A conditional form of Bruton's tyrosine kinase is sufficient to activate multiple downstream signaling pathways via PLC Gamma 2 in B cells

M G Tomlinson, D B Woods, M McMahon, M I Wahl, O N Witte, T Kurosaki, J B Bolen, J A Johnston, M G Tomlinson, D B Woods, M McMahon, M I Wahl, O N Witte, T Kurosaki, J B Bolen, J A Johnston

Abstract

Background: Bruton's tyrosine kinase (Btk) is essential for B cell development and function. Mutations of Btk elicit X-linked agammaglobulinemia in humans and X-linked immunodeficiency in the mouse. Btk has been proposed to participate in B cell antigen receptor-induced signaling events leading to activation of phospholipase C-gamma2 (PLCgamma2) and calcium mobilization. However it is unclear whether Btk activation is alone sufficient for these signaling events, and whether Btk can activate additional pathways that do not involve PLCgamma2. To address such issues we have generated Btk:ER, a conditionally active form of the kinase, and expressed it in the PLCgamma2-deficient DT40 B cell line.

Results: Activation of Btk:ER was sufficient to induce multiple B cell signaling pathways in PLCgamma2-sufficient DT40 cells. These included tyrosine phosphorylation of PLCgamma2, mobilization of intracellular calcium, activation of extracellular signal-regulated kinase (ERK) and c-Jun NH2-terminal kinase (JNK) mitogen-activated protein kinase (MAPK) pathways, and apoptosis. In DT40 B cells deficient for PLCgamma2, Btk:ER activation failed to induce the signaling events described above with the consequence that the cells failed to undergo apoptosis.

Conclusions: These data suggest that Btk:ER regulates downstream signaling pathways primarily via PLCgamma2 in B cells. While it is not known whether activated Btk:ER precisely mimics activated Btk, this conditional system will likely facilitate the dissection of the role of Btk and its family members in a variety of biological processes in many different cell types.

