Safety and efficacy of platelet-rich plasma in treatment of carpal tunnel syndrome; a randomized controlled trial

Seyed Ahmad Raeissadat, Afshin Karimzadeh, Masoud Hashemi, Leila Bagherzadeh, