The Modulation of Mucosal Antiviral Immunity by Immunobiotics: Could They Offer Any Benefit in the SARS-CoV-2 Pandemic?

Julio Villena, Haruki Kitazawa, Julio Villena, Haruki Kitazawa

Abstract

Viral respiratory infections are of major importance because of their capacity to cause of a high degree of morbidity and mortality in high-risk populations, and to rapidly spread between countries. Perhaps the best example of this global threat is the infectious disease caused by the new SARS-CoV-2 virus, which has infected more than 4 million people worldwide, causing the death of 287,000 persons according to the WHO's situation report on May 13, 2020. The availability of therapeutic tools that would be used massively to prevent or mitigate the detrimental effects of emerging respiratory viruses on human health is therefore mandatory. In this regard, research from the last decade has reported the impact of the intestinal microbiota on the respiratory immunity. It was conclusively demonstrated how the variations in the intestinal microbiota affect the responses of respiratory epithelial cells and antigen presenting cells against respiratory virus attack. Moreover, the selection of specific microbial strains (immunobiotics) with the ability to modulate immunity in distal mucosal sites made possible the generation of nutritional interventions to strengthen respiratory antiviral defenses. In this article, the most important characteristics of the limited information available regarding the immune response against SARS-CoV-2 virus are revised briefly. In addition, this review summarizes the knowledge on the cellular and molecular mechanisms involved in the improvement of respiratory antiviral defenses by beneficial immunobiotic microorganisms such as Lactobacillus rhamnosus CRL1505. The ability of beneficial microorganisms to enhance type I interferons and antiviral factors in the respiratory tract, stimulate Th1 response and antibodies production, and regulate inflammation and coagulation activation during the course of viral infections reducing tissue damage and preserving lung functionally, clearly indicate the potential of immunobiotics to favorably influence the immune response against SARS-CoV-2 virus.

Keywords: beneficial microbes; coronavirus; immunobiotics; inflammation; respiratory viral infections.

Copyright © 2020 Villena and Kitazawa.

Figures

Figure 1
Figure 1
Infection and modulation of the immune system by SARS-CoV-2. In most individuals, SARS-CoV-2 infection triggers and efficient and timely production of type I IFNs and inflammatory cytokines by epithelial cells and immune cells creating an antiviral state and inducing the recruitment of additional immune cells that collaborate to clear the infection in the lung, with minimal inflammation and damage. This type of immune response is associated to mild or moderate forms of COVID-19 and patients finally recover. In high-risk populations such as the elderly and persons with comorbidities, a dysfunctional immune response is triggered by SARS-CoV-2 infection. A severe type of COVID-19 characterized by a cytokine storm that mediates widespread lung inflammation, coagulopathies, organ failure, and death occurs in some patients.
Figure 2
Figure 2
Modulation of respiratory antiviral immunity by intestinal microbiota. Proposed mechanism for the distal immunomodulation induced by the intestinal microbiota and the enhancement of the resistance against viral infections through the improvement of the respiratory innate and adaptive antiviral immune responses.
Figure 3
Figure 3
Modulation of respiratory antiviral immunity by Lactobacillus rhamnosus CRL1505. Proposed mechanism for the distal immunomodulation induced by the immunobiotic strain L. rhamnosus CRL1505 and the enhancement of the resistance against viral infections through the improvement of the respiratory innate and adaptive antiviral immune responses.
Figure 4
Figure 4
Potential beneficial effects of Lactobacillus rhamnosus CRL1505 against SARS-CoV-2 infection. Proposed potential benefits in the reduction of the incidence and severity of COVID-19 induced by nutritional interventions with the immunobiotic strain L. rhamnosus CRL1505. The principal pathological and immunological alterations during SARS-CoV-2 infection were summarized from Jamilloux et al. (2020), Tay et al. (2020), Merad and Martin (2020), and Chen N. et al. (2020). The beneficial effects of L. rhamnosus CRL1505 in the respiratory tract were summarized from Villena et al. (2012a), Chiba et al. (2013), and Zelaya et al. (2014). The beneficial effects of L. rhamnosus CRL1505 in the intestinal tract were summarized from Villena et al. (2014), Tada et al. (2016), and Albarracin et al. (2017, 2020).
Figure 5
Figure 5
Hypothesis of the beneficial effects of preventive immunobiotic intervention on SARS-CoV-2 infection. The kinetics and intensity of immune actors involved in the response to SARS-CoV-2, viral load and COVID-19 severity are shown according to Jamilloux et al. (2020) in both “mild/moderate” and “severe” susceptible hosts. Optimal times for therapeutic interventions proposed to ameliorate disease severity are also shown (left panels). The potential modulation of the kinetics and intensity of immune response, viral load, and disease severity by preventive nutritional immunobiotic interventions for low and high susceptible hosts are shown in the right panels.

References

    1. Abt M. C., Osborne L. C., Monticelli L. A., Doering T. A., Alenghat T., Sonnenberg G. F., et al. . (2012). Commensal bacteria calibrate the activation threshold of innate antiviral immunity. Immunity 37, 158–170. 10.1016/j.immuni.2012.04.011
    1. Addie D., Curran S., Bellini F., Crowe B., Sheehan E., Ukrainchuk L., et al. . (2020). Oral Mutian®X stopped faecal feline coronavirus shedding by naturally infected cats. Res. Vet. Sci. 130:222–229. 10.1016/j.rvsc.2020.02.012
    1. Aeffner F., Traylor Z. P., Yu E. N. Z., Davis I. C. (2011). Double-stranded RNA induces similar pulmonary dysfunction to respiratory syncytial virus in BALB/c mice. Am. J. Physiol. Lung Cell. Mol. Physiol. 301, 99–109. 10.1152/ajplung.00398.2010
    1. Ahanchian H., Jafari S. A., Ansari E., Ganji T., Kiani M. A., Khalesi M., et al. . (2016). A multi-strain synbiotic may reduce viral respiratory infections in asthmatic children: a randomized controlled trial. Electr. Phys. 8, 2833–2839. 10.19082/2833
    1. Albarracin L., García-Castillo V., Masumizu Y., Indo Y., Islam M. A., Suda Y., et al. . (2020). Efficient selection of new immunobiotic strains with antiviral effects in local and distal mucosal sites by using porcine intestinal epitheliocytes. Front. Immunol. 11:543. 10.3389/fimmu.2020.00543
    1. Albarracin L., Kobayashi H., Iida H., Sato N., Nochi T., Aso H., et al. . (2017). Transcriptomic analysis of the innate antiviral immune response in porcine intestinal epithelial cells: influence of immunobiotic lactobacilli. Front. Immunol. 8:57. 10.3389/fimmu.2017.00057
    1. Antunes K. H., Fachi J. L., de Paula R., da Silva E. F., Pral L. P., Dos Santos A. Á., et al. . (2019). Microbiota-derived acetate protects against respiratory syncytial virus infection through a GPR43-type 1 interferon response. Nat. Commun. 10:3273. 10.1038/s41467-019-11152-6
    1. Bai Y., Yao L., Wei T., Tian F., Jin D. Y., Chen L., et al. . (2020). Presumed asymptomatic carrier transmission of COVID-19. JAMA 323, 1406–1407. 10.1001/jama.2020.2565
    1. Bao L., Deng W., Huang B., Gao H., Liu J., Ren L., et al. (2020). The pathogenicity of SARS-CoV-2 in hACE2 transgenic mice. bioRxiv. 10.1101/2020.02.07.939389
    1. Baruah V., Bose S. (2020). Immunoinformatics-aided identification of T cell and B cell epitopes in the surface glycoprotein of 2019-nCoV. J. Med. Virol. 92, 495–500. 10.1002/jmv.25698
    1. Bracci L., Canini I., Puzelli S., Sestili P., Venditti M., Spada M., et al. . (2005). Type I IFN is a powerful mucosal adjuvant for a selective intranasal vaccination against influenza virus in mice and affects antigen capture at mucosal level. Vaccine 23, 2994–3004. 10.1016/j.vaccine.2004.12.006
    1. Bradley K. C., Finsterbusch K., Schnepf D., Crotta S., Llorian M., Davidson S., et al. . (2019). Microbiota-driven tonic interferon signals in lung stromal cells protect from influenza virus infection. Cell Rep. 28, 245–256.e4. 10.1016/j.celrep.2019.05.105
    1. Cao X. (2020). COVID-19: immunopathology and its implications for therapy. Nat. Rev. Immunol. 20, 269–270. 10.1038/s41577-020-0308-3
    1. Chai W., Burwinkel M., Wang Z., Palissa C., Esch B., Twardziok S., et al. . (2013). Antiviral effects of a probiotic Enterococcus faecium strain against transmissible gastroenteritis coronavirus. Arch. Virol. 158, 799–807. 10.1007/s00705-012-1543-0
    1. Chan J. F. W., Yuan S., Kok K. H., To K. K. W., Chu H., Yang J., et al. . (2020). A familial cluster of pneumonia associated with the 2019 novel coronavirus indicating person-to-person transmission: a study of a family cluster. Lancet 395, 514–523. 10.1016/S0140-6736(20)30154-9
    1. Channappanavar R., Perlman S. (2017). Pathogenic human coronavirus infections: causes and consequences of cytokine storm and immunopathology. Semin. Immunopathol. 39, 529–539. 10.1007/s00281-017-0629-x
    1. Chen C., Zhang X. R., Ju Z. Y., He W. F. (2020). [Advances in the research of cytokine storm mechanism induced by Corona Virus Disease 2019 and the corresponding immunotherapies]. Zhonghua Shao Shang Za Zhi 36:E005. 10.3760/cma.j.cn501120-20200224-00088
    1. Chen N., Zhou M., Dong X., Qu J., Gong F., Han Y., et al. . (2020). Epidemiological and clinical characteristics of 99 cases of 2019 novel coronavirus pneumonia in Wuhan, China: a descriptive study. Lancet 395, 507–513. 10.1016/S0140-6736(20)30211-7
    1. Chen X., Ling J., Mo P., Zhang Y., Jiang Q., Ma Z., et al. (2020). Restoration of leukomonocyte counts is associated with viral clearance in COVID-19 hospitalized patients. medRxiv. 10.1101/2020.03.03.20030437
    1. Cheng P. K. C., Wong D. A., Tong L. K. L., Ip S. M., Lo A. C. T., Lau C. S., et al. . (2004). Viral shedding patterns of coronavirus in patients with probable severe acute respiratory syndrome. Lancet 363, 1699–1700. 10.1016/S0140-6736(04)16255-7
    1. Chiba E., Tomosada Y., Vizoso-Pinto M. G., Salva S., Takahashi T., Tsukida K., et al. . (2013). Immunobiotic Lactobacillus rhamnosus improves resistance of infant mice against respiratory syncytial virus infection. Int. Immunopharmacol. 17, 373–382. 10.1016/j.intimp.2013.06.024
    1. Clarke T. B., Davis K. M., Lysenko E. S., Zhou A. Y., Yu Y., Weiser J. N. (2010). Recognition of peptidoglycan from the microbiota by Nod1 enhances systemic innate immunity. Nat. Med. 16, 228–231. 10.1038/nm.2087
    1. Cole-Jeffrey C. T., Liu M., Katovich M. J., Raizada M. K., Shenoy V. (2015). ACE2 and microbiota: emerging targets for cardiopulmonary disease therapy. J. Cardiovasc. Pharmacol. 66, 540–550. 10.1097/FJC.0000000000000307
    1. Crackower M. A., Sarao R., Oliveira-dos-Santos A. J., Da Costa J., Zhang L. (2002). Angiotensin-converting enzyme 2 is an essential regulator of heart function. Nature 417, 822–828. 10.1038/nature00786
    1. D'Amico F., Baumgart D. C., Danese S., Peyrin-Biroulet L. (2020). Diarrhea during COVID-19 infection: pathogenesis, epidemiology, prevention, and management. Clin. Gastroenterol. Hepatol. 10.1016/j.cgh.2020.04.001. [Epub ahead of print].
    1. Danilczyk U., Penninger J. M. (2006). Angiotensin-converting enzyme II in the heart and the kidney. Circ. Res. 98, 463–471. 10.1161/01.RES.0000205761.22353.5f
    1. Ding Q., Lu P., Fan Y., Xia Y., Liu M. (2020). The clinical characteristics of pneumonia patients coinfected with 2019 novel coronavirus and influenza virus in Wuhan, China. J. Med. Virol. 10.1002/jmv.25781. [Epub ahead of print].
    1. Ding Y., He L., Zhang Q., Huang Z., Che X., Hou J., et al. . (2004). Organ distribution of severe acute respiratory syndrome (SARS) associated coronavirus (SARS-CoV) in SARS patients: Implications for pathogenesis virus transmission pathways. J. Pathol. 203, 622–630. 10.1002/path.1560
    1. Dobbs L. G. (1989). Pulmonary surfactant. Annu. Rev. Med. 40, 431–446. 10.1146/annurev.me.40.020189.002243
    1. Fonseca W., Lucey K., Jang S., Fujimura K. E., Rasky A., Ting H. A., et al. . (2017). Lactobacillus johnsonii supplementation attenuates respiratory viral infection via metabolic reprogramming and immune cell modulation. Mucosal Immunol. 10, 1569–1580. 10.1038/mi.2017.13
    1. Gao Q. Y., Chen Y. X., Fang J. Y. (2020). Novel coronavirus infection and gastrointestinal tract. J. Dig. Dis. 21, 125–126. 10.1111/1751-2980.12851
    1. Garbi N., Lambrecht B. N. (2017). Location, function, and ontogeny of pulmonary macrophages during the steady state. Pflugers Arch. Eur. J. Physiol. 469, 561–572. 10.1007/s00424-017-1965-3
    1. Gheblawi M., Wang K., Viveiros A., Nguyen Q., Zhong J.-C., Turner A. J., et al. . (2020). Angiotensin converting enzyme 2: SARS-CoV-2 receptor and regulator of the renin-angiotensin system. Circ. Res. 126, 1456–1474. 10.1161/CIRCRESAHA.120.317015
    1. Gorse G. J., Donovan M. M., Patel G. B. (2020). Antibodies to coronaviruses are higher in older compared with younger adults and binding antibodies are more sensitive than neutralizing antibodies in identifying coronavirus-associated illnesses. J. Med. Virol. 92, 512–517. 10.1002/jmv.25715
    1. Groskreutz D. J., Monick M. M., Powers L. S., Yarovinsky T. O., Look D. C., Hunninghake G. W. (2006). Respiratory syncytial virus induces TLR3 protein and protein kinase R, leading to increased double-stranded RNA responsiveness in airway epithelial cells. J. Immunol. 176, 1733–1740. 10.4049/jimmunol.176.3.1733
    1. Guan W., Ni Z., Hu Y., Liang W., Ou C., He J., et al. (2020). Clinical characteristics of coronavirus disease 2019 in China. N. Engl. J. Med. 382, 1708–1720. 10.1056/NEJMoa2002032
    1. Guillemard E., Tanguy J., Flavigny A., de la Motte S., Schrezenmeir J. (2010a). Effects of consumption of a fermented dairy product containing the probiotic Lactobacillus casei DN-114 001 on common respiratory and gastrointestinal infections in shift workers in a randomized controlled trial. J. Am. Coll. Nutr. 29, 455–468. 10.1080/07315724.2010.10719882
    1. Guillemard E., Tondu F., Lacoin F., Schrezenmeir J. (2010b). Consumption of a fermented dairy product containing the probiotic Lactobacillus casei DN-114001 reduces the duration of respiratory infections in the elderly in a randomised controlled trial. Br. J. Nutr. 103, 58–68. 10.1017/S0007114509991395
    1. Guo Y. R., Cao Q. D., Hong Z. S., Tan Y. Y., Chen S. D., Jin H. J., et al. . (2020). The origin, transmission and clinical therapies on coronavirus disease 2019 (COVID-19) outbreak - an update on the status. Mil. Med. Res. 7:11. 10.1186/s40779-020-00240-0
    1. Hammad H., Lambrecht B. N. (2011). Dendritic cells and airway epithelial cells at the interface between innate and adaptive immune responses. Allergy Eur. J. Allergy Clin. Immunol. 66, 579–587. 10.1111/j.1398-9995.2010.02528.x
    1. Han H., Yang L., Liu R., Liu F., Wu K., Li G., et al. . (2020). Prominent changes in blood coagulation of patients with SARS-CoV-2 infection. Clin. Chem. Lab. Med. 10.1515/cclm-2020-0188. [Epub ahead of print].