Figures

Figure 1
Figure 1
Expression of Btk:ER, a conditional form of Btk, in Btk-deficient DT40 cells. A, Diagrammatic representation of Btk:ER constructs. WT and kinase inactive (K430E) forms of Btk were fused at their COOH-terminus to the hormone-binding domain of the estrogen receptor (ER). B, Immune-complex kinase assay and Western blot analyses of Btk:ER constructs. Btk-deficient DT40 cells were stably transfected with WT Btk:ER or K430E Btk:ER and clones selected that expressed equal levels of Btk:ER. Cells were lysed and Btk:ER was immunoprecipitated with specific Btk antiserum. Immune complex kinase assays were performed using GST-Igα as an exogenous substrate (top panel), in addition to immunoblotting with antisera specific for Btk (middle panel) and ER (lower panel). C, Activation of Btk:ER in vivo by 4-HT. Cells expressing either WT or kinase inactive Btk:ER were stimulated with vehicle control, 4-HT (1 μM for 30-min) or anti-μmAb M4 (4 μg/ml for 1-min). Cells were lysed and Btk:ER was immunoprecipitated with specific Btk antiserum. Whole cell lysates were blotted with mAb 4G10 (top panel). Btk mmunoprecipitates were blotted with mAb 4G10, phosphospecific Btk Y223 antiserum, or Btk antiserum (lower panels).
Figure 2
Figure 2
Btk:ER activation is sufficient to induce PLCγ2 phosphorylation and calcium mobilization in Btk-deficient DT40 cells. A, Btk:ER-induced PLCγ2 phosphorylation. Cells expressing either WT or kinase inactive Btk:ER were lysed as a function of the indicated times (minutes) after addition of 4-HT (1 μM) or BCR cross-linking with anti-μ mAb M4 (4 μg/ml). PLCγ2 was immunoprecipitated with anti-PLCγ2 antiserum and immunoblotted with anti-phosphotyrosine mAb (APT, top panel) and with anti-PLCγ2 antiserum (bottom panel). B, BCR-induced PLCγ2 phosphorylation in Btk-deficient versus Btk-sufficient cells. The experiment was performed as described for Fig. 2A. Lanes 1-8 show anti-μ-induced PLCγ2 phosphorylation in Btk-deficient DT40 cells and in Btk-deficent cells expressing mouse Btk, which were described previously [13]. Lanes 9-12 show 4-HT-induced PLCγ2 phosphorylation in Btk-deficient cells expressing Btk or Btk:ER. Lanes 13-15 show a Btk blot of whole cell lysates for Btk-deficient cells, Btk-deficient cells expressing Btk, and Btk-deficient cells expressing Btk:ER. C, Btk:ER-induced calcium mobilization. Intracellular free calcium levels in indo-1-loaded cells were monitored over an 8-min period by FACS. 4-HT (1 μM) and/or anti-μ mAb M4 (2 μg/ml) were added at the 60 s time point. Relative intracellular calcium levels are shown on the y-axis. D, Sustained calcium mobilization is dependent on calcium influx. Intracellular calcium levels were monitored as described in panel B, in the presence or absence of 3 mM EGTA which chelates extracellular calcium. These data are representative of three independent stable clones.
Figure 3
Figure 3
Btk:ER activation is sufficient to induce ERK and JNK activation, and apoptosis, in Btk-deficient DT40 cells. A, Btk:ER-induced ERK MAPK activation. Cells were lysed as a function of the indicated times (minutes) after addition of 4-HT (1 μM), anti-μ mAb M4 (4 μg/ml), or phorbol 12-myristate 13-acetate (PMA, 100 ng/ml) as a positive control. ERK1 and ERK2 were immunoprecipitated with ERK1 and ERK2 antisera. Immune complex kinase assays were performed using myelin basic protein as an exogenous substrate (top panel). Samples were immunoblotted with anti-ERK1 and ERK2 antisera to show equal loading (bottom panel). ERK1 and ERK2 were not resolved as individual bands in these experiments, and ERK2 was the major species detected (data not shown). B, Btk:ER-induced JNK phosphorylation. Cells were lysed as a function of the indicated times (minutes) after addition of 4-HT (1 μM) and/or anti-μ mAb M4 (4 μg/ml), or PMA (100 ng/ml) and ionomycin (250 ng/ml) as a positive control. Whole cell lysates were immunoblotted with anti-active JNK phosphospecific antiserum. C, Btk:ER-induced apoptosis. Cells expressing either WT or kinase inactive Btk:ER were cultured for 24 h with 4-HT (1 μM) and/or anti-μ mAb M4 (2 μg/ml). Apoptosis was measured by TUNEL assay. The percentage of TUNEL-positive cells was calculated with reference to a negative control TUNEL reaction in the absence of terminal transferase. Negative controls yielded less than 1% TUNEL-positive cells in all cases. These data are representative of at least three independent stable clones.
Figure 4
Figure 4
Btk:ER-induced calcium mobilization is dependent on PLCγ2. A, expression of Btk:ER in parental and PLCγ2-deficient DT40 cells. WT Btk:ER was transfected into parental and PLCγ2-deficient cells and stable clones selected that expressed equal levels of Btk:ER. Whole cell lysates were immunoblotted with antiserum specific for Btk. B, Btk:ER-induced calcium mobilization is dependent on PLCγ2. Calcium mobilization in parental and PLCγ2-deficient cells expressing Btk:ER was measured as described in the legend for Fig 2C. Ionomycin (250 ng/ml) was used as a positive control.
Figure 5
Figure 5
Btk:ER-induced ERK and JNK activation, and apoptosis, are dependent on PLCγ2. A, Btk:ER-induced ERK MAPK activation is dependent on PLCγ2. Parental and PLCγ2-deficient cells expressing Btk:ER were treated for 60-min with vehicle control (0.1% ethanol), 4-HT (1 μM) and/or anti-μ mAb M4 (4 μg/ml), or for 15-min with PMA (100 ng/ml) as a positive control. ERK activation was measured by immune complex kinase assay as described in the legend for Fig 3A. B, Btk:ER-induced JNK phosphorylation is dependent on PLCγ2. Parental and PLCγ2-deficient cells expressing Btk:ER were treated for 30-min with vehicle control (0.1% ethanol), 4-HT (1 μM) and/or anti-μ mAb M4 (4 μg/ml), or for 10-min with PMA (100 ng/ml) and ionomycin (250 ng/ml) as a positive control. JNK phosphorylation was measured by immunblotting with anti-active JNK phosphospecific antiserum as described in the legend for Fig 3B. C, Btk:ER-induced apoptosis is dependent on PLCγ2. Apoptosis of parental and PLCγ2-deficient cells expressing Btk:ER was measured by TUNEL assay as described in the legend for Fig 3C. PMA (100 ng/ml) and ionomycin (250 ng/ml) were used as a positive control. These data are representative of three independent stable clones.

