., Barrow R. K., et al. (2007). Nitric oxide S-nitrosylates serine racemase, mediating feedback inhibition of D-serine formation. Proc. Natl. Acad. Sci.U.S.A. 104, 2950–2955 10.1073/pnas.0611620104
    1. Mustafa A. K., van Rossum D. B., Patterson R. L., Maag D., Ehmsen J. T., Gazi S. K., et al. (2009). Glutamatergic regulation of serine racemase via reversal of PIP2 inhibition. Proc. Natl. Acad. Sci. U.S.A. 106, 2921–2926 10.1073/pnas.0813105106
    1. Nardi N., Avidan G., Daily D., Zilkhafalb R., Barzilai A. (1997). Biochemical and temporal analysis of events associated with apoptosis induced by lowering the extracellular potassium concentration in mouse cerebellar granule neurons. J. Neurochem. 68, 750–759 10.1046/j.1471-4159.1997.68020750.x
    1. Neidle A., Dunlop D. S. (2002). Allosteric regulation of mouse brain serine racemase. Neurochem. Res. 27, 1719–1724 10.1023/A:1021607715824
    1. Paoletti P., Bellone C., Zhou Q. (2013). NMDA receptor subunit diversity: impact on receptor properties, synaptic plasticity and disease. Nat. Rev. Neurosci. 14, 383–400 10.1038/nrn3504
    1. Papouin T., Ladépêche L., Ruel J., Sacchi S., Labasque M., Hanini M., et al. (2012). Synaptic and extrasynaptic NMDA receptors are gated by different endogenous coagonists. Cell 150, 633–646 10.1016/j.cell.2012.06.029
    1. Paumier K. L., Sukoff Rizzo S. J., Berger Z., Chen Y., Gonzales C., Kaftan E., et al. (2013). Behavioral characterization of A53T mice reveals early and late stage deficits related to Parkinson's disease. PLoS ONE 8:e70274 10.1371/journal.pone.0070274
    1. Pollegioni L., Butò S., Tischer W., Ghisla S., Pilone M. S. (1993). Characterization of D-amino acid oxidase from Trigonopsis variabilis. Biochem. Mol. Biol. Int. 31, 709–717
    1. Pollegioni L., Sacchi S. (2010). Metabolism of the neuromodulator D-serine. Cell. Mol. Life Sci. 67, 2387–2404 10.1007/s00018-010-0307-9
    1. Puyal J., Ginet V., Clarke P. G. (2013). Multiple interacting cell death mechanisms in the mediation of excitotoxicity and ischemic brain damage: a challenge for neuroprotection. Prog. Neurobiol. 105, 24–48 10.1016/j.pneurobio.2013.03.002
    1. Ramcharitar J., Albrecht S., Afonso V. M., Kaushal V., Bennett D. A., Leblanc A. C. (2013). Cerebrospinal fluid tau cleaved by caspase-6 reflects brain levels and cognition in aging and Alzheimer disease. J. Neuropathol. Exp. Neurol. 72, 824–32 10.1097/NEN.0b013e3182a0a39f
    1. Rosenberg D., Artoul S., Segal A. C., Kolodney G., Radzishevsky I., Dikopoltsev E., et al. (2013). Neuronal D-serine and glycine release via the Asc-1 transporter regulates NMDA receptor-dependent synaptic activity. J. Neurosci. 33, 3533–3544 10.1523/JNEUROSCI.3836-12.2013
    1. Sacchi S., Bernasconi M., Martineau M., Mothet J. P., Ruzzene M., Pilone M. S., et al. (2008). pLG72 modulates intracellular D-serine levels through its interaction with D-amino acid oxidase: effect on schizophrenia susceptibility. J. Biol. Chem. 283, 22244–22456 10.1074/jbc.M709153200
    1. Sacchi S., Caldinelli L., Cappelletti P., Pollegioni L., Molla G. (2012). Structure-function relationships in human D-amino acid oxidase. Amino Acids 43, 1833–1850 10.1007/s00726-012-1345-4
    1. Sanz-Clemente A., Nicoll R. A., Roche K. W. (2013). Diversity in NMDA receptor composition: many regulators, many consequences. Neuroscientist 19, 62–75 10.1177/1073858411435129
    1. Sasabe J., Miyoshi Y., Suzuki M., Mita M., Konno R., Matsuoka M., et al. (2012). D-amino acid oxidase controls motoneuron degeneration through D-serine. Proc. Natl. Acad. Sci. U.S.A. 109, 627–632 10.1073/pnas.1114639109
    1. Schwab B. L., Guerini D., Didszun C., Bano D., Ferrando-May E., Fava E., et al. (2002). Cleavage of plasma membrane calcium pumps by caspases: a link between apoptosis and necrosis. Cell Death Differ. 9, 818–831 10.1038/sj.cdd.4401042
    1. Shimoke K., Yamada M., Ikeuchi T., Hatanaka H. (1998). Synthetic lipid products of PI3-kinase which are added to culture medium prevent low K+-induced apoptosis of cerebellar granule neurons via Akt kinase activation. FEBS Lett. 437, 221–224 10.1016/S0014-5793(98)01235-6