    1. Hoffmann M., Kleine-Weber H., Krüger N., Müller M., Drosten C., Pöhlmann S. (2020a). The novel coronavirus 2019 (2019-nCoV) uses the SARS-coronavirus receptor ACE2 and the cellular protease TMPRSS2 for entry into target cells. bioRxiv. 10.1101/2020.01.31.929042
    1. Hoffmann M., Kleine-Weber H., Schroeder S., Krüger N., Herrler T., Erichsen S., et al. . (2020b). SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitor. Cell 181, 271–280.e8. 10.1016/j.cell.2020.02.052
    1. Hsueh P. R., Huang L. M., Chen P. J., Kao C. L., Yang P. C. (2004). Chronological evolution of IgM, IgA, IgG and neutralisation antibodies after infection with SARS-associated coronavirus. Clin. Microbiol. Infect. 10, 1062–1066. 10.1111/j.1469-0691.2004.01009.x
    1. Huang C., Wang Y., Li X., Ren L., Zhao J., Hu Y., et al. . (2020). Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet 395, 497–506. 10.1016/S0140-6736(20)30183-5
    1. Ichinohe T., Pang I. K., Kumamoto Y., Peaper D. R., Ho J. H., Murray T. S., et al. . (2011). Microbiota regulates immune defense against respiratory tract influenza a virus infection. Proc. Natl. Acad. Sci. U.S.A. 108, 5354–5359. 10.1073/pnas.1019378108
    1. Jamilloux Y., Henry T., Belot A., Viel S., Fauter M., El Jammal T., et al. . (2020). Should we stimulate or suppress immune responses in COVID-19? Cytokine and anti-cytokine interventions. Autoimmun. Rev. 4:102567. 10.1016/j.autrev.2020.102567
    1. Ji L. N., Chao S., Wang Y. J., Li X. J., Mu X. D., Lin M. G., et al. . (2020). Clinical features of pediatric patients with COVID-19: a report of two family cluster cases. World J. Pediatr. 16, 1–4. 10.1007/s12519-020-00356-2
    1. Kam K. Q., Yung C. F., Cui L., Lin Tzer Pin R., Mak T. M., Maiwald M., et al. . (2020). A well infant with coronavirus disease 2019 (COVID-19) with high viral load. Clin. Infect. Dis. 3, ciaa201. 10.1093/cid/ciaa201
    1. Kim Y.-I., Kim S.-G., Kim S.-M., Kim E.-H., Park S.-J., Yu K.-M., et al. . (2020). Infection and rapid transmission of SARS-CoV-2 in ferrets. Cell Host Microbe 27, 704–709.e2. 10.1016/j.chom.2020.03.023
    1. Kindler E., Thiel V., Weber F. (2016). Interaction of SARS and MERS coronaviruses with the antiviral interferon response. Adv. Virus Res. 96, 219–243. 10.1016/bs.aivir.2016.08.006
    1. Kitazawa H., Villena J. (2014). Modulation of respiratory TLR3-anti-viral response by probiotic microorganisms: lessons learned from Lactobacillus rhamnosus CRL1505. Front. Immunol. 5:201. 10.3389/fimmu.2014.00201
    1. Lagunas-Rangel F. A., Chávez-Valencia V. (2020). High IL-6/IFN-γ ratio could be associated with severe disease in COVID-19 patients. J. Med. Virol. 10.1002/jmv.25900. [Epub ahead of print].
    1. Le Bon A., Schiavoni G., D'Agostino G., Gresser I., Belardelli F., Tough D. F. (2001). Type I interferons potently enhance humoral immunity and can promote isotype switching by stimulating dendritic cells in vivo. Immunity 14, 461–470. 10.1016/S1074-7613(01)00126-1
    1. Le Bon A., Tough D. F. (2002). Links between innate and adaptive immunity via type I interferon. Curr. Opin. Immunol. 14, 432–436. 10.1016/S0952-7915(02)00354-0
    1. Le Goffic R., Balloy V., Lagranderie M., Alexopoulou L., Escriou N., Flavell R., et al. . (2006). Detrimental contribution of the Toll-like receptor (TLR)3 to influenza A virus-induced acute pneumonia. PLoS Pathog. 2:e53. 10.1371/journal.ppat.0020053
    1. Lehtoranta L., Pitkäranta A., Korpela R. (2014). Probiotics in respiratory virus infections. Eur. J. Clin. Microbio. Infect. Dis. 33:1289–1302. 10.1007/s10096-014-2086-y
    1. Lessler J., Reich N. G., Brookmeyer R., Perl T. M., Nelson K. E., Cummings D. A. (2009). Incubation periods of acute respiratory viral infections: a systematic review. Lancet Infect. Dis. 9, 291–300. 10.1016/S1473-3099(09)70069-6
    1. Leung W. K., To K., Chan P. K. S., Chan H. L. Y., Wu A. K. L., Lee N., et al. . (2003). Enteric involvement of severe acute respiratory syndrome-associated coronavirus infection. Gastroenterology 125, 1011–1017. 10.1016/j.gastro.2003.08.001
    1. Li C. K., Wu H., Yan H., Ma S., Wang L., Zhang M., et al. . (2008). T Cell Responses to Whole SARS coronavirus in humans. J. Immunol. 181, 5490–5500. 10.4049/jimmunol.181.8.5490
    1. Li G., Fan Y., Lai Y., Han T., Li Z., Zhou P., et al. (2020). Coronavirus infections and immune responses. J. Med. Virol. 92, 424–432. 10.1002/jmv.25685
    1. Li L., quan, Huang T., Wang Y., qing, Wang Z., ping, Liang Y., Huang T., et al. (2020). 2019 novel coronavirus patients' clinical characteristics, discharge rate, and fatality rate of meta-analysis. J. Med. Virol. 10.1002/jmv.25757. [Epub ahead of print].
