Efficacy and safety of active negative pressure peritoneal therapy for reducing the systemic inflammatory response after damage control laparotomy (the Intra-peritoneal Vacuum Trial): study protocol for a randomized controlled trial

Derek J Roberts, Craig N Jenne, Chad G Ball, Corina Tiruta, Caroline Léger, Zhengwen Xiao, Peter D Faris, Paul B McBeth, Christopher J Doig, Christine R Skinner, Stacy G Ruddell, Paul Kubes, Andrew W Kirkpatrick, Derek J Roberts, Craig N Jenne, Chad G Ball, Corina Tiruta, Caroline Léger, Zhengwen Xiao, Peter D Faris, Paul B McBeth, Christopher J Doig, Christine R Skinner, Stacy G Ruddell, Paul Kubes, Andrew W Kirkpatrick

Abstract

Background: Damage control laparotomy, or abbreviated initial laparotomy followed by temporary abdominal closure (TAC), intensive care unit resuscitation, and planned re-laparotomy, is frequently used to manage intra-abdominal bleeding and contamination among critically ill or injured adults. Animal data suggest that TAC techniques that employ negative pressure to the peritoneal cavity may reduce the systemic inflammatory response and associated organ injury. The primary objective of this study is to determine if use of a TAC dressing that affords active negative pressure peritoneal therapy, the ABThera Open Abdomen Negative Pressure Therapy System, reduces the extent of the systemic inflammatory response after damage control laparotomy for intra-abdominal sepsis or injury as compared to a commonly used TAC method that provides potentially less efficient peritoneal negative pressure, the Barker's vacuum pack.

Methods/design: The Intra-peritoneal Vacuum Trial will be a single-center, randomized controlled trial. Adults will be intraoperatively allocated to TAC with either the ABThera or Barker's vacuum pack after the decision has been made by the attending surgeon to perform a damage control laparotomy. The study will use variable block size randomization. On study days 1, 2, 3, 7, and 28, blood will be collected. Whenever possible, peritoneal fluid will also be collected at these time points from the patient's abdomen or TAC device. Luminex technology will be used to quantify the concentrations of 65 mediators relevant to the inflammatory response in peritoneal fluid and plasma. The primary endpoint is the difference in the plasma concentration of the pro-inflammatory cytokine IL-6 at 24 and 48 h after TAC dressing application. Secondary endpoints include the differential effects of these dressings on the systemic concentration of other pro-inflammatory cytokines, collective peritoneal and systemic inflammatory mediator profiles, postoperative fluid balance, intra-abdominal pressure, and several patient-important outcomes, including organ dysfunction measures and mortality.

Discussion: Results from this study will improve understanding of the effect of active negative pressure peritoneal therapy after damage control laparotomy on the inflammatory response. It will also gather necessary pilot information needed to inform design of a multicenter trial comparing clinical outcomes among patients randomized to TAC with the ABThera versus Barker's vacuum pack.

Trial registration: ClinicalTrials.gov identifier http://www.clicaltrials.gov/ct2/show/NCT01355094.

Figures

Figure 1
Figure 1
Flow of participants in the Intra-peritoneal Vacuum Trial. Diagram constructed according to the CONSORT statement [57].
Figure 2
Figure 2
Overview of the design of the Intra-peritoneal Vacuum Trial. Where per-protocol treatment will be defined as the allocated temporary abdominal closure dressing having been in place for at least 24 h. ICU, intensive care unit; IL-6, interleukin-6; h, hours; NPT, negative pressure therapy.
Figure 3
Figure 3
The ABThera™ Open Abdomen NPT System. NPT, Negative pressure therapy.
Figure 4
Figure 4
The Barker’s vacuum pack.

References

    1. Murray CJ, Lopez AD. Mortality by cause for eight regions of the world: global burden of disease study. Lancet. 1997;349:1269–1276. doi: 10.1016/S0140-6736(96)07493-4.
    1. Chow AW, Evans GA, Nathens AB, Ball CG, Hansen G, Harding GK, Kirkpatrick AW, Weiss K, Zhanel GG. Canadian practice guidelines for surgical intra-abdominal infections. Can J Infect Dis Med Microbiol. 2010;21:11–37.
