Metabolic Syndrome Is Associated with Increased Oxo-Nitrative Stress and Asthma-Like Changes in Lungs

Vijay Pal Singh, Rangoli Aggarwal, Suchita Singh, Arpita Banik, Tanveer Ahmad, Bijay Ranjan Patnaik, Giridharan Nappanveettil, Kunal Pratap Singh, Madan Lal Aggarwal, Balaram Ghosh, Anurag Agrawal, Vijay Pal Singh, Rangoli Aggarwal, Suchita Singh, Arpita Banik, Tanveer Ahmad, Bijay Ranjan Patnaik, Giridharan Nappanveettil, Kunal Pratap Singh, Madan Lal Aggarwal, Balaram Ghosh, Anurag Agrawal

Abstract

Epidemiological studies have shown an increased obesity-related risk of asthma. In support, obese mice develop airway hyperresponsiveness (AHR). However, it remains unclear whether the increased risk is a consequence of obesity, adipogenic diet, or the metabolic syndrome (MetS). Altered L-arginine and nitric oxide (NO) metabolism is a common feature between asthma and metabolic syndrome that appears independent of body mass. Increased asthma risk resulting from such metabolic changes would have important consequences in global health. Since high-sugar diets can induce MetS, without necessarily causing obesity, studies of their effect on arginine/NO metabolism and airway function could clarify this aspect. We investigated whether normal-weight mice with MetS, due to high-fructose diet, had dysfunctional arginine/NO metabolism and features of asthma. Mice were fed chow-diet, high-fat-diet, or high-fructose-diet for 18 weeks. Only the high-fat-diet group developed obesity or adiposity. Hyperinsulinemia, hyperglycaemia, and hyperlipidaemia were common to both high-fat-diet and high-fructose-diet groups and the high-fructose-diet group additionally developed hypertension. At 18 weeks, airway hyperresponsiveness (AHR) could be seen in obese high-fat-diet mice as well as non-obese high-fructose-diet mice, when compared to standard chow-diet mice. No inflammatory cell infiltrate or goblet cell metaplasia was seen in either high-fat-diet or high-fructose-diet mice. Exhaled NO was reduced in both these groups. This reduction in exhaled NO correlated with reduced arginine bioavailability in lungs. In summary, mice with normal weight but metabolic obesity show reduced arginine bioavailability, reduced NO production, and asthma-like features. Reduced NO related bronchodilation and increased oxo-nitrosative stress may contribute to the pathogenesis.

Conflict of interest statement

Competing Interests: The authors have declared that no competing interests exist.

Figures

Fig 1. The obese and non-obese model…
Fig 1. The obese and non-obese model of metabolic syndrome in mice.
(A) Total mass, Lean mass, Fat mass and % Fat in control, high fat and high fructose diet groups. (B) Cholesterol levels in blood serum from Control, HFA and HFR diet mice groups. (C) Triglycerides levels in blood serum from Control, HFA and HFR diet mice groups. Data shown here are Mean ± SE of 6 mice in each group.*Denotes statistically significant differences (p

Fig 2. Increased baseline resistance and decreased…

Fig 2. Increased baseline resistance and decreased exhaled NO in mice with metabolic syndrome.

(A-B)…

Fig 2. Increased baseline resistance and decreased exhaled NO in mice with metabolic syndrome.
(A-B) Baseline lung resistance (R) and elastance (E) in anesthetized and ventilated control, high fat (HFA) and high fructose (HFR) diet fed mice (Mean ± SE, n = 12 per group, two independent sets of experiments). (C) Non-invasively measured exhaled NO of control, HFA and HFR mice (n = 6 per group). All data are Mean ± SE. n = 6 mice in each group *Denotes statistically significant differences (p

Fig 3. High-fat or high-sugar diets lead…

Fig 3. High-fat or high-sugar diets lead to increased ADMA associated oxo-nitrative stress and organelle…

Fig 3. High-fat or high-sugar diets lead to increased ADMA associated oxo-nitrative stress and organelle dysfunction, independent of obesity.
(A) ADMA levels were estimated from CN, HFA and HFR mice in total lung protein (TLP). (B) L-Arigine/ADMA ratio in lung. (C) ADMA levels in serum. (D) Nitrotyrosine levels in lung cytosolic fraction. All data are Mean ± SE. n = 6 mice in each group.*Denotes statistically significant differences (P

Fig 4. Induction of Inducible Nitric oxide…

Fig 4. Induction of Inducible Nitric oxide synthase (iNOS) in lungs of mice with metabolic…

Fig 4. Induction of Inducible Nitric oxide synthase (iNOS) in lungs of mice with metabolic syndrome.
(A) Western blot analysis of eNOS. (B) Western blot analysis of iNOS (C) Densitometry of eNOS (D) Densitometry of iNOS (E) Immunohistochemistry of iNOS. Brown colour indicates the positive expressions. HFA and HFR diet fed mice showed high expression of iNOS as compared to Control mice. Representative images are shown from each group. All photographs are at 10X magnification. Scale bar = 100μm. (F) Quantitative analysis for iNOS done using ImageJ software showed significant increase in its expression in HFA and HFR mice as compared to CN.*Denotes statistically significant differences (P

Fig 5. Increase in arginase levels in…

Fig 5. Increase in arginase levels in lungs of mice with metabolic syndrome.

(A) Western…

Fig 5. Increase in arginase levels in lungs of mice with metabolic syndrome.
(A) Western blot analysis of arginase 1 (B) Densitometry of arginase 1 (C) Quantitative morphometry for arginase 1 IHC (D) Immunohistochemistry of arginase, Brown colour indicates positive expression. Representative images are shown from each group. All photographs are at 10X magnification. Scale bar = 100μm. *Denotes statistically significant differences (P

Fig 6. Lack of cellular inflammation in…

Fig 6. Lack of cellular inflammation in lungs of mice with metabolic syndrome.

(A) Lung…

Fig 6. Lack of cellular inflammation in lungs of mice with metabolic syndrome.
(A) Lung sections were stained with haematoxylin and eosin to estimate airway inflammation. (B) Inflammation score of the lungs was evaluated by experimentally blind experts and shown as perivascular (PV), peribronchial (PB) and Total (sum of both PV and PB). (Representative images are shown from each group. All photographs are at 10X magnification. Scale bar = 100μm.

Fig 7. Arginine-NO pathway.

Fig 7. Arginine-NO pathway.

Fig 7. Arginine-NO pathway.
All figures (7)
Similar articles
Cited by
References
    1. Beigh SH, Jain S. Prevalence of metabolic syndrome and gender differences. Bioinformation. 2012;8(13):613–6. 10.6026/97320630008613 - DOI - PMC - PubMed
    1. Ervin RB. Prevalence of metabolic syndrome among adults 20 years of age and over, by sex, age, race and ethnicity, and body mass index: United States, 2003–2006. National health statistics reports. 2009(13):1–7. - PubMed
    1. Fernando H, Sumita K, Erzurum S, Roberts WP, John T, Sally EW. Reduced L-Arginine/ADMA As A Potential Mechanism To Explain Increased Symptom Severity And Reduced Atopy In Late Onset Obese Asthmatics. A92 SEVERE ASTHMA: PRESENT AND FUTURE. American Thoracic Society International Conference Abstracts: American Thoracic Society; 2012. p. A2197-A.
    1. Sarkar S, Das M, Mukhopadhyay B, Chakrabarti CS, Majumder PP. High prevalence of metabolic syndrome and its correlates in two tribal populations of India and the impact of urbanization. The Indian journal of medical research. 2006;123(5):679–86. - PubMed
    1. Scott R, Donoghoe M, Watts GF, O'Brien R, Pardy C, Taskinen MR, et al. Impact of metabolic syndrome and its components on cardiovascular disease event rates in 4900 patients with type 2 diabetes assigned to placebo in the FIELD randomised trial. Cardiovascular diabetology. 2011;10:102 10.1186/1475-2840-10-102 - DOI - PMC - PubMed
Show all 46 references
Publication types
MeSH terms
Grant support
Funding was provided by the Lady Tata Memorial Trust, CSIR (Council of Scientific and Industrial Research) MLP (Mega Laboratory Project) 5502 & BSC (Biological Science Cluster) 0403 projects, the DST (Department of Science and Technology) Swarnjayanti awards for the financial support and ICMR (Indian Council of Medical Research) for scholarship of Suchita Singh. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.
[x]
Cite
Copy Download .nbib
Format: AMA APA MLA NLM

NCBI Literature Resources

MeSH PMC Bookshelf Disclaimer

The PubMed wordmark and PubMed logo are registered trademarks of the U.S. Department of Health and Human Services (HHS). Unauthorized use of these marks is strictly prohibited.

Follow NCBI
Fig 2. Increased baseline resistance and decreased…
Fig 2. Increased baseline resistance and decreased exhaled NO in mice with metabolic syndrome.
(A-B) Baseline lung resistance (R) and elastance (E) in anesthetized and ventilated control, high fat (HFA) and high fructose (HFR) diet fed mice (Mean ± SE, n = 12 per group, two independent sets of experiments). (C) Non-invasively measured exhaled NO of control, HFA and HFR mice (n = 6 per group). All data are Mean ± SE. n = 6 mice in each group *Denotes statistically significant differences (p

Fig 3. High-fat or high-sugar diets lead…

Fig 3. High-fat or high-sugar diets lead to increased ADMA associated oxo-nitrative stress and organelle…

Fig 3. High-fat or high-sugar diets lead to increased ADMA associated oxo-nitrative stress and organelle dysfunction, independent of obesity.
(A) ADMA levels were estimated from CN, HFA and HFR mice in total lung protein (TLP). (B) L-Arigine/ADMA ratio in lung. (C) ADMA levels in serum. (D) Nitrotyrosine levels in lung cytosolic fraction. All data are Mean ± SE. n = 6 mice in each group.*Denotes statistically significant differences (P

Fig 4. Induction of Inducible Nitric oxide…

Fig 4. Induction of Inducible Nitric oxide synthase (iNOS) in lungs of mice with metabolic…

Fig 4. Induction of Inducible Nitric oxide synthase (iNOS) in lungs of mice with metabolic syndrome.
(A) Western blot analysis of eNOS. (B) Western blot analysis of iNOS (C) Densitometry of eNOS (D) Densitometry of iNOS (E) Immunohistochemistry of iNOS. Brown colour indicates the positive expressions. HFA and HFR diet fed mice showed high expression of iNOS as compared to Control mice. Representative images are shown from each group. All photographs are at 10X magnification. Scale bar = 100μm. (F) Quantitative analysis for iNOS done using ImageJ software showed significant increase in its expression in HFA and HFR mice as compared to CN.*Denotes statistically significant differences (P

Fig 5. Increase in arginase levels in…

Fig 5. Increase in arginase levels in lungs of mice with metabolic syndrome.

(A) Western…

Fig 5. Increase in arginase levels in lungs of mice with metabolic syndrome.
(A) Western blot analysis of arginase 1 (B) Densitometry of arginase 1 (C) Quantitative morphometry for arginase 1 IHC (D) Immunohistochemistry of arginase, Brown colour indicates positive expression. Representative images are shown from each group. All photographs are at 10X magnification. Scale bar = 100μm. *Denotes statistically significant differences (P

Fig 6. Lack of cellular inflammation in…

Fig 6. Lack of cellular inflammation in lungs of mice with metabolic syndrome.

(A) Lung…

Fig 6. Lack of cellular inflammation in lungs of mice with metabolic syndrome.
(A) Lung sections were stained with haematoxylin and eosin to estimate airway inflammation. (B) Inflammation score of the lungs was evaluated by experimentally blind experts and shown as perivascular (PV), peribronchial (PB) and Total (sum of both PV and PB). (Representative images are shown from each group. All photographs are at 10X magnification. Scale bar = 100μm.

Fig 7. Arginine-NO pathway.

Fig 7. Arginine-NO pathway.

Fig 7. Arginine-NO pathway.
All figures (7)
Similar articles
Cited by
References
    1. Beigh SH, Jain S. Prevalence of metabolic syndrome and gender differences. Bioinformation. 2012;8(13):613–6. 10.6026/97320630008613 - DOI - PMC - PubMed
    1. Ervin RB. Prevalence of metabolic syndrome among adults 20 years of age and over, by sex, age, race and ethnicity, and body mass index: United States, 2003–2006. National health statistics reports. 2009(13):1–7. - PubMed
    1. Fernando H, Sumita K, Erzurum S, Roberts WP, John T, Sally EW. Reduced L-Arginine/ADMA As A Potential Mechanism To Explain Increased Symptom Severity And Reduced Atopy In Late Onset Obese Asthmatics. A92 SEVERE ASTHMA: PRESENT AND FUTURE. American Thoracic Society International Conference Abstracts: American Thoracic Society; 2012. p. A2197-A.
    1. Sarkar S, Das M, Mukhopadhyay B, Chakrabarti CS, Majumder PP. High prevalence of metabolic syndrome and its correlates in two tribal populations of India and the impact of urbanization. The Indian journal of medical research. 2006;123(5):679–86. - PubMed
    1. Scott R, Donoghoe M, Watts GF, O'Brien R, Pardy C, Taskinen MR, et al. Impact of metabolic syndrome and its components on cardiovascular disease event rates in 4900 patients with type 2 diabetes assigned to placebo in the FIELD randomised trial. Cardiovascular diabetology. 2011;10:102 10.1186/1475-2840-10-102 - DOI - PMC - PubMed
Show all 46 references
Publication types
MeSH terms
Grant support
Funding was provided by the Lady Tata Memorial Trust, CSIR (Council of Scientific and Industrial Research) MLP (Mega Laboratory Project) 5502 & BSC (Biological Science Cluster) 0403 projects, the DST (Department of Science and Technology) Swarnjayanti awards for the financial support and ICMR (Indian Council of Medical Research) for scholarship of Suchita Singh. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.
[x]
Cite
Copy Download .nbib
Format: AMA APA MLA NLM

NCBI Literature Resources

MeSH PMC Bookshelf Disclaimer

The PubMed wordmark and PubMed logo are registered trademarks of the U.S. Department of Health and Human Services (HHS). Unauthorized use of these marks is strictly prohibited.

Follow NCBI
Fig 3. High-fat or high-sugar diets lead…
Fig 3. High-fat or high-sugar diets lead to increased ADMA associated oxo-nitrative stress and organelle dysfunction, independent of obesity.
(A) ADMA levels were estimated from CN, HFA and HFR mice in total lung protein (TLP). (B) L-Arigine/ADMA ratio in lung. (C) ADMA levels in serum. (D) Nitrotyrosine levels in lung cytosolic fraction. All data are Mean ± SE. n = 6 mice in each group.*Denotes statistically significant differences (P

Fig 4. Induction of Inducible Nitric oxide…

Fig 4. Induction of Inducible Nitric oxide synthase (iNOS) in lungs of mice with metabolic…

Fig 4. Induction of Inducible Nitric oxide synthase (iNOS) in lungs of mice with metabolic syndrome.
(A) Western blot analysis of eNOS. (B) Western blot analysis of iNOS (C) Densitometry of eNOS (D) Densitometry of iNOS (E) Immunohistochemistry of iNOS. Brown colour indicates the positive expressions. HFA and HFR diet fed mice showed high expression of iNOS as compared to Control mice. Representative images are shown from each group. All photographs are at 10X magnification. Scale bar = 100μm. (F) Quantitative analysis for iNOS done using ImageJ software showed significant increase in its expression in HFA and HFR mice as compared to CN.*Denotes statistically significant differences (P

Fig 5. Increase in arginase levels in…

Fig 5. Increase in arginase levels in lungs of mice with metabolic syndrome.

(A) Western…

Fig 5. Increase in arginase levels in lungs of mice with metabolic syndrome.
(A) Western blot analysis of arginase 1 (B) Densitometry of arginase 1 (C) Quantitative morphometry for arginase 1 IHC (D) Immunohistochemistry of arginase, Brown colour indicates positive expression. Representative images are shown from each group. All photographs are at 10X magnification. Scale bar = 100μm. *Denotes statistically significant differences (P

Fig 6. Lack of cellular inflammation in…

Fig 6. Lack of cellular inflammation in lungs of mice with metabolic syndrome.

(A) Lung…

Fig 6. Lack of cellular inflammation in lungs of mice with metabolic syndrome.
(A) Lung sections were stained with haematoxylin and eosin to estimate airway inflammation. (B) Inflammation score of the lungs was evaluated by experimentally blind experts and shown as perivascular (PV), peribronchial (PB) and Total (sum of both PV and PB). (Representative images are shown from each group. All photographs are at 10X magnification. Scale bar = 100μm.

Fig 7. Arginine-NO pathway.

Fig 7. Arginine-NO pathway.

Fig 7. Arginine-NO pathway.
All figures (7)
Similar articles
Cited by
References
    1. Beigh SH, Jain S. Prevalence of metabolic syndrome and gender differences. Bioinformation. 2012;8(13):613–6. 10.6026/97320630008613 - DOI - PMC - PubMed
    1. Ervin RB. Prevalence of metabolic syndrome among adults 20 years of age and over, by sex, age, race and ethnicity, and body mass index: United States, 2003–2006. National health statistics reports. 2009(13):1–7. - PubMed
    1. Fernando H, Sumita K, Erzurum S, Roberts WP, John T, Sally EW. Reduced L-Arginine/ADMA As A Potential Mechanism To Explain Increased Symptom Severity And Reduced Atopy In Late Onset Obese Asthmatics. A92 SEVERE ASTHMA: PRESENT AND FUTURE. American Thoracic Society International Conference Abstracts: American Thoracic Society; 2012. p. A2197-A.
    1. Sarkar S, Das M, Mukhopadhyay B, Chakrabarti CS, Majumder PP. High prevalence of metabolic syndrome and its correlates in two tribal populations of India and the impact of urbanization. The Indian journal of medical research. 2006;123(5):679–86. - PubMed
    1. Scott R, Donoghoe M, Watts GF, O'Brien R, Pardy C, Taskinen MR, et al. Impact of metabolic syndrome and its components on cardiovascular disease event rates in 4900 patients with type 2 diabetes assigned to placebo in the FIELD randomised trial. Cardiovascular diabetology. 2011;10:102 10.1186/1475-2840-10-102 - DOI - PMC - PubMed
Show all 46 references
Publication types
MeSH terms
Grant support
Funding was provided by the Lady Tata Memorial Trust, CSIR (Council of Scientific and Industrial Research) MLP (Mega Laboratory Project) 5502 & BSC (Biological Science Cluster) 0403 projects, the DST (Department of Science and Technology) Swarnjayanti awards for the financial support and ICMR (Indian Council of Medical Research) for scholarship of Suchita Singh. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.
[x]
Cite
Copy Download .nbib
Format: AMA APA MLA NLM

NCBI Literature Resources

MeSH PMC Bookshelf Disclaimer

The PubMed wordmark and PubMed logo are registered trademarks of the U.S. Department of Health and Human Services (HHS). Unauthorized use of these marks is strictly prohibited.

Follow NCBI
Fig 4. Induction of Inducible Nitric oxide…
Fig 4. Induction of Inducible Nitric oxide synthase (iNOS) in lungs of mice with metabolic syndrome.
(A) Western blot analysis of eNOS. (B) Western blot analysis of iNOS (C) Densitometry of eNOS (D) Densitometry of iNOS (E) Immunohistochemistry of iNOS. Brown colour indicates the positive expressions. HFA and HFR diet fed mice showed high expression of iNOS as compared to Control mice. Representative images are shown from each group. All photographs are at 10X magnification. Scale bar = 100μm. (F) Quantitative analysis for iNOS done using ImageJ software showed significant increase in its expression in HFA and HFR mice as compared to CN.*Denotes statistically significant differences (P

Fig 5. Increase in arginase levels in…

Fig 5. Increase in arginase levels in lungs of mice with metabolic syndrome.

(A) Western…

Fig 5. Increase in arginase levels in lungs of mice with metabolic syndrome.
(A) Western blot analysis of arginase 1 (B) Densitometry of arginase 1 (C) Quantitative morphometry for arginase 1 IHC (D) Immunohistochemistry of arginase, Brown colour indicates positive expression. Representative images are shown from each group. All photographs are at 10X magnification. Scale bar = 100μm. *Denotes statistically significant differences (P

Fig 6. Lack of cellular inflammation in…

Fig 6. Lack of cellular inflammation in lungs of mice with metabolic syndrome.

(A) Lung…

Fig 6. Lack of cellular inflammation in lungs of mice with metabolic syndrome.
(A) Lung sections were stained with haematoxylin and eosin to estimate airway inflammation. (B) Inflammation score of the lungs was evaluated by experimentally blind experts and shown as perivascular (PV), peribronchial (PB) and Total (sum of both PV and PB). (Representative images are shown from each group. All photographs are at 10X magnification. Scale bar = 100μm.

Fig 7. Arginine-NO pathway.

Fig 7. Arginine-NO pathway.

Fig 7. Arginine-NO pathway.
All figures (7)
Similar articles
Cited by
References
    1. Beigh SH, Jain S. Prevalence of metabolic syndrome and gender differences. Bioinformation. 2012;8(13):613–6. 10.6026/97320630008613 - DOI - PMC - PubMed
    1. Ervin RB. Prevalence of metabolic syndrome among adults 20 years of age and over, by sex, age, race and ethnicity, and body mass index: United States, 2003–2006. National health statistics reports. 2009(13):1–7. - PubMed
    1. Fernando H, Sumita K, Erzurum S, Roberts WP, John T, Sally EW. Reduced L-Arginine/ADMA As A Potential Mechanism To Explain Increased Symptom Severity And Reduced Atopy In Late Onset Obese Asthmatics. A92 SEVERE ASTHMA: PRESENT AND FUTURE. American Thoracic Society International Conference Abstracts: American Thoracic Society; 2012. p. A2197-A.
    1. Sarkar S, Das M, Mukhopadhyay B, Chakrabarti CS, Majumder PP. High prevalence of metabolic syndrome and its correlates in two tribal populations of India and the impact of urbanization. The Indian journal of medical research. 2006;123(5):679–86. - PubMed
    1. Scott R, Donoghoe M, Watts GF, O'Brien R, Pardy C, Taskinen MR, et al. Impact of metabolic syndrome and its components on cardiovascular disease event rates in 4900 patients with type 2 diabetes assigned to placebo in the FIELD randomised trial. Cardiovascular diabetology. 2011;10:102 10.1186/1475-2840-10-102 - DOI - PMC - PubMed
Show all 46 references
Publication types
MeSH terms
Grant support
Funding was provided by the Lady Tata Memorial Trust, CSIR (Council of Scientific and Industrial Research) MLP (Mega Laboratory Project) 5502 & BSC (Biological Science Cluster) 0403 projects, the DST (Department of Science and Technology) Swarnjayanti awards for the financial support and ICMR (Indian Council of Medical Research) for scholarship of Suchita Singh. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.
[x]
Cite
Copy Download .nbib
Format: AMA APA MLA NLM
Fig 5. Increase in arginase levels in…
Fig 5. Increase in arginase levels in lungs of mice with metabolic syndrome.
(A) Western blot analysis of arginase 1 (B) Densitometry of arginase 1 (C) Quantitative morphometry for arginase 1 IHC (D) Immunohistochemistry of arginase, Brown colour indicates positive expression. Representative images are shown from each group. All photographs are at 10X magnification. Scale bar = 100μm. *Denotes statistically significant differences (P

Fig 6. Lack of cellular inflammation in…

Fig 6. Lack of cellular inflammation in lungs of mice with metabolic syndrome.