    1. Liao M., Liu Y., Yuan J., Wen Y., Xu G., Zhao J., et al. (2020). The landscape of lung bronchoalveolar immune cells in COVID-19 revealed by single- cell RNA sequencing. medRxiv. 10.1101/2020.02.23.20026690
    1. Liu Q., Wang R., Qu G., Wang Y., Liu P., Zhu Y. (2020). General anatomy report of novel coronavirus pneumonia death corpse. J. Forensic Med. 36, 19–21.
    1. Liu S., Hu P., Du X., Zhou T., Pei X. (2013). Lactobacillus rhamnosus GG supplementation for preventing respiratory infections in children: a meta-analysis of randomized, placebo-controlled trials. Indian Pediatr. 50, 377–381. 10.1007/s13312-013-0123-z
    1. Liu W., Fontanet A., Zhang P., Zhan L., Xin Z., Baril L., et al. . (2006). Two-year prospective study of the humoral immune response of patients with severe acute respiratory syndrome. J. Infect. Dis. 193, 792–795. 10.1086/500469
    1. Lokugamage K. G., Hage A., Schindewolf C., Rajsbaum R., Menachery V. D. (2020). SARS-CoV-2 is sensitive to type I interferon pretreatment. BioRxiv. 10.1101/2020.03.07.982264
    1. Macpherson A. J., Uhr T. (2004). Induction of protective IgA by intestinal dendritic cells carrying commensal bacteria. Science. 80, 1662–1665. 10.1126/science.1091334
    1. Mahallawi W. H., Khabour O. F., Zhang Q., Makhdoum H. M., Suliman B. A. (2018). MERS-CoV infection in humans is associated with a pro-inflammatory Th1 and Th17 cytokine profile. Cytokine 104, 8–13. 10.1016/j.cyto.2018.01.025
    1. Makino S., Ikegami S., Kume A., Horiuchi H., Sasaki H., Orii N. (2010). Reducing the risk of infection in the elderly by dietary intake of yoghurt fermented with Lactobacillus delbrueckii ssp. bulgaricus OLL1073R-1. Br. J. Nutr. 104, 998–1006. 10.1017/S000711451000173X
    1. Mantlo E., Bukreyeva N., Maruyama J., Paessler S., Huang C. (2020). Antiviral activities of type I interferons to SARS-CoV-2 infection. Antiviral Res. 179:104811. 10.1016/j.antiviral.2020.104811
    1. Menachery V. D., Schäfer A., Burnum-Johnson K. E., Mitchell H. D., Eisfeld A. J., Walters K. B., et al. . (2018). MERS-CoV and H5N1 influenza virus antagonize antigen presentation by altering the epigenetic landscape. Proc. Natl. Acad. Sci. U.S.A. 115, E1012–E1021. 10.1073/pnas.1706928115
    1. Merad M., Martin J. C. (2020). Pathological inflammation in patients with COVID-19: a key role for monocytes and macrophages. Nat. Rev. Immunol. 20, 355–362. 10.1038/s41577-020-0331-4
    1. Montoya M., Schiavoni G., Mattel F., Gresser I., Belardelli F., Borrow P., et al. . (2002). Type I interferons produced by dendritic cells promote their phenotypic and functional activation. Blood 99, 3263–3271. 10.1182/blood.V99.9.3263
    1. Neyt K., Lambrecht B. N. (2013). The role of lung dendritic cell subsets in immunity to respiratory viruses. Immunol. Rev. 255, 57–67. 10.1111/imr.12100
    1. Nicholls J. M., Poon L. L. M., Lee K. C., Ng W. F., Lai S. T., Leung C. Y., et al. . (2003). Lung pathology of fatal severe acute respiratory syndrome. Lancet 361, 1773–1778. 10.1016/S0140-6736(03)13413-7
    1. Oliveira A. C., Richards E. M., Raizada M. K. (2020). Pulmonary hypertension: pathophysiology beyond the lung. Pharmacol. Res. 151:104518. 10.1016/j.phrs.2019.104518
    1. Ong E. Z., Zi Chan Y. F., Ying Leong W., Ying Lee N. M., Kalimuddin S., Haja Mohideen S. M., et al. . (2020). A dynamic immune response shapes COVID-19 progression. Cell Host Microbe. 27, 879–882.e2. 10.1016/j.chom.2020.03.021
    1. Pedersen S. F., Ho Y.-C. (2020). SARS-CoV-2: a storm is raging. J. Clin. Invest. 130, 2202–2205. 10.1172/JCI137647
    1. Perlman S., Dandekar A. A. (2005). Immunopathogenesis of coronavirus infections: implications for SARS. Nat. Rev. Immunol. 5, 917–927. 10.1038/nri1732
    1. Perlman S., Netland J. (2009). Coronaviruses post-SARS: update on replication and pathogenesis. Nat. Rev. Microbiol. 7:439–450. 10.1038/nrmicro2147
    1. Prompetchara E., Ketloy C., Palaga T. (2020). Immune responses in COVID-19 and potential vaccines: lessons learned from SARS and MERS epidemic. Asian Pacific J. Allergy Immunol. 38, 1–9. 10.12932/AP-200220-0772
    1. Pu F., Guo Y., Li M., Zhu H., Wang S., Shen X., et al. . (2017). Yogurt supplemented with probiotics can protect the healthy elderly from respiratory infections: a randomized controlled open-label trial. Clin. Interv. Aging 12, 1223–1231. 10.2147/CIA.S141518
    1. Qin C., Zhou L., Hu Z., Zhang S., Yang S., Tao Y., et al. . (2020). Dysregulation of immune response in patients with COVID-19 in Wuhan, China. Clin. Infect. Dis. 10.2139/ssrn.3541136. [Epub ahead of print].
    1. Rejish Kumar V. J., Seo B. J., Mun M. R., Kim C. J., Lee I., Kim H., et al. . (2010). Putative probiotic Lactobacillus spp. from porcine gastrointestinal tract inhibit transmissible gastroenteritis coronavirus and enteric bacterial pathogens. Trop. Anim. Health Prod. 42, 1855–1860. 10.1007/s11250-010-9648-5
    1. Rokni M., Ghasemi V., Tavakoli Z. (2020). Immune responses and pathogenesis of SARS-CoV-2 during an outbreak in Iran: comparison with SARS and MERS. Rev. Med. Virol. 30:e2107. 10.1002/rmv.2107
    1. Rudd B. D., Burstein E., Duckett C. S., Li X., Lukacs N. W. (2005). Differential role for TLR3 in respiratory syncytial virus-induced chemokine expression. J. Virol. 79, 3350–3357. 10.1128/JVI.79.6.3350-3357.2005
    1. Rudd B. D., Smit J. J., Flavell R. A., Alexopoulou L., Schaller M. A., Gruber A., et al. . (2006). Deletion of TLR3 alters the pulmonary immune environment and mucus production during respiratory syncytial virus infection. J. Immunol. 176, 1937–1942. 10.4049/jimmunol.176.3.1937
    1. Sáez-Lara M. J., Robles-Sanchez C., Ruiz-Ojeda F. J., Plaza-Diaz J., Gil A. (2016). Effects of probiotics and synbiotics on obesity, insulin resistance syndrome, type 2 diabetes and non-alcoholic fatty liver disease: a review of human clinical trials. Int. J. Mol. Sci. 17:928. 10.3390/ijms17060928
    1. Salva S., Villena J., Alvarez S. (2010). Immunomodulatory activity of Lactobacillus rhamnosus strains isolated from goat milk: impact on intestinal and respiratory infections. Int. J. Food Microbiol. 141, 82–89. 10.1016/j.ijfoodmicro.2010.03.013
    1. Shen C., Wang Z., Zhao F., Yang Y., Li J., Yuan J., et al. . (2020). Treatment of 5 critically Ill patients with COVID-19 with convalescent plasma. JAMA 323, 1582–1589. 10.1001/jama.2020.4783
    1. Shi Y., Tan M., Chen X., Liu Y., Huang J., Ou J., et al. . (2020). Immunopathological characteristics of coronavirus disease 2019 cases in Guangzhou, China. medRxiv. 10.1101/2020.03.12.20034736
    1. Shibamiya A., Hersemeyer K., Wöll T. S., Sedding D., Daniel J. M., Bauer S., et al. . (2009). A key role for Toll-like receptor-3 in disrupting the hemostasis balance on endothelial cells. Blood 113, 714–722. 10.1182/blood-2008-02-137901
    1. Shida K., Sato T., Iizuka R., Hoshi R., Watanabe O., Igarashi T., et al. . (2017). Daily intake of fermented milk with Lactobacillus casei strain Shirota reduces the incidence and duration of upper respiratory tract infections in healthy middle-aged office workers. Eur. J. Nutr. 56, 45–53. 10.1007/s00394-015-1056-1
    1. Shieh W. J., Hsiao C. H., Paddock C. D., Guarner J., Goldsmith C. S., Tatti K., et al. . (2005). Immunohistochemical, in situ hybridization, and ultrastructural localization of SARS-associated coronavirus in lung of a fatal case of severe acute respiratory syndrome in Taiwan. Hum. Pathol. 36, 303–309. 10.1016/j.humpath.2004.11.006
    1. Shokri S., Mahmoudvand S., Taherkhani R., Farshadpour F. (2019). Modulation of the immune response by Middle East respiratory syndrome coronavirus. J. Cell. Physiol. 234, 2143–2151. 10.1002/jcp.27155
    1. Song Y., Liu P., Shi X. L., Chu Y. L., Zhang J., Xia J., et al. . (2020). SARS-CoV-2 induced diarrhoea as onset symptom in patient with COVID-19. Gut 69, 1143–1144. 10.1136/gutjnl-2020-320891
    1. Steed A. L., Christophi G. P., Kaiko G. E., Sun L., Goodwin V. M., Jain U., et al. . (2017). The microbial metabolite desaminotyrosine protects from influenza through type I interferon. Science 357, 498–502. 10.1126/science.aam5336
    1. Stowell N. C., Seideman J., Raymond H. A., Smalley K. A., Lamb R. J., Egenolf D. D., et al. . (2009). Long-term activation of TLR3 by Poly(I:C) induces inflammation and impairs lung function in mice. Respir. Res. 10:43. 10.1186/1465-9921-10-43
    1. Tada A., Zelaya H., Clua P., Salva S., Alvarez S., Kitazawa H., et al. . (2016). Immunobiotic Lactobacillus strains reduce small intestinal injury induced by intraepithelial lymphocytes after Toll-like receptor 3 activation. Inflamm. Res. 65, 771–783. 10.1007/s00011-016-0957-7
    1. Tang N., Li D., Wang X., Sun Z. (2020). Abnormal coagulation parameters are associated with poor prognosis in patients with novel coronavirus pneumonia. J. Thromb. Haemost. 18, 844–847. 10.1111/jth.14768
    1. Tay M. Z., Poh C. M., Rénia L., MacAry P. A., Ng L. F. P. (2020). The trinity of COVID-19: immunity, inflammation and intervention. Nat. Rev. Immunol. 20, 363–374. 10.1038/s41577-020-0311-8
    1. Totura A. L., Whitmore A., Agnihothram S., Schäfer A., Katze M. G., Heise M. T., et al. . (2015). Toll-like receptor 3 signaling via TRIF contributes to a protective innate immune response to severe acute respiratory syndrome coronavirus infection. MBio 6:e00638-15. 10.1128/mBio.00638-15
    1. Trompette A., Gollwitzer E. S., Yadava K., Sichelstiel A. K., Sprenger N., Ngom-Bru C., et al. . (2014). Gut microbiota metabolism of dietary fiber influences allergic airway disease and hematopoiesis. Nat. Med. 20, 159–166. 10.1038/nm.3444
    1. Trouillet-Assant S., Viel S., Gaymard A., Pons S., Richard J. C., Perret M., et al. . (2020). Type I IFN immunoprofiling in COVID-19 patients. J. Allergy Clin. Immunol. 10.1016/j.jaci.2020.04.029. [Epub ahead of print].
    1. Tsukahara T., Inatomi T., Otomaru K., Amatatsu M., Romero-Pérez G. A., Inoue R. (2018). Probiotic supplementation improves reproductive performance of unvaccinated farmed sows infected with porcine epidemic diarrhea virus. Anim. Sci. J. 89, 1144–1151. 10.1111/asj.13040
    1. Vasquez E. C., Pereira T., Peotta V. A., Baldo M. P., Campos-Toimil M. (2019). Probiotics as beneficial dietary supplements to prevent and treat cardiovascular diseases: uncovering their impact on oxidative stress. Oxid Med. Cell Longev. 2019:3086270. 10.1155/2019/3086270
    1. Villena J., Chiba E., Tomosada Y., Salva S., Marranzino G., Kitazawa H., et al. . (2012a). Orally administered Lactobacillus rhamnosus modulates the respiratory immune response triggered by the viral pathogen-associated molecular pattern poly(I:C). BMC Immunol. 13:53. 10.1186/1471-2172-13-53
    1. Villena J., Chiba E., Vizoso-Pinto M., Tomosada Y., Takahashi T., Ishizuka T., et al. . (2014). Immunobiotic Lactobacillus rhamnosus strains differentially modulate antiviral immune response in porcine intestinal epithelial and antigen presenting cells. BMC Microbiol. 14:126. 10.1186/1471-2180-14-126
    1. Villena J., Salva S., Núñez M., Corzo J., Tolaba R., Faedda J., et al. (2012b). Probiotics for everyone! The novel immunobiotic Lactobacillus rhamnosus CRL1505 and the beginning of social probiotic programs in argentina. Int. J. Biotechnol. Wellness Ind. 1, 189–198.
    1. Villena J., Suvorov A., Kitazawa H., Alvarez S. (2019). “Lactic acid bacteria and respiratory health: their beneficial effects on viral infections,” in Lactic Acid Bacteria, eds Vinderola G., Ouwehand A., Salminen S., von Wright A. (CRC Press; ), 4, 505–519. 10.1201/9780429057465-31
    1. Villena J., Vizoso Pinto M. G., Kitazawa H. (2016). Intestinal innate antiviral immunity and immunobiotics: beneficial effects against rotavirus infection. Front. Immunol. 7:563. 10.3389/fimmu.2016.00563
    1. Wan Y., Shang J., Sun S., Tai W., Chen J., Geng Q., et al. . (2020). Molecular mechanism for antibody-dependent enhancement of coronavirus entry. J. Virol. 94:e02015–19. 10.1128/JVI.02015-19
    1. Wang D., Hu B., Hu C., Zhu F., Liu X., Zhang J., et al. . (2020). Clinical characteristics of 138 hospitalized patients with 2019 novel coronavirus-infected pneumonia in Wuhan, China. JAMA 323, 1061–1069. 10.1001/jama.2020.1585
    1. Wang J., Hajizadeh N., Moore E. E., McIntyre R. C., Moore P. K., Veress L. A., et al. . (2020). Tissue plasminogen activator (tPA) treatment for COVID-19 associated acute respiratory distress syndrome (ARDS): a case series. J. Thromb. Haemost. 10.1111/jth.14828. [Epub ahead of print].
    1. Wang K., Chen W., Zhou Y. S., Lian J. Q., Zhang Z., Du P., et al. (2020). SARS-CoV-2 invades host cells via a novel route: CD147-spike protein. BioRxiv. 10.1101/2020.03.14.988345
    1. Wang Q., Zhang Y., Wu L., Niu S., Song C., Zhang Z., et al. . (2020). Structural and functional basis of SARS-CoV-2 entry by using human ACE2. Cell 181, 894–904.e9. 10.1016/j.cell.2020.03.045
    1. Wang T., Town T., Alexopoulou L., Anderson J. F., Fikrig E., Flavell R. A. (2004). Toll-like receptor 3 mediates West Nile virus entry into the brain causing lethal encephalitis. Nat. Med. 10, 1366–1373. 10.1038/nm1140
    1. Wang X., Xu W., Hu G., Xia S., Sun Z., Liu Z., et al. . (2020). SARS-CoV-2 infects T lymphocytes through its spike protein-mediated membrane fusion. Cell. Mol. Immunol. 2020:1–3. 10.1038/s41423-020-0424-9
    1. Wang Y., Li X., Ge T., Xiao Y., Liao Y., et al. . (2016). Probiotics for prevention and treatment of respiratory tract infections in children: a systematic review and meta-analysis of randomized controlled trials. Medicine 95:e4509. 10.1097/MD.0000000000004509
    1. Wen W., Su W., Tang H., Le W., Zhang X., Zheng Y., et al. . (2020). Immune cell profiling of COVID-19 patients in the recovery stage by single- cell sequencing. medRxiv. 10.1038/s41421-020-0168-9
    1. Wong C. K., Lam C. W. K., Wu A. K. L., Ip W. K., Lee N. L. S., Chan I. H. S., et al. . (2004). Plasma inflammatory cytokines and chemokines in severe acute respiratory syndrome. Clin. Exp. Immunol. 136, 95–103. 10.1111/j.1365-2249.2004.02415.x
    1. Wong S. H., Lui R. N., Sung J. J. (2020). Covid-19 and the digestive system. J. Gastroenterol. Hepatol. 35, 744–748. 10.1111/jgh.15047