    1. Shoji K., Mariotto S., Ciampa A. R., Suzuki H. (2006a). Regulation of serine racemase activity by D-serine and nitric oxide in human glioblastoma cells. Neurosci. Lett. 392, 75–78 10.1016/j.neulet.2005.08.063
    1. Shoji K., Mariotto S., Ciampa A. R., Suzuki H. (2006b). Mutual regulation between serine and nitric oxide metabolism in human glioblastoma cells. Neurosci. Lett. 394, 163–167 10.1016/j.neulet.2005.10.064
    1. Smith M. A., Mack V., Ebneth A., Moraes I., Felicetti B., Wood M., et al. (2010). The structure of mammalian serine racemase: evidence for conformational changes upon inhibitor binding. J. Biol. Chem. 285, 12873–12881 10.1074/jbc.M109.050062
    1. Snyder S. H., Kim P. M. (2000). D-amino acids as putative neurotransmitters: focus on D-serine. Neurochem. Res. 25, 553–560 10.1023/A:1007586314648
    1. Staton P. C., Bristow D. R. (1997). The dietary excitotoxins beta-N-methylamino-L-alanine and beta-N-oxalylamino-L-alanine induce necrotic- and apoptotic-like death of rat cerebellar granule cells. J. Neurochem. 69, 1508–1518 10.1046/j.1471-4159.1997.69041508.x
    1. Strísovský K., Jirásková J., Mikulová A., Rulísek L., Konvalinka J. (2005). Dual substrate and reaction specificity in mouse serine racemase: identification of high-affinity dicarboxylate substrate and inhibitors and analysis of the beta-eliminase activity. Biochemistry 44, 13091–13100 10.1021/bi051201o
    1. Sun X. M., Butterworth M., MacFarlane M., Dubiel W., Ciechanover A., Cohen G. M. (2004). Caspase activation inhibits proteasome function during apoptosis. Mol. Cell 14, 81–93 10.1016/S1097-2765(04)00156-X
    1. Sze C., Bi H., Kleinschmidt-DeMasters B. K., Filley C. M., Martin L. J. (2001). N-Methyl-D-aspartate receptor subunit proteins and their phosphorylation status are altered selectively in Alzheimer's disease. J. Neurol. Sci. 182, 151–159 10.1016/S0022-510X(00)00467-6
    1. Sze C. I., Troncoso J. C., Kawas C., Mouton P., Price D. L., Martin L. J. (1997). Loss of the presynaptic vesicle protein synaptophysin in hippocampus correlates with cognitive decline in Alzheimer disease. J. Neuropathol. Exp. Neurol. 56, 933–944 10.1097/00005072-199708000-00011
    1. Takadera T., Matsuda I., Ohyashiki T. (1999). Apoptotic cell death and caspase-3 activation induced by N-methyl-D-aspartate receptor antagonists and their prevention by insulin-like growth factor I. J. Neurochem. 73, 548–556 10.1046/j.1471-4159.1999.0730548.x
    1. Tanahashi S., Yamamura S., Nakagawa M., Motomura E., Okada M. (2012). Clozapine, but not haloperidol, enhances glial D-serine and L-glutamate release in rat frontal cortex and primary cultured astrocytes. Br. J. Pharmacol. 165, 1543–1555 10.1111/j.1476-5381.2011.01638.x
    1. Terro F., Esclaire F., Yardin C., Hugon J. (2000). N-methyl-D-aspartate receptor blockade enhances neuronal apoptosis induced by serum deprivation. Neurosci. Lett. 278, 49–152 10.1016/S0304-3940(99)00911-8
    1. Thompson M., Marecki J. C., Marinesco S., Labrie V., Roder J. C., Barger S. W., et al. (2012). Paradoxical roles of SR and D-serine in the G93A mSOD1 mouse model of amyotrophic lateral sclerosis. J. Neurochem. 120, 598–610 10.1111/j.1471-4159.2011.07601.x
    1. Traynelis S. F., Wollmuth L. P., McBain C. J., Menniti F. S., Vance K. M., Ogden K. K., et al. (2010). Glutamate receptor ion channels: structure, regulation, and function. Pharmacol. Rev. 62, 405–496 10.1124/pr.109.002451
    1. Troy C. M., Rabacchi S. A., Friedman W. J., Frappier T. F., Brown K., Shelanski M. L. (2000). Caspase-2 mediates neuronal cell death induced by beta-amyloid. J. Neurosci. 20, 1386–1392
    1. Turpin F. R., Potier B., Dulong J. R., Sinet P. M., Alliot J., Oliet S. H., et al. (2011). Reduced SR expression contributes to age-related deficits in hippocampal cognitive function. Neurobiol. Aging 32, 1495–1504 10.1016/j.neurobiolaging.2009.09.001
    1. Van Horn M. R., Sild M., Ruthazer E. S. (2013). D-serine as a gliotransmitter and its roles in brain development and disease. Front. Cell. Neurosci. 7:39 10.3389/fncel.2013.00039
