Early indications of future cognitive decline: stable versus declining controls

Angela Rizk-Jackson, Philip Insel, Ronald Petersen, Paul Aisen, Clifford Jack, Michael Weiner, Angela Rizk-Jackson, Philip Insel, Ronald Petersen, Paul Aisen, Clifford Jack, Michael Weiner

Abstract

This study aimed to identify baseline features of normal subjects that are associated with subsequent cognitive decline. Publicly available data from the Alzheimer's Disease Neuroimaging Initiative was used to find differences in baseline clinical assessments (ADAScog, AVLT, FAQ) between cognitively healthy individuals who will suffer cognitive decline within 48 months and those who will remain stable for that period. Linear regression models indicated an individual's conversion status was significantly associated with certain baseline neuroimaging measures, including posterior cingulate glucose metabolism. Linear Discriminant Analysis models built with baseline features derived from MRI and FDG-PET measures were capable of successfully predicting whether an individual will convert to MCI within 48 months or remain cognitively stable. The findings from this study support the idea that there exist informative differences between normal people who will later develop cognitive impairments and those who will remain cognitively stable for up to four years. Further, the feasibility of developing predictive models that can detect early states of cognitive decline in seemingly normal individuals was demonstrated.

Conflict of interest statement

Competing Interests: The authors have the following interests. Dr. Weiner has served on scientific advisory boards for Eli Lilly, Araclon, Biogen Idec and Pfizer; has served as a consultant to Astra Zeneca, Araclon, Medivation/Pfizer, Ipsen, TauRx Therapeutics Ltd, Bayer Healthcare, Biogen Idec, Exonhit Therapeutics, Servier, Synarc, Janssen, and KLJ Associates; has received funding for travel from NeuroVigil Inc, Siemens, AstraZeneca, Eli Lilly, Ipsen, Novartis, and Travel eDreams, Inc; has received honoraria from NeuroVigil, Inc, has received research support from Merck and Avid; and has stock options for Synarc and Elan. This does not alter their adherence to all the PLOS ONE policies on sharing data and materials.

Figures

Figure 1. Distribution of scores on clinical…
Figure 1. Distribution of scores on clinical assessments for converters and non-converters at baseline visit.
A) Boxplot and mean with 95% CIs showing scores on the ADAS-cognitive test. B) Boxplot and mean with 95% CIs showing scores on the AVLT test. C) Bar graph showing scores on the FAQ assessment.
Figure 2. ROC curve displaying performance of…
Figure 2. ROC curve displaying performance of predictive models built using subsets of data including clinical measures, MRI-derived features, PET-derived features, and MRI-PET combined feature sets.