    1. Stelfox HT, Bobranska-Artiuch B, Nathens A, Straus SE. Quality indicators for evaluating trauma care: a scoping review. Arch Surg. 2010;145:286–295. doi: 10.1001/archsurg.2009.289.
    1. Nishijima DK, Simel DL, Wisner DH, Holmes JF. Does this adult patient have a blunt intra-abdominal injury? JAMA. 2012;307:1517–1527. doi: 10.1001/jama.2012.422.
    1. Chovanes J, Cannon JW, Nunez TC. The evolution of damage control surgery. Surg Clin North Am. 2012;92:859–875. doi: 10.1016/j.suc.2012.04.002. vii-viii.
    1. Waibel BH, Rotondo MF. Damage control for intra-abdominal sepsis. Surg Clin North Am. 2012;92:243–257. doi: 10.1016/j.suc.2012.01.006. vii.
    1. Stone HH, Strom PR, Mullins RJ. Management of the major coagulopathy with onset during laparotomy. Ann Surg. 1983;197:532–535. doi: 10.1097/00000658-198305000-00005.
    1. Burch JM, Ortiz VB, Richardson RJ, Martin RR, Mattox KL, Jordan GL Jr. Abbreviated laparotomy and planned reoperation for critically injured patients. Ann Surg. 1992;215:476–483. doi: 10.1097/00000658-199205000-00010. discussion 483–484.
    1. Rotondo MF, Schwab CW, McGonigal MD, Phillips GR III, Fruchterman TM, Kauder DR, Latenser BA, Angood PA. ‘Damage control’: an approach for improved survival in exsanguinating penetrating abdominal injury. J Trauma. 1993;35:375–382. doi: 10.1097/00005373-199309000-00008. discussion 382–383.
    1. Roberts DJ, Zygun DA, Grendar J, Ball CG, Robertson HL, Ouellet JF, Cheatham ML, Kirkpatrick AW. Negative-pressure wound therapy for critically ill adults with open abdominal wounds: a systematic review. J Trauma Acute Care Surg. 2012;73:629–639. doi: 10.1097/TA.0b013e31825c130e.
    1. Holzheimer RG, Schein M, Wittmann DH. Inflammatory response in peritoneal exudate and plasma of patients undergoing planned relaparotomy for severe secondary peritonitis. Arch Surg. 1995;130:1314–1319. doi: 10.1001/archsurg.1995.01430120068010. discussion 1319–1320.
    1. Scheingraber S, Bauerfeind F, Bohme J, Dralle H. Limits of peritoneal cytokine measurements during abdominal lavage treatment for intraabdominal sepsis. Am J Surg. 2001;181:301–308. doi: 10.1016/S0002-9610(01)00587-6.
    1. Mayberry JC, Welker KJ, Goldman RK, Mullins RJ. Mechanism of acute ascites formation after trauma resuscitation. Arch Surg. 2003;138:773–776. doi: 10.1001/archsurg.138.7.773.
    1. Fink MP, Delude RL. Epithelial barrier dysfunction: a unifying theme to explain the pathogenesis of multiple organ dysfunction at the cellular level. Crit Care Clin. 2005;21:177–196. doi: 10.1016/j.ccc.2005.01.005.
    1. Ince C. The microcirculation is the motor of sepsis. Crit Care. 2005;Suppl 4:S13–S19.
    1. van Veen SQ, Meijers JC, Levi M, van Gulik TM, Boermeester MA. Effects of intra-abdominal administration of recombinant tissue plasminogen activator on coagulation, fibrinolysis and inflammatory responses in experimental polymicrobial peritonitis. Shock. 2007;27:534–541. doi: 10.1097/01.shk.0000246897.27574.1b.
    1. el Zakaria R, Li N, Garrison RN. Mechanisms of direct peritoneal resuscitation-mediated splanchnic hyperperfusion following hemorrhagic shock. Shock. 2007;27:436–442. doi: 10.1097/01.shk.0000245017.86117.4e.
    1. Kubiak BD, Albert SP, Gatto LA, Snyder KP, Maier KG, Vieau CJ, Roy S, Nieman GF. Peritoneal negative pressure therapy prevents multiple organ injury in a chronic porcine sepsis and ischemia/reperfusion model. Shock. 2010;34:525–534. doi: 10.1097/SHK.0b013e3181e14cd2.
    1. Hendriks T, Bleichrodt RP, Lomme RM, De Man BM, van Goor H, Buyne OR. Peritoneal cytokines predict mortality after surgical treatment of secondary peritonitis in the rat. J Am Coll Surg. 2010;211:263–270. doi: 10.1016/j.jamcollsurg.2010.03.038.
    1. Ravishankaran P, Shah AM, Bhat R. Correlation of interleukin-6, serum lactate, and C-reactive protein to inflammation, complication, and outcome during the surgical course of patients with acute abdomen. J Interferon Cytokine Res. 2011;31:685–690. doi: 10.1089/jir.2011.0021.
    1. Li P, Xu Q, Ji Z, Gao Y, Zhang X, Duan Y, Guo Z, Zheng B, Guo X, Wu X. Comparison of surgical stress between laparoscopic and open appendectomy in children. J Pediatr Surg. 2005;40:1279–1283. doi: 10.1016/j.jpedsurg.2005.05.011.
    1. Roelofsen H, Alvarez-Llamas G, Dijkstra M, Breitling R, Havenga K, Bijzet J, Zandbergen W, de Vries MP, Ploeg RJ, Vonk RJ. Analyses of intricate kinetics of the serum proteome during and after colon surgery by protein expression time series. Proteomics. 2007;7:3219–3228. doi: 10.1002/pmic.200601047.
    1. Xiao W, Mindrinos MN, Seok J, Cuschieri J, Cuenca AG, Gao H, Hayden DL, Hennessy L, Moore EE, Minei JP, Bankey PE, Johnson JL, Sperry J, Nathens AB, Billiar TR, West MA, Brownstein BH, Mason PH, Baker HV, Finnerty CC, Jeschke MG, Lopez MC, Klein MB, Gamelli RL, Gibran NS, Arnoldo B, Xu W, Zhang Y, Calvano SE, McDonald-Smith GP. Inflammation and Host Response to Injury Large-Scale Collaborative Research Program, et al. A genomic storm in critically injured humans. J Exp Med. 2011;208:2581–2590. doi: 10.1084/jem.20111354.
    1. Liu T, Qian WJ, Gritsenko MA, Xiao W, Moldawer LL, Kaushal A, Monroe ME, Varnum SM, Moore RJ, Purvine SO, Maier RV, Davis RW, Tompkins RG, Camp DG III, Smith RD. Inflammation and the Host Response to Injury Large Scale Collaborative Research Programm. High dynamic range characterization of the trauma patient plasma proteome. Mol Cell Proteomics. 2006;5:1899–1913. doi: 10.1074/mcp.M600068-MCP200.
    1. Hack CE, De Groot ER, Felt-Bersma RJ, Nuijens JH, Strack Van Schijndel RJ, Eerenberg-Belmer AJ, Thijs LG, Aarden LA. Increased plasma levels of interleukin-6 in sepsis. Blood. 1989;74:1704–1710.
    1. Latifi SQ, O’Riordan MA, Levine AD, Stallion A. Persistent elevation of serum interleukin-6 in intraabdominal sepsis identifies those with prolonged length of stay. J Pediatr Surg. 2004;39:1548–1552. doi: 10.1016/j.jpedsurg.2004.06.015.
    1. Gletsu N, Lin E, Zhu JL, Khaitan L, Ramshaw BJ, Farmer PK, Ziegler TR, Papanicolaou DA, Smith CD. Increased plasma interleukin 6 concentrations and exaggerated adipose tissue interleukin 6 content in severely obese patients after operative trauma. Surgery. 2006;140:50–57. doi: 10.1016/j.surg.2006.01.018.
    1. Frangen TM, Bogdanski D, Schinkel C, Roetman B, Kalicke T, Muhr G, Koller M. Systemic IL-17 after severe injuries. Shock. 2008;29:462–467.
    1. Zeilhofer HU, Schorr W. Role of interleukin-8 in neutrophil signaling. Curr Opin Hematol. 2000;7:178–182. doi: 10.1097/00062752-200005000-00009.
    1. Bingold TM, Ziesche E, Scheller B, Sadik CD, Franck K, Just L, Sartorius S, Wahrmann M, Wissing H, Zwissler B, Pfeilschifter J, Muhl H. Interleukin-22 detected in patients with abdominal sepsis. Shock. 2010;34:337–340. doi: 10.1097/SHK.0b013e3181dc07b1.
    1. Rongione AJ, Kusske AM, Ashley SW, Reber HA, McFadden DW. Interleukin-10 prevents early cytokine release in severe intraabdominal infection and sepsis. J Surg Res. 1997;70:107–112. doi: 10.1006/jsre.1997.5071.
    1. van Berge Henegouwen MI, van der Poll T, van Deventer SJ, Gouma DJ. Peritoneal cytokine release after elective gastrointestinal surgery and postoperative complications. Am J Surg. 1998;175:311–316. doi: 10.1016/S0002-9610(98)00010-5.
    1. Kimura A, Ono S, Hiraki S, Takahata R, Tsujimoto H, Miyazaki H, Kinoshita M, Hatsuse K, Saitoh D, Hase K, Yamamoto J. The postoperative serum interleukin-15 concentration correlates with organ dysfunction and the prognosis of septic patients following emergency gastrointestinal surgery. J Surg Res. 2012;175:e83–e88. doi: 10.1016/j.jss.2011.12.003.
    1. Pappu R, Ramirez-Carrozzi V, Sambandam A. The interleukin-17 cytokine family: critical players in host defence and inflammatory diseases. Immunology. 2011;134:8–16. doi: 10.1111/j.1365-2567.2011.03465.x.
    1. Freitas A, Alves-Filho JC, Victoni T, Secher T, Lemos HP, Sonego F, Cunha FQ, Ryffel B. IL-17 receptor signaling is required to control polymicrobial sepsis. J Immunol. 2009;182:7846–7854. doi: 10.4049/jimmunol.0803039.
    1. Alves-Filho JC, Sonego F, Souto FO, Freitas A, Verri WA Jr, Auxiliadora-Martins M, Basile-Filho A, McKenzie AN, Xu D, Cunha FQ, Liew FY. Interleukin-33 attenuates sepsis by enhancing neutrophil influx to the site of infection. Nat Med. 2010;16:708–712. doi: 10.1038/nm.2156.
    1. Dib M, Zhao X, Wang X, Andersson E, Drewsen G, Andersson R. Acute phase response in acute pancreatitis: a comparison with abdominal sepsis. Scand J Gastroenterol. 2003;38:1072–1077. doi: 10.1080/00365520310005442.
    1. Brenner T, Hofer S, Rosenhagen C, Steppan J, Lichtenstern C, Weitz J, Bruckner T, Lukic IK, Martin E, Bierhaus A, Hoffmann U, Weigand MA. Macrophage migration inhibitory factor (MIF) and manganese superoxide dismutase (MnSOD) as early predictors for survival in patients with severe sepsis or septic shock. J Surg Res. 2010;164:e163–e171. doi: 10.1016/j.jss.2010.05.004.
    1. Calandra T, Echtenacher B, Roy DL, Pugin J, Metz CN, Hultner L, Heumann D, Mannel D, Bucala R, Glauser MP. Protection from septic shock by neutralization of macrophage migration inhibitory factor. Nat Med. 2000;6:164–170. doi: 10.1038/72262.
    1. Reith HB, Mittelkotter U, Wagner R, Thiede A. Procalcitonin (PCT) in patients with abdominal sepsis. Intensive Care Med. 2000;Suppl 2:S165–S169.
    1. Cziupka K, Busemann A, Partecke LI, Potschke C, Rath M, Traeger T, Koerner P, von Bernstorff W, Kessler W, Diedrich S, Weiss FU, Maier S, Broker BM, Heidecke CD. Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) improves the innate immune response and enhances survival in murine polymicrobial sepsis. Crit Care Med. 2010;38:2169–2174. doi: 10.1097/CCM.0b013e3181eedaa8.
    1. Wang S. TRAIL: a sword for killing tumors. Curr Med Chem. 2010;17:3309–3317. doi: 10.2174/092986710793176285.
    1. McBeth PB, Leger C, Ball CG, Ouellet JF, Tiruta C, Laupland KB, Kubes P, Roberts DJ, Shahpori R, Kirkpatrick AW. Intra-abdominal hypertension and intra-abdominal sepsis: critical concepts and possibilities. Int J Intensive Care. 2011;18:10–19.
    1. Casey LC, Balk RA, Bone RC. Plasma cytokine and endotoxin levels correlate with survival in patients with the sepsis syndrome. Ann Intern Med. 1993;119:771–778. doi: 10.7326/0003-4819-119-8-199310150-00001.
    1. Roumen RM, Hendriks T, van der Ven-Jongekrijg J, Nieuwenhuijzen GA, Sauerwein RW, van der Meer JW, Goris RJ. Cytokine patterns in patients after major vascular surgery, hemorrhagic shock, and severe blunt trauma. Relation with subsequent adult respiratory distress syndrome and multiple organ failure. Ann Surg. 1993;218:769–776. doi: 10.1097/00000658-199312000-00011.
    1. Pinsky MR, Vincent JL, Deviere J, Alegre M, Kahn RJ, Dupont E. Serum cytokine levels in human septic shock. Relation to multiple-system organ failure and mortality. Chest. 1993;103:565–575. doi: 10.1378/chest.103.2.565.
    1. Svoboda P, Kantorova I, Ochmann J. Dynamics of interleukin 1, 2, and 6 and tumor necrosis factor alpha in multiple trauma patients. J Trauma. 1994;36:336–340. doi: 10.1097/00005373-199403000-00009.
    1. Pettila V, Hynninen M, Takkunen O, Kuusela P, Valtonen M. Predictive value of procalcitonin and interleukin 6 in critically ill patients with suspected sepsis. Intensive Care Med. 2002;28:1220–1225. doi: 10.1007/s00134-002-1416-1.
    1. Spindler-Vesel A, Wraber B, Vovk I, Kompan L. Intestinal permeability and cytokine inflammatory response in multiply injured patients. J Interferon Cytokine Res. 2006;26:771–776. doi: 10.1089/jir.2006.26.771.
    1. Jawa RS, Anillo S, Huntoon K, Baumann H, Kulaylat M. Interleukin-6 in surgery, trauma, and critical care part II: clinical implications. J Intensive Care Med. 2011;26:73–87.
    1. Quyn AJ, Johnston C, Hall D, Chambers A, Arapova N, Ogston S, Amin AI. The open abdomen and temporary abdominal closure systems–historical evolution and systematic review. Colorectal Dis. 2012;14:e429–e438. doi: 10.1111/j.1463-1318.2012.03045.x.
    1. Bee TK, Croce MA, Magnotti LJ, Zarzaur BL, Maish GO III, Minard G, Schroeppel TJ, Fabian TC. Temporary abdominal closure techniques: a prospective randomized trial comparing polyglactin 910 mesh and vacuum-assisted closure. J Trauma. 2008;65:337–342. doi: 10.1097/TA.0b013e31817fa451. discussion 342–344.
    1. Clinical guidelines for the management of the open abdomen with ABThera™ Open Abdomen Negative Pressure Therapy System for active abdominal therapy. [ ]
    1. Brock WB, Barker DE, Burns RP. Temporary closure of open abdominal wounds: the vacuum pack. Am Surg. 1995;61:30–35.
    1. Smith LA, Barker DE, Chase CW, Somberg LB, Brock WB, Burns RP. Vacuum pack technique of temporary abdominal closure: a four-year experience. Am Surg. 1997;63:1102–1107. discussion 1107–1108.