    1. Vastagh C., Gardoni F., Bagetta V., Stanic J., Zianni E., Giampà C., et al. (2012). N-methyl-D-aspartate (NMDA) receptor composition modulates dendritic spine morphology in striatal medium spiny neurons. J. Biol. Chem. 287, 18103–18114 10.1074/jbc.M112.347427
    1. Velázquez-Zamora D. A., González-Ramírez M. M., Beas-Zárate C., González-Burgos I. (2011). Egocentric working memory impairment and dendritic spine plastic changes in prefrontal neurons after NMDA receptor blockade in rats. Brain Res. 1402, 101–108 10.1016/j.brainres.2011.06.018
    1. Verrall L., Walker M., Rawlings N., Benzel I., Kew J. N., Harrison P. J., et al. (2007). D-Amino acid oxidase and serine racemase in human brain: normal distribution and altered expression in schizophrenia. Eur. J. Neurosci. 226, 1657–1669 10.1111/j.1460-9568.2007.05769.x
    1. Wilkinson D., Wirth Y., Goebel C. (2013). Memantine in patients with moderate to severe Alzheimer's disease: meta-analyses using realistic definitions of response. Dement. Geriatr. Cogn. Disord. 37, 71–85 10.1159/000353801
    1. Wolosker H., Dumin E., Balan L., Foltyn V. N. (2008). D-amino acids in the brain: D-serine in neurotransmission and neurodegeneration. FEBS J. 275, 3514–3526 10.1111/j.1742-4658.2008.06515.x
    1. Wolosker H., Mori H. (2012). Serine racemase: an unconventional enzyme for an unconventional transmitter. Amino Acids 43, 1895–1904 10.1007/s00726-012-1370-3
    1. Wolosker H., Panizzutti R., De Miranda J. (2002). Neurobiology through the looking-glass: D-serine as new glial-derived transmitter. Neurochem. Int. 41, 327–332 10.1016/S0197-0186(02)00055-4
    1. Wolosker H., Sheth K. N., Takahashi M., Mothet J. P., Brady R. O., Jr., Ferris C. D., et al. (1999). Purification of serine racemase: biosynthesis of the neuromodulator D-serine. Proc. Natl. Acad. Sci. U.S.A. 96, 721–725 10.1073/pnas.96.2.721
    1. Wu S., Barger S. W. (2004). Induction of serine racemase by inflammatory stimuli is dependent on AP-1. Ann. N.Y. Acad. Sci. 1035, 133–146 10.1196/annals.1332.009
    1. Wu S. Z., Bodles A. M., Porter M. M., Griffin W. S., Basile A. S., Barger S. W. (2004). Induction of SR expression and D-serine release from microglia by amyloid beta-peptide. J. Neuroinflammation 1:2 10.1186/1742-2094-1-2
    1. Xia M., Liu Y., Figueroa D. J., Chiu C. S., Wei N., Lawlor A. M., et al. (2004). Characterization and localization of a human serine racemase. Brain Res. Mol. Brain Res. 125, 96–104 10.1016/j.molbrainres.2004.03.007
    1. Xifró X., Falluel-Morel A., Miñano A., Aubert N., Fadó R., Malagelada C., et al. (2006). N-methyl-D-aspartate blocks activation of JNK and mitochondrial apoptotic pathway induced by potassium deprivation in cerebellar granule cells. J. Biol. Chem. 281, 6801–6812 10.1074/jbc.M504571200
    1. Yamada K., Ohnishi T., Hashimoto K., Ohba H., Iwayama-Shigeno Y., Toyoshima M., et al. (2005). Identification of multiple serine racemase (SRR) mRNA isoforms and genetic analyses of SRR and DAO in schizophrenia and D-serine levels. Biol. Psychiatry 57, 1493–1503 10.1016/j.biopsych.2005.03.018
    1. Yamamoto A., Lucas J. J., Hen R. (2000). Reversal of neuropathology and motor dysfunction in a conditional model of Huntington's disease. Cell 101, 57–66 10.1016/S0092-8674(00)80623-6
    1. Yan G. M., Ni B., Weller M., Wood K. A., Paul S. M. (1994). Depolarization or glutamate receptor activation blocks apoptotic cell death of cultured cerebellar granule neurons. Brain Res. 656, 43–51 10.1016/0006-8993(94)91364-1
    1. Yuan Z., Gong S., Luo J., Zheng Z., Song B., Ma S., et al. (2009). Opposing roles for ATF2 and c-Fos in c-Jun-mediated neuronal apoptosis. Mol. Cell. Biol. 29, 2431–2442 10.1128/MCB.01344-08
    1. Zeiss C. J. (2003). The apoptosis-necrosis continuum: insights from genetically altered mice. Vet. Pathol. 40, 481–495 10.1354/vp.40-5-481
    1. Zhou X., Hollern D., Liao J., Andrechek E., Wang H. (2013). NMDA receptor-mediated excitotoxicity depends on the coactivation of synaptic and extrasynaptic receptors. Cell Death Dis. 4:e560 10.1038/cddis.2013.82

Source: PubMed

3
Předplatit