    1. Wu X., Cai Y., Huang X., Yu X., Zhao L., Wang F., et al. . (2020). Co-infection with SARS-CoV-2 and influenza A virus in patient with pneumonia, China. Emerg. Infect. Dis. 26, 1324–1326. 10.3201/eid2606.200299
    1. Xiong Y., Liu Y., Cao L., Wang D., Guo M., Jiang A., et al. . (2020). Transcriptomic characteristics of bronchoalveolar lavage fluid and peripheral blood mononuclear cells in COVID-1 patients. Emerg. Microbes Infect. 9, 761–770. 10.1080/22221751.2020.1747363
    1. Xu Z., Shi L., Wang Y., Zhang J., Huang L., Zhang C., et al. . (2020). Pathological findings of COVID-19 associated with acute respiratory distress syndrome. Lancet Respir. Med. 8, 420–422. 10.1016/S2213-2600(20)30076-X
    1. Yang Y., Tang H. (2016). Aberrant coagulation causes a hyper-inflammatory response in severe influenza pneumonia. Cell. Mol. Immunol. 13, 432–442. 10.1038/cmi.2016.1
    1. Yeo C., Kaushal S., Yeo D. (2020). Enteric involvement of coronaviruses: is faecal–oral transmission of SARS-CoV-2 possible? Lancet Gastroenterol. Hepatol. 5, 335–337. 10.1016/S2468-1253(20)30048-0
    1. Yin S., Huang M., Li D., Tang N. (2020). Difference of coagulation features between severe pneumonia induced by SARS-CoV2 and non-SARS-CoV2. J. Thromb. Thrombolysis 8, 1–4. 10.1007/s11239-020-02105-8
    1. Yoo J. K., Baker D. P., Fish E. N. (2010). Interferon-β modulates type 1 immunity during influenza virus infection. Antiviral Res. 88, 64–71. 10.1016/j.antiviral.2010.07.006
    1. Yuen K. S., Ye Z. W., Fung S. Y., Chan C. P., Jin D. Y. (2020). SARS-CoV-2 and COVID-19: the most important research questions. Cell Biosci. 10:40. 10.1186/s13578-020-00404-4
    1. Zelaya H., Alvarez S., Kitazawa H., Villena J. (2016). Respiratory antiviral immunity and immunobiotics: beneficial effects on inflammation-coagulation interaction during influenza virus infection. Front. Immunol. 7:633. 10.3389/fimmu.2016.00633
    1. Zelaya H., Tsukida K., Chiba E., Marranzino G., Alvarez S., Kitazawa H., et al. . (2014). Immunobiotic lactobacilli reduce viral-associated pulmonary damage through the modulation of inflammation-coagulation interactions. Int. Immunopharmacol. 19, 161–173. 10.1016/j.intimp.2013.12.020
    1. Zhang B., Zhou X., Qiu Y., Feng F., Feng J., Jia Y., et al. (2020a). Clinical characteristics of 82 death cases with COVID-19. medRxiv. 10.1101/2020.02.26.20028191
    1. Zhang B., Zhou X., Zhu C., Feng F., Qiu Y., Feng J., et al. (2020b). Immune phenotyping based on neutrophil-to-lymphocyte ratio and IgG predicts disease severity and outcome for patients with COVID-19. medRxiv. 10.1101/2020.03.12.20035048
    1. Zhang D., Guo R., Lei L., Liu H., Wang Y., Wang Y., et al. (2020a). COVID-19 infection induces readily detectable morphological and inflammation- related phenotypic changes in peripheral blood monocytes, the severity of which correlate with patient outcome. medRxiv. 10.1101/2020.03.24.20042655
    1. Zhang D., Li S., Wang N., Tan H. Y., Zhang Z., Feng Y. (2020b). The cross-talk between gut microbiota and lungs in common lung diseases. Front. Microbiol. 11:301. 10.3389/fmicb.2020.00301
    1. Zhang Y., Cao W., Xiao M., Li Y. J., Yang Y., Zhao J., et al. (2020a). [Clinical and coagulation characteristics of 7 patients with critical COVID-2019 pneumonia and acro-ischemia]. Zhonghua Xue Ye Xue Za Zhi 41:E006 10.3760/cma.j.issn.0253-2727.2020.0006
    1. Zhang Y., Xu J., Jia R., Yi C., Gu W., Liu P., et al. . (2020b). Protective humoral immunity in SARS-CoV-2 infected pediatric patients. Cell. Mol. Immunol. 10.1038/s41423-020-0438-3. [Epub ahead of print].
    1. Zhao J., Yuan Q., Wang H., Liu W., Liao X., Su Y., et al. (2020). Antibody responses to SARS-CoV-2 in patients of novel coronavirus disease 2019. Clin. Infect. Dis. ciaa344 10.1101/2020.03.02.20030189
    1. Zheng M., Gao Y., Wang G., Song G., Liu S., Sun D., et al. . (2020). Functional exhaustion of antiviral lymphocytes in COVID-19 patients. Cell. Mol. Immunol. 17, 533–535. 10.1038/s41423-020-0402-2
    1. Zhou Z., Ren L., Zhang L., Zhong J., Xiao Y., Jia Z., et al. (2020). Overly exuberant innate immune response SARS- CoV-2 infect. Cell Host Microbe. 10.2139/ssrn.3551623
    1. Zhu N., Zhang D., Wang W., Li X., Yang B., Song J., et al. . (2020). A novel coronavirus from patients with pneumonia in China, 2019. N. Engl. J. Med. 382, 727–733. 10.1056/NEJMoa2001017

Source: PubMed

3
Předplatit