    1. Barker DE, Kaufman HJ, Smith LA, Ciraulo DL, Richart CL, Burns RP. Vacuum pack technique of temporary abdominal closure: a 7-year experience with 112 patients. J Trauma. 2000;48:201–206. doi: 10.1097/00005373-200002000-00001. discussion 206–207.
    1. Schulz KF, Altman DG, Moher D. CONSORT Group. CONSORT 2010 Statement: updated guidelines for reporting parallel group randomised trials. Trials. 2010;11:32. doi: 10.1186/1745-6215-11-32.
    1. Sammons A, Delgado A, Cheatham ML. In-vitro pressure manifolding distribution evaluation of the ABThera Open Abdomen Negative Pressure Therapy System, V.A.C. Abdominal Derssing System, and Barker’s vacuum-pack technique, conducted under dynamic conditions. San Antonio, TX: [Abst P 078] Clinical Symposium on Advances in Skin & Wound Care; 2009.
    1. Diaz JJ Jr, Cullinane DC, Dutton WD, Jerome R, Bagdonas R, Bilaniuk JW, Collier BR, Como JJ, Cumming J, Griffen M, Gunter OL, Kirby J, Lottenburg L, Mowery N, Riordan WP Jr, Martin N, Platz J, Stassen N, Winston ES. The management of the open abdomen in trauma and emergency general surgery: part 1-damage control. J Trauma. 2010;68:1425–1438. doi: 10.1097/TA.0b013e3181da0da5.
    1. Asensio JA, Petrone P, O’Shanahan G, Kuncir EJ. Managing exsanguination: what we know about damage control/bailout is not enough. Proc (Bayl Univ Med Cent) 2003;16:294–296.
    1. Ivatury RR, Malhotra AK. In: Trauma: Emergency Resuscitation, Perioperative Anesthesia, Surgical Management. Wilson WC, Grande CM, Hoyt DB, editor. New York, NY: Informa Healthcare USA, Inc; 2007. Damage Control; pp. 405–416.
    1. Kaplan M, Banwell P, Orgill DP, Ivatury RR, Demetriades D, Moore FA, Miller P, Nicholas J, Henry S. Guidelines for the management of the open abdomen. Wounds-Compend Clin Res Pract. 2005;Suppl:1–24.
    1. Knaus WA, Draper EA, Wagner DP, Zimmerman JE. APACHE II: a severity of disease classification system. Crit Care Med. 1985;13:818–829. doi: 10.1097/00003246-198510000-00009.
    1. Vincent JL, Moreno R, Takala J, Willatts S, De Mendonca A, Bruining H, Reinhart CK, Suter PM, Thijs LG. The SOFA (sepsis-related organ failure assessment) score to describe organ dysfunction/failure. On behalf of the working group on sepsis-related problems of the European society of intensive care medicine. Intensive Care Med. 1996;22:707–710. doi: 10.1007/BF01709751.
    1. Baker SP, O’Neill B, Haddon W Jr, Long WB. The injury severity score: a method for describing patients with multiple injuries and evaluating emergency care. J Trauma. 1974;14:187–196. doi: 10.1097/00005373-197403000-00001.
    1. Linn S. The injury severity score–importance and uses. Ann Epidemiol. 1995;5:440–446. doi: 10.1016/1047-2797(95)00059-3.
    1. Bellomo R, Ronco C, Kellum JA, Mehta RL, Palevsky P. Acute Dialysis Quality Initiative workgroup. Acute renal failure - definition, outcome measures, animal models, fluid therapy and information technology needs: the second international consensus conference of the acute dialysis quality initiative (ADQI) group. Crit Care. 2004;8:R204–R212. doi: 10.1186/cc2872.
    1. Cheatham ML, Malbrain ML, Kirkpatrick A, Sugrue M, Parr M, De Waele J, Balogh Z, Leppaniemi A, Olvera C, Ivatury R, D’Amours S, Wendon J, Hillman K, Wilmer A. Results from the international conference of experts on intra-abdominal hypertension and abdominal compartment syndrome. II. Recommendations. Intensive Care Med. 2007;33:951–962. doi: 10.1007/s00134-007-0592-4.