References

    1. Jorm AF, Jolley D (1998) The incidence of dementia: a meta-analysis. Neurology 51: 728–733.
    1. Price JL, Morris JC (1999) Tangles and plaques in nondemented aging and “preclinical” Alzheimer's disease. Ann Neurol 45: 358–368.
    1. Schott JM, Bartlett JW, Fox NC, Barnes J, Investigators ADNI (2010) Increased brain atrophy rates in cognitively normal older adults with low cerebrospinal fluid Aβ1-42. Ann Neurol 68: 825–834 doi:
    1. Pike KE, Savage G, Villemagne VL, Ng S, Moss SA, et al. (2007) Beta-amyloid imaging and memory in non-demented individuals: evidence for preclinical Alzheimer's disease. Brain 130: 2837–2844 doi:
    1. Perrin RJ, Fagan AM, Holtzman DM (2009) Multimodal techniques for diagnosis and prognosis of Alzheimer's disease. Nature 461: 916–922 doi:
    1. Petersen RC, Smith GE, Waring SC, Ivnik RJ, Tangalos EG, et al. (1999) Mild cognitive impairment: clinical characterization and outcome. Arch Neurol 56: 303–308.
    1. Petersen RC (2004) Mild cognitive impairment as a diagnostic entity. J Intern Med 256: 183–194 doi:
    1. Dubois B, Feldman HH, Jacova C, Dekosky ST, Barberger-Gateau P, et al. (2007) Research criteria for the diagnosis of Alzheimer's disease: revising the NINCDS-ADRDA criteria. Lancet Neurol 6: 734–746 doi:
    1. Duara R, Loewenstein DA, Greig MT, Potter E, Barker W, et al. (2011) Pre-MCI and MCI: neuropsychological, clinical, and imaging features and progression rates. Am J Geriatr Psychiatry 19: 951–960 doi:
    1. Perneczky R, Pohl C, Sorg C, Hartmann J, Komossa K, et al. (2006) Complex activities of daily living in mild cognitive impairment: conceptual and diagnostic issues. Age Ageing 35: 240–245 doi:
    1. Chen K, Ayutyanont N, Langbaum JBS, Fleisher AS, Reschke C, et al. (2011) Characterizing Alzheimer's disease using a hypometabolic convergence index. Neuroimage 56: 52–60 doi:
    1. Clerici F, Del Sole A, Chiti A, Maggiore L, Lecchi M, et al. (2009) Differences in hippocampal metabolism between amnestic and non-amnestic MCI subjects: automated FDG-PET image analysis. Q J Nucl Med Mol Imaging 53: 646–657.
    1. Fan Y, Resnick SM, Wu X, Davatzikos C (2008) Structural and functional biomarkers of prodromal Alzheimer's disease: a high-dimensional pattern classification study. Neuroimage 41: 277–285 doi:
    1. Fennema-Notestine C, McEvoy LK, Hagler DJ, Jacobson MW, Dale AM, et al. (2009) Structural neuroimaging in the detection and prognosis of pre-clinical and early AD. Behav Neurol 21: 3–12 doi:
    1. Gerardin E, Chételat G, Chupin M, Cuingnet R, Desgranges B, et al. (2009) Multidimensional classification of hippocampal shape features discriminates Alzheimer's disease and mild cognitive impairment from normal aging. Neuroimage 47: 1476–1486 doi:
    1. Kohannim O, Hua X, Hibar DP, Lee S, Chou Y-Y, et al. (2010) Boosting power for clinical trials using classifiers based on multiple biomarkers. Neurobiol Aging 31: 1429–1442 doi:
    1. Morbelli S, Piccardo A, Villavecchia G, Dessi B, Brugnolo A, et al. (2010) Mapping brain morphological and functional conversion patterns in amnestic MCI: a voxel-based MRI and FDG-PET study. Eur J Nucl Med Mol Imaging 37: 36–45 doi:
    1. Vemuri P, Wiste HJ, Weigand SD, Shaw LM, Trojanowski JQ, et al. (2009) MRI and CSF biomarkers in normal, MCI, and AD subjects: predicting future clinical change. Neurology 73: 294–301 doi:
    1. Zhang D, Wang Y, Zhou L, Yuan H, Shen D, et al... (2011) Multimodal classification of Alzheimer's disease and mild cognitive impairment. Neuroimage. doi:.
    1. Llano DA, Laforet G, Devanarayan V, Initiative ADN (2011) Derivation of a new ADAS-cog composite using tree-based multivariate analysis: prediction of conversion from mild cognitive impairment to Alzheimer disease. Alzheimer Dis Assoc Disord 25: 73–84 doi:
    1. Costafreda SG, Dinov ID, Tu Z, Shi Y, Liu C-Y, et al. (2011) Automated hippocampal shape analysis predicts the onset of dementia in mild cognitive impairment. Neuroimage 56: 212–219 doi:
    1. Davatzikos C, Bhatt P, Shaw LM, Batmanghelich KN, Trojanowski JQ (2010) Prediction of MCI to AD conversion, via MRI, CSF biomarkers, and pattern classification. Neurobiol Aging. doi:.
    1. Desikan RS, Cabral HJ, Settecase F, Hess CP, Dillon WP, et al. (2010) Automated MRI measures predict progression to Alzheimer's disease. Neurobiol Aging 31: 1364–1374 doi:
    1. Hinrichs C, Singh V, Xu G, Johnson SC, Initiative TADN (2011) Predictive markers for AD in a multi-modality framework: An analysis of MCI progression in the ADNI population. Neuroimage 55: 574–589 doi:
    1. Jack CR, Shiung MM, Gunter JL, O'Brien PC, Weigand SD, et al. (2004) Comparison of different MRI brain atrophy rate measures with clinical disease progression in AD. Neurology 62: 591–600.
    1. Bennys K, Rondouin G, Benattar E, Gabelle A, Touchon J (2011) Can Event-Related Potential Predict the Progression of Mild Cognitive Impairment? J Clin Neurophysiol. doi:.
    1. Vannini P, Hedden T, Becker JA, Sullivan C, Putcha D, et al... (2011) Age and amyloid-related alterations in default network habituation to stimulus repetition. Neurobiol Aging. doi:.
    1. Sperling RA, Dickerson BC, Pihlajamaki M, Vannini P, LaViolette PS, et al. (2010) Functional alterations in memory networks in early Alzheimer's disease. Neuromolecular Med 12: 27–43 doi:
    1. Desikan RS, Sabuncu MR, Schmansky NJ, Reuter M, Cabral HJ, et al. (2010) Selective disruption of the cerebral neocortex in Alzheimer's disease. PLoS ONE 5: e12853 doi:
    1. Mosconi L, De Santi S, Li J, Tsui WH, Li Y, et al. (2008) Hippocampal hypometabolism predicts cognitive decline from normal aging. Neurobiol Aging 29: 676–692 doi:
    1. de Leon MJ, Convit A, Wolf OT, Tarshish CY, DeSanti S, et al. (2001) Prediction of cognitive decline in normal elderly subjects with 2-[(18)F]fluoro-2-deoxy-D-glucose/poitron-emission tomography (FDG/PET). Proc Natl Acad Sci USA 98: 10966–10971 doi:
    1. Jack CR, Petersen RC, Xu Y, O'Brien PC, Smith GE, et al. (2000) Rates of hippocampal atrophy correlate with change in clinical status in aging and AD. Neurology 55: 484–489.
    1. Rusinek H, De Santi S, Frid D, Tsui WH, Tarshish CY, et al. (2003) Regional brain atrophy rate predicts future cognitive decline: 6-year longitudinal MR imaging study of normal aging. Radiology 229: 691–696 doi:
    1. Carlson NE, Moore MM, Dame A, Howieson D, Silbert LC, et al. (2008) Trajectories of brain loss in aging and the development of cognitive impairment. Neurology 70(11): 828–33.
    1. de Toledo-Morrell L, Goncharova I, Dickerson B, Wilson RS, Bennett DA (2000) From healthy aging to early Alzheimer's disease: in vivo detection of entorhinal cortex atrophy. Ann N Y Acad Sci 911: 240–253.
    1. Villemagne VL, Pike KE, Chételat G, Ellis KA, Mulligan RS, et al. (2011) Longitudinal assessment of Aβ and cognition in aging and Alzheimer disease. Ann Neurol 69: 181–192 doi:
    1. Fagan AM, Roe CM, Xiong C, Mintun MA, Morris JC, et al. (2007) Cerebrospinal fluid tau/beta-amyloid(42) ratio as a prediction of cognitive decline in nondemented older adults. Arch Neurol 64: 343–349 doi:
    1. Jack CR, Bernstein MA, Fox NC, Thompson P, Alexander G, et al. (2008) The Alzheimer's Disease Neuroimaging Initiative (ADNI): MRI methods. J Magn Reson Imaging 27: 685–691 doi:
    1. Fischl B, Salat DH, Busa E, Albert M, Dieterich M, et al. (2002) Whole brain segmentation: automated labeling of neuroanatomical structures in the human brain. Neuron 33: 341–355.