(A) Lung…

Fig 6. Lack of cellular inflammation in lungs of mice with metabolic syndrome.
(A) Lung sections were stained with haematoxylin and eosin to estimate airway inflammation. (B) Inflammation score of the lungs was evaluated by experimentally blind experts and shown as perivascular (PV), peribronchial (PB) and Total (sum of both PV and PB). (Representative images are shown from each group. All photographs are at 10X magnification. Scale bar = 100μm.

Fig 7. Arginine-NO pathway.

Fig 7. Arginine-NO pathway.

Fig 7. Arginine-NO pathway.
All figures (7)
Fig 6. Lack of cellular inflammation in…
Fig 6. Lack of cellular inflammation in lungs of mice with metabolic syndrome.
(A) Lung sections were stained with haematoxylin and eosin to estimate airway inflammation. (B) Inflammation score of the lungs was evaluated by experimentally blind experts and shown as perivascular (PV), peribronchial (PB) and Total (sum of both PV and PB). (Representative images are shown from each group. All photographs are at 10X magnification. Scale bar = 100μm.
Fig 7. Arginine-NO pathway.
Fig 7. Arginine-NO pathway.

References

    1. Beigh SH, Jain S. Prevalence of metabolic syndrome and gender differences. Bioinformation. 2012;8(13):613–6. 10.6026/97320630008613
    1. Ervin RB. Prevalence of metabolic syndrome among adults 20 years of age and over, by sex, age, race and ethnicity, and body mass index: United States, 2003–2006. National health statistics reports. 2009(13):1–7.
    1. Fernando H, Sumita K, Erzurum S, Roberts WP, John T, Sally EW. Reduced L-Arginine/ADMA As A Potential Mechanism To Explain Increased Symptom Severity And Reduced Atopy In Late Onset Obese Asthmatics. A92 SEVERE ASTHMA: PRESENT AND FUTURE. American Thoracic Society International Conference Abstracts: American Thoracic Society; 2012. p. A2197-A.
    1. Sarkar S, Das M, Mukhopadhyay B, Chakrabarti CS, Majumder PP. High prevalence of metabolic syndrome and its correlates in two tribal populations of India and the impact of urbanization. The Indian journal of medical research. 2006;123(5):679–86.
    1. Scott R, Donoghoe M, Watts GF, O'Brien R, Pardy C, Taskinen MR, et al. Impact of metabolic syndrome and its components on cardiovascular disease event rates in 4900 patients with type 2 diabetes assigned to placebo in the FIELD randomised trial. Cardiovascular diabetology. 2011;10:102 10.1186/1475-2840-10-102
    1. Sutherland TJ, Cowan JO, Young S, Goulding A, Grant AM, Williamson A, et al. The association between obesity and asthma: interactions between systemic and airway inflammation. American journal of respiratory and critical care medicine. 2008;178(5):469–75. 10.1164/rccm.200802-301OC
    1. Eckel RH, Alberti KG, Grundy SM, Zimmet PZ. The metabolic syndrome. Lancet. 2010;375(9710):181–3. 10.1016/S0140-6736(09)61794-3
    1. Galisteo M, Duarte J, Zarzuelo A. Effects of dietary fibers on disturbances clustered in the metabolic syndrome. The Journal of nutritional biochemistry. 2008;19(2):71–84.
    1. Huang PL. A comprehensive definition for metabolic syndrome. Disease models & mechanisms. 2009;2(5–6):231–7.
    1. Adeyeye OO, Ogbera AO, Ogunleye OO, Brodie-Mens AT, Abolarinwa FF, Bamisile RT, et al. Understanding asthma and the metabolic syndrome—a Nigerian report. International archives of medicine. 2012;5(1):20 10.1186/1755-7682-5-20
    1. van Huisstede A, Cabezas MC, Birnie E, van de Geijn GJ, Rudolphus A, Mannaerts G, et al. Systemic inflammation and lung function impairment in morbidly obese subjects with the metabolic syndrome. Journal of obesity. 2013;2013:131349 10.1155/2013/131349
    1. Agrawal A, Mabalirajan U, Ahmad T, Ghosh B. Emerging interface between metabolic syndrome and asthma. American journal of respiratory cell and molecular biology. 2011;44(3):270–5. 10.1165/rcmb.2010-0141TR
    1. Beuther DA. Obesity and asthma. Clinics in chest medicine. 2009;30(3):479–88, viii 10.1016/j.ccm.2009.05.002
    1. Brumpton BM, Camargo CA Jr., Romundstad PR, Langhammer A, Chen Y, Mai XM. Metabolic syndrome and incidence of asthma in adults: the HUNT study. The European respiratory journal. 2013;42(6):1495–502. 10.1183/09031936.00046013
    1. Lee EJ, In KH, Ha ES, Lee KJ, Hur GY, Kang EH, et al. Asthma-like symptoms are increased in the metabolic syndrome. The Journal of asthma: official journal of the Association for the Care of Asthma. 2009;46(4):339–42. 10.1080/02770900802660931
    1. Thuesen BH, Husemoen LL, Hersoug LG, Pisinger C, Linneberg A. Insulin resistance as a predictor of incident asthma-like symptoms in adults. Clinical and experimental allergy: journal of the British Society for Allergy and Clinical Immunology. 2009;39(5):700–7.
    1. Assad N, Qualls C, Smith LJ, Arynchyn A, Thyagarajan B, Schuyler M, et al. Body mass index is a stronger predictor than the metabolic syndrome for future asthma in women. The longitudinal CARDIA study. American journal of respiratory and critical care medicine. 2013;188(3):319–26. 10.1164/rccm.201303-0457OC
    1. Mosen DM, Schatz M, Magid DJ, Camargo CA Jr. The relationship between obesity and asthma severity and control in adults. The Journal of allergy and clinical immunology. 2008;122(3):507–11 e6 10.1016/j.jaci.2008.06.024
    1. Novosad S, Khan S, Wolfe B, Khan A. Role of obesity in asthma control, the obesity-asthma phenotype. Journal of allergy. 2013;2013:538642 10.1155/2013/538642
    1. Singh S, Prakash YS, Linneberg A, Agrawal A. Insulin and the lung: connecting asthma and metabolic syndrome. Journal of allergy. 2013;2013:627384 10.1155/2013/627384
    1. Farzan S. The asthma phenotype in the obese: distinct or otherwise? Journal of allergy. 2013;2013:602908 10.1155/2013/602908
    1. Berg CM, Thelle DS, Rosengren A, Lissner L, Toren K, Olin AC. Decreased fraction of exhaled nitric oxide in obese subjects with asthma symptoms: data from the population study INTERGENE/ADONIX. Chest. 2011;139(5):1109–16. 10.1378/chest.10-1299
    1. Holguin F. Arginine and nitric oxide pathways in obesity-associated asthma. Journal of allergy. 2013;2013:714595 10.1155/2013/714595
    1. Holguin F, Comhair SA, Hazen SL, Powers RW, Khatri SS, Bleecker ER, et al. An association between L-arginine/asymmetric dimethyl arginine balance, obesity, and the age of asthma onset phenotype. American journal of respiratory and critical care medicine. 2013;187(2):153–9. 10.1164/rccm.201207-1270OC
    1. Komakula S, Khatri S, Mermis J, Savill S, Haque S, Rojas M, et al. Body mass index is associated with reduced exhaled nitric oxide and higher exhaled 8-isoprostanes in asthmatics. Respiratory research. 2007;8:32
    1. Lugogo NL, Kraft M, Dixon AE. Does obesity produce a distinct asthma phenotype? Journal of applied physiology. 2010;108(3):729–34. 10.1152/japplphysiol.00845.2009
    1. Todd DC, Armstrong S, D'Silva L, Allen CJ, Hargreave FE, Parameswaran K. Effect of obesity on airway inflammation: a cross-sectional analysis of body mass index and sputum cell counts. Clinical and experimental allergy: journal of the British Society for Allergy and Clinical Immunology. 2007;37(7):1049–54.
    1. Ahmad T, Mabalirajan U, Joseph DA, Makhija L, Singh VP, Ghosh B, et al. Exhaled nitric oxide estimation by a simple and efficient noninvasive technique and its utility as a marker of airway inflammation in mice. Journal of applied physiology. 2009;107(1):295–301. 10.1152/japplphysiol.00235.2009
    1. Alving K, Weitzberg E, Lundberg JM. Increased amount of nitric oxide in exhaled air of asthmatics. The European respiratory journal. 1993;6(9):1368–70.
    1. Grundy SM, Brewer HB Jr, Cleeman JI, Smith SC Jr, Lenfant C, American Heart A, et al. Definition of metabolic syndrome: Report of the National Heart, Lung, and Blood Institute/American Heart Association conference on scientific issues related to definition. Circulation. 2004;109(3):433–8.