    1. Dupont NC, Wang K, Wadhwa PD, Culhane JF, Nelson EL. Validation and comparison of luminex multiplex cytokine analysis kits with ELISA: determinations of a panel of nine cytokines in clinical sample culture supernatants. J Reprod Immunol. 2005;66:175–191. doi: 10.1016/j.jri.2005.03.005.
    1. Shah SK, Jimenez F, Walker PA, Aroom KR, Xue H, Feeley TD, Uray KS, Norbury KC, Stewart RH, Laine GA, Cox CS Jr. A novel mechanism for neutrophil priming in trauma: potential role of peritoneal fluid. Surgery. 2010;148:263–270. doi: 10.1016/j.surg.2010.03.019.
    1. Shah SK, Jimenez F, Walker PA, Xue H, Feeley TD, Uray KS, Norbury KC, Stewart RH, Laine GA, Cox CS Jr. Peritoneal fluid: a potential mechanism of systemic neutrophil priming in experimental intra-abdominal sepsis. Am J Surg. 2012;203:211–216. doi: 10.1016/j.amjsurg.2010.12.012.
    1. Ouellet JF, Ball CG. Recurrent abdominal compartment syndrome induced by high negative pressure abdominal closure dressing. J Trauma. 2011;71:785–786.
    1. Rao M, Burke D, Finan PJ, Sagar PM. The use of vacuum-assisted closure of abdominal wounds: a word of caution. Colorectal Dis. 2007;9:266–268. doi: 10.1111/j.1463-1318.2006.01154.x.
    1. Fischer JE. A cautionary note: the use of vacuum-assisted closure systems in the treatment of gastrointestinal cutaneous fistula may be associated with higher mortality from subsequent fistula development. Am J Surg. 2008;196:1–2. doi: 10.1016/j.amjsurg.2008.01.001.
    1. Ware JH. Linear models for the analysis of longitudinal studies. Am Stat. 1985;39:95–101. doi: 10.2307/2682803.
    1. Laird NM, Donnelly C, Ware JH. Longitudinal studies with continuous responses. Stat Methods Med Res. 1992;1:225–247. doi: 10.1177/096228029200100302.
    1. Liu G, Gould AL. Comparison of alternative strategies for analysis of longitudinal trials with dropouts. J Biopharm Stat. 2002;12:207–226. doi: 10.1081/BIP-120015744.
    1. Mallinckrodt CH, Clark WS, David SR. Accounting for dropout bias using mixed-effects models. J Biopharm Stat. 2001;11:9–21. doi: 10.1081/BIP-100104194.
    1. Benjamini Y, Hochberg Y. Controlling the false discovery rate: a practical and powerful approach to multiple testing. J R Statist Soc B. 1995;57:289–300.
    1. Newson R. Multiple-test procedures and smile plots. Stata J. 2003;3:109–132.
    1. Newson RB. Frequentist q-values for multiple-test procedures. Stata J. 2010;10:568–584.
    1. van Ruler O, Mahler CW, Boer KR, Reuland EA, Gooszen HG, Opmeer BC, de Graaf PW, Lamme B, Gerhards MF, Steller EP, van Till JW, de Borgie CJ, Gouma DJ, Reitsma JB, Boermeester MA. Dutch Peritonitis Study Group. Comparison of on-demand vs planned relaparotomy strategy in patients with severe peritonitis: a randomized trial. JAMA. 2007;298:865–872. doi: 10.1001/jama.298.8.865.
    1. Opmeer BC, Boer KR, van Ruler O, Reitsma JB, Gooszen HG, de Graaf PW, Lamme B, Gerhards MF, Steller EP, Mahler CM, Obertop H, Gouma DJ, Bossuyt PM, de Borgie CA, Boermeester MA. Costs of relaparotomy on-demand versus planned relaparotomy in patients with severe peritonitis: an economic evaluation within a randomized controlled trial. Crit Care. 2010;14:R97. doi: 10.1186/cc9032.

Source: PubMed

3
Předplatit