    1. Fischl B, van der Kouwe A, Destrieux C, Halgren E, Ségonne F, et al. (2004) Automatically parcellating the human cerebral cortex. Cereb Cortex 14: 11–22.
    1. Jagust WJ, Bandy D, Chen K, Foster NL, Landau SM, et al. (2010) The Alzheimer's Disease Neuroimaging Initiative positron emission tomography core. Alzheimers Dement 6: 221–229 doi:
    1. Jack CR, Twomey CK, Zinsmeister AR, Sharbrough FW, Petersen RC, et al. (1989) Anterior temporal lobes and hippocampal formations: normative volumetric measurements from MR images in young adults. Radiology 172: 549–554.
    1. Hastie T, Tibshirani R, Friedman JH. (2009) The Elements of Statistical Learning. Springer Science+Business Media, New York, NY.
    1. Hanley JA, McNeil BJ (1982) The meaning and use of the area under a receiver operating characteristic (ROC) curve. Radiology 143: 29–36.
    1. Pagani M, Dessi B, Morbelli S, Brugnolo A, Salmaso D, et al. (2010) MCI patients declining and not-declining at mid-term follow-up: FDG-PET findings. Curr Alzheimer Res 7: 287–294.
    1. Murayama N, Iseki E, Fujishiro H, Yamamoto R, Ota K, et al. (2010) Detection of early amnestic mild cognitive impairment without significantly objective memory impairment: a case-controlled study. Psychogeriatrics 10: 62–68 doi:
    1. Mosconi L, Mistur R, Switalski R, Tsui WH, Glodzik L, et al. (2009) FDG-PET changes in brain glucose metabolism from normal cognition to pathologically verified Alzheimer's disease. Eur J Nucl Med Mol Imaging 36: 811–822 doi:
    1. Caselli RJ, Chen K, Lee W, Alexander GE, Reiman EM (2008) Correlating cerebral hypometabolism with future memory decline in subsequent converters to amnestic pre-mild cognitive impairment. Arch Neurol 65: 1231–1236 doi:
    1. Whitwell JL, Przybelski SA, Weigand SD, Knopman DS, Boeve BF, et al. (2007) 3D maps from multiple MRI illustrate changing atrophy patterns as subjects progress from mild cognitive impairment to Alzheimer's disease. Brain 130: 1777–1786 doi:
    1. Risacher SL, Saykin AJ, West JD, Shen L, Firpi HA, et al. (2009) Baseline MRI predictors of conversion from MCI to probable AD in the ADNI cohort. Curr Alzheimer Res 6: 347–361.
    1. Apostolova LG, Dinov ID, Dutton RA, Hayashi KM, Toga AW, et al. (2006) 3D comparison of hippocampal atrophy in amnestic mild cognitive impairment and Alzheimer's disease. Brain 129: 2867–2873 doi:
    1. Apostolova LG, Dutton RA, Dinov ID, Hayashi KM, Toga AW, et al. (2006) Conversion of mild cognitive impairment to Alzheimer disease predicted by hippocampal atrophy maps. Arch Neurol 63: 693–699 doi:
    1. Fennema-Notestine C, Hagler DJ, McEvoy LK, Fleisher AS, Wu EH, et al. (2009) Structural MRI biomarkers for preclinical and mild Alzheimer's disease. Hum Brain Mapp 30: 3238–3253 doi:
    1. Heijer den T, Geerlings MI, Hoebeek FE, Hofman A, Koudstaal PJ, et al. (2006) Use of hippocampal and amygdalar volumes on magnetic resonance imaging to predict dementia in cognitively intact elderly people. Arch Gen Psychiatry 63: 57–62 doi:
    1. Querbes O, Aubry F, Pariente J, Lotterie J-A, Démonet J-F, et al. (2009) Early diagnosis of Alzheimer's disease using cortical thickness: impact of cognitive reserve. Brain 132: 2036–2047 doi:
    1. Filipovych R, Davatzikos C, Initiative ADN (2011) Semi-supervised pattern classification of medical images: application to mild cognitive impairment (MCI). Neuroimage 55: 1109–1119 doi:
    1. Jack CR, Knopman DS, Jagust WJ, Shaw LM, Aisen PS, et al. (2010) Hypothetical model of dynamic biomarkers of the Alzheimer's pathological cascade. Lancet Neurol 9: 119–128 doi:
    1. Petersen RC (2011) Clinical practice. Mild cognitive impairment. N Engl J Med 364: 2227–2234 doi:

Source: PubMed

3
Předplatit