References

    1. Satterthwaite AB, Witte ON. The role of Bruton's tyrosine kinase in B-cell development and function: a genetic perspective. Immunol Rev. 2000;175:120–127. doi: 10.1034/j.1600-065X.2000.017504.x.
    1. Schaeffer EM, Schwartzberg PL. Tec family kinases in lymphocyte signaling and function. Curr Opin Immunol. 2000;12:282–288. doi: 10.1016/S0952-7915(00)00088-1.
    1. Yang WC, Collette Y, Nunes JA, Olive D. Tec kinases: a family with multiple roles in immunity. Immunity. 2000;12:373–382.
    1. Kawakami Y, Kitaura J, Hata D, Yao L, Kawakami T. Functions of Bruton's tyrosine kinase in mast and B cells. J Leukoc Biol. 1999;65:286–290.
    1. Mohamed AJ, Nore BF, Christensson B, Smith CI. Signalling of Bruton's tyrosine kinase, Btk. Scand J Immunol. 1999;49:113–118. doi: 10.1046/j.1365-3083.1999.00504.x.
    1. Rawlings DJ. Bruton's tyrosine kinase controls a sustained calcium signal essential for B lineage development and function. Clin Immunol. 1999;91:243–253. doi: 10.1006/clim.1999.4732.
    1. Bajpai UD, Zhang K, Teutsch M, Sen R, Wortis HH. Bruton's tyrosine kinase links the B cell receptor to nuclear factor kappaB activation. J Exp Med. 2000;191:1735–1744. doi: 10.1084/jem.191.10.1735.
    1. Fluckiger AC, Li Z, Kato RM, Wahl MI, Ochs HD, Longnecker R, Kinet JP, Witte ON, Scharenberg AM, Rawlings DJ. Btk/Tec kinases regulate sustained increases in intracellular Ca2+ following B-cell receptor activation. EMBO J. 1998;17:1973–1985. doi: 10.1093/emboj/17.7.1973.
    1. Jiang A, Craxton A, Kurosaki T, Clark EA. Different protein tyrosine kinases are required for B cell antigen receptor-mediated activation of extracellular signal-regulated kinase, c-Jun NH2-terminal kinase 1, and p38 mitogen-activated protein kinase. J Exp Med. 1998;188:1297–1306. doi: 10.1084/jem.188.7.1297.
    1. Petro JB, Rahman SM, Ballard DW, Khan WN. Bruton's tyrosine kinase is required for activation of IkappaB kinase and nuclear factor kappaB in response to B cell receptor engagement. J Exp Med. 2000;191:1745–1754. doi: 10.1084/jem.191.10.1745.
    1. Takata M, Kurosaki T. A role for Bruton's tyrosine kinase in B cell antigen receptor-mediated activation of phospholipase C-gamma 2. J Exp Med. 1996;184:31–40.
    1. Uckun FM, Waddick KG, Mahajan S, Jun X, Takata M, Bolen J, Kurosaki T. BTK as a mediator of radiation-induced apoptosis in DT-40 lymphoma B cells. Science. 1996;273:1096–1100.
    1. Tomlinson MG, Kurosaki T, Berson AE, Fujii GH, Johnston JA, Bolen JB. Reconstitution of Btk signaling by the atypical tec family tyrosine kinases Bmx and Txk. J Biol Chem. 1999;274:13577–13585. doi: 10.1074/jbc.274.19.13577.
    1. Takata M, Sabe H, Hata A, Inazu T, Homma Y, Nukada T, Yamamura H, Kurosaki T. Tyrosine kinases Lyn and Syk regulate B cell receptor-coupled Ca2+ mobilization through distinct pathways. EMBO J. 1994;13:1341–1349.
    1. Kurosaki T. Genetic analysis of B cell antigen receptor signaling. Annu Rev Immunol. 1999;17:555–592. doi: 10.1146/annurev.immunol.17.1.555.