    1. Haldar P, Pavord ID, Shaw DE, Berry MA, Thomas M, Brightling CE, et al. Cluster analysis and clinical asthma phenotypes. American journal of respiratory and critical care medicine. 2008;178(3):218–24. 10.1164/rccm.200711-1754OC
    1. Korhonen R, Lahti A, Kankaanranta H, Moilanen E. Nitric oxide production and signaling in inflammation. Current drug targets Inflammation and allergy. 2005;4(4):471–9.
    1. Ahmad T, Mabalirajan U, Ghosh B, Agrawal A. Altered asymmetric dimethyl arginine metabolism in allergically inflamed mouse lungs. American journal of respiratory cell and molecular biology. 2010;42(1):3–8. 10.1165/rcmb.2009-0137RC
    1. Mabalirajan U, Ahmad T, Leishangthem GD, Dinda AK, Agrawal A, Ghosh B. L-arginine reduces mitochondrial dysfunction and airway injury in murine allergic airway inflammation. International immunopharmacology. 2010;10(12):1514–9. 10.1016/j.intimp.2010.08.025
    1. Johnston RA, Theman TA, Lu FL, Terry RD, Williams ES, Shore SA. Diet-induced obesity causes innate airway hyperresponsiveness to methacholine and enhances ozone-induced pulmonary inflammation. Journal of applied physiology. 2008;104(6):1727–35. 10.1152/japplphysiol.00075.2008
    1. Akagiri S, Naito Y, Ichikawa H, Mizushima K, Takagi T, Handa O, et al. A Mouse Model of Metabolic Syndrome; Increase in Visceral Adipose Tissue Precedes the Development of Fatty Liver and Insulin Resistance in High-Fat Diet-Fed Male KK/Ta Mice. Journal of clinical biochemistry and nutrition. 2008;42(2):150–7. 10.3164/jcbn.2008022
    1. Mabalirajan U, Ahmad T, Leishangthem GD, Joseph DA, Dinda AK, Agrawal A, et al. Beneficial effects of high dose of L-arginine on airway hyperresponsiveness and airway inflammation in a murine model of asthma. The Journal of allergy and clinical immunology. 2010;125(3):626–35. 10.1016/j.jaci.2009.10.065
    1. Varghese F, Bukhari AB, Malhotra R, De A. IHC Profiler: an open source plugin for the quantitative evaluation and automated scoring of immunohistochemistry images of human tissue samples. PloS one. 2014;9(5):e96801 10.1371/journal.pone.0096801
    1. Boulet LP. Asthma and obesity. Clinical and experimental allergy: journal of the British Society for Allergy and Clinical Immunology. 2013;43(1):8–21.
    1. Wells SM, Holian A. Asymmetric dimethylarginine induces oxidative and nitrosative stress in murine lung epithelial cells. American journal of respiratory cell and molecular biology. 2007;36(5):520–8.
    1. Cottrell L, Neal WA, Ice C, Perez MK, Piedimonte G. Metabolic abnormalities in children with asthma. American journal of respiratory and critical care medicine. 2011;183(4):441–8. 10.1164/rccm.201004-0603OC
    1. Leone N, Courbon D, Berr C, Barberger-Gateau P, Tzourio C, Alperovitch A, et al. Abdominal obesity and late-onset asthma: cross-sectional and longitudinal results: the 3C study. Obesity. 2012;20(3):628–35. 10.1038/oby.2011.308
    1. Wells SM, Buford MC, Migliaccio CT, Holian A. Elevated asymmetric dimethylarginine alters lung function and induces collagen deposition in mice. American journal of respiratory cell and molecular biology. 2009;40(2):179–88. 10.1165/rcmb.2008-0148OC
    1. Leishangthem GD, Mabalirajan U, Singh VP, Agrawal A, Ghosh B, Dinda AK. Ultrastructural changes of airway in murine models of allergy and diet-induced metabolic syndrome. ISRN allergy. 2013;2013:261297 10.1155/2013/261297
    1. Leishangthem GD, Mabalirajan U, Ahmad T, Ghosh B, Agrawal A, Nag TC, et al. Use of transmission electron microscopy for studying airway remodeling in a chronic ovalbumin mice model of allergic asthma. Microscopy: Science, Technology, Applications and Education. 2010. (1):347–53.
    1. Stream AR, Sutherland ER. Obesity and asthma disease phenotypes. Current opinion in allergy and clinical immunology. 2012;12(1):76–81. 10.1097/ACI.0b013e32834eca41

Source: PubMed

3
Předplatit