    1. Satterthwaite AB, Li Z, Witte ON. Btk function in B cell development and response. Semin Immunol. 1998;10:309–316. doi: 10.1006/smim.1998.0123.
    1. Okada T, Maeda A, Iwamatsu A, Gotoh K, Kurosaki T. BCAP: the tyrosine kinase substrate that connects B cell receptor to phosphoinositide 3-kinase activation. Immunity. 2000;13:817–827.
    1. Baba Y, Nonoyama S, Matsushita M, Yamadori T, Hashimoto S, Imai K, Arai S, Kunikata T, Kurimoto M, Kurosaki T, Ochs HD, Yata J, Kishimoto T, Tsukada S. Involvement of wiskott-aldrich syndrome protein in B-cell cytoplasmic tyrosine kinase pathway. Blood. 1999;93:2003–2012.
    1. Yang W, Desiderio S. BAP-135, a target for Bruton's tyrosine kinase in response to B cell receptor engagement. Proc Natl Acad Sci U S A. 1997;94:604–609. doi: 10.1073/pnas.94.2.604.
    1. Novina CD, Kumar S, Bajpai U, Cheriyath V, Zhang K, Pillai S, Wortis HH, Roy AL. Regulation of nuclear localization and transcriptional activity of TFII- I by Bruton's tyrosine kinase. Mol Cell Biol. 1999;19:5014–5024.
    1. Webb CF, Yamashita Y, Ayers N, Evetts S, Paulin Y, Conley ME, Smith EA. The transcription factor bright associates with Bruton's tyrosine kinase, the defective protein in immunodeficiency disease. J Immunol. 2000;165:6956–6965.
    1. Wen X, Lin HH, Shih HM, Kung HJ, Ann DK. Kinase activation of the non-receptor tyrosine kinase Etk/BMX alone is sufficient to transactivate STAT-mediated gene expression in salivary and lung epithelial cells. J Biol Chem. 1999;274:38204–38210. doi: 10.1074/jbc.274.53.38204.
    1. Aziz N, Cherwinski H, McMahon M. Complementation of defective colony-stimulating factor 1 receptor signaling and mitogenesis by Raf and v-Src. Mol Cell Biol. 1999;19:1101–1115.
    1. Howlett CJ, Bisson SA, Resek ME, Tigley AW, Robbins SM. The proto-oncogene p120(Cbl) is a downstream substrate of the Hck protein-tyrosine kinase. Biochem Biophys Res Commun. 1999;257:129–138. doi: 10.1006/bbrc.1999.0427.
    1. Jackson P, Baltimore D, Picard D. Hormone-conditional transformation by fusion proteins of c-Abl and its transforming variants. EMBO J. 1993;12:2809–2819.
    1. Samuels ML, Weber MJ, Bishop JM, McMahon M. Conditional transformation of cells and rapid activation of the mitogen-activated protein kinase cascade by an estradiol-dependent human Raf-1 protein kinase . Mol Cell Biol. 1993;13:6241–6252.
    1. Kohn AD, Barthel A, Kovacina KS, Boge A, Wallach B, Summers SA, Birnbaum MJ, Scott PH, Lawrence JC, Jr, Roth RA. Construction and characterization of a conditionally active version of the serine/threonine kinase Akt. J Biol Chem. 1998;273:11937–11943. doi: 10.1074/jbc.273.19.11937.
    1. Kurosaki T, Kurosaki M. Transphosphorylation of Bruton's tyrosine kinase on tyrosine 551 is critical for B cell antigen receptor function. J Biol Chem. 1997;272:15595–15598. doi: 10.1074/jbc.272.25.15595.
    1. Scharenberg AM, Kinet J-P. PtdIns-3,4,5-P3: a regulatory nexus between tyrosine kinases and sustained calcium signals. Cell. 1998;94:5–8.
    1. Fruman DA, Satterthwaite AB, Witte ON. Xid -like phenotypes: a B cell signalosome takes shape. Immunity. 2000;13:1–3.
    1. Fu C, Turck CW, Kurosaki T, Chan AC. BLNK: a central linker protein in B cell activation. Immunity. 1998;9:93–103.
    1. Ishiai M, Kurosaki M, Pappu R, Okawa K, Ronko I, Fu C, Shibata M, Iwamatsu A, Chan AC, Kurosaki T. BLNK required for coupling Syk to PLCγ2 and Rac1-JNK in B cells. Immunity. 1999;10:117–125.
    1. Hashimoto S, Iwamatsu A, Ishiai M, Okawa K, Yamadori T, Matsushita M, Baba Y, Kishimoto T, Kurosaki T, Tsukada S. Identification of the SH2 domain binding protein of Bruton's tyrosine kinase as BLNK - functional significance of Btk-SH2 domain in B-cell antigen receptor-coupled calcium signaling. Blood. 1999;94:2357–2364.
    1. Kurosaki T, Tsukada S. BLNK: connecting Syk and Btk to calcium signals. Immunity. 2000;12:1–5.
    1. Dolmetsch RE, Lewis RS, Goodnow CC, Healy JI. Differential activation of transcription factors induced by Ca2+ response amplitude and duration. Nature. 1997;386:855–858. doi: 10.1038/386855a0.
    1. Mohamed AJ, Vargas L, Nore BF, Backesjo CM, Christensson B, Smith CI. Nucleocytoplasmic shuttling of Bruton's tyrosine kinase. J Biol Chem. 2000;275:40614–40619. doi: 10.1074/jbc.M006952200.
    1. Takata M, Homma Y, Kurosaki T. Requirement of phospholipase C-gamma 2 activation in surface immunoglobulin M-induced B cell apoptosis. J Exp Med. 1995;182:907–914.
    1. Hashimoto A, Okada H, Jiang A, Kurosaki M, Greenberg S, Clark EA, Kurosaki T. Involvement of guanosine triphosphatases and phospholipase C- 2 in extracellular signal-regulated kinase, c-jun NH2-terminal kinase, and p38 mitogen-activated protein kinase activation by the B cell antigen receptor. J Exp Med. 1998;188:1287–1295. doi: 10.1084/jem.188.7.1287.
    1. Anderson JS, Teutsch M, Dong Z, Wortis HH. An essential role for tyrosine kinase in the regulation of Bruton's B-cell apoptosis. Proc Natl Acad Sci U S A. 1996;93:10966–10971. doi: 10.1073/pnas.93.20.10966.
    1. Solvason N, Wu WW, Kabra N, Lund-Johansen F, Roncarolo MG, Behrens TW, Grillot DA, Nunez G, Lees E, Howard M. Transgene expression of bcl-xL permits anti-immunoglobulin (Ig)-induced proliferation in xid B cells . J Exp Med. 1998;187:1081–1091. doi: 10.1084/jem.187.7.1081.
    1. Petro JB, Khan WN. Phospholipase C-gamma 2 Couples Bruton's Tyrosine Kinase to the NF- kappa B Signaling Pathway in B Lymphocytes. J Biol Chem. 2001;276:1715–1719. doi: 10.1074/jbc.M009137200.
    1. Mahajan S, Fargnoli J, Burkhardt AL, Kut SA, Saouaf SJ, Bolen JB. Src family protein tyrosine kinases induce autoactivation of Bruton's tyrosine kinase. Mol Cell Biol. 1995;15:5304–5311.
    1. Wahl MI, Fluckiger AC, Kato RM, Park H, Witte ON, Rawlings DJ. Phosphorylation of two regulatory tyrosine residues in the activation of Bruton's tyrosine kinase via alternative receptors. Proc Natl Acad Sci U S A. 1997;94:11526–11533. doi: 10.1073/pnas.94.21.11526.
    1. Burkhardt AL, Bolen JB. Immune-complex assays for tyrosine protein kinases. Current protocols in immunology Edited by Coligan JE, Kruisbeek AM, Margulies DH, Shevach EM, Strober W. pp. 1-18. New York: John Wiley & Sons, Inc. 1993. pp. 1–18.

Source: PubMed

3
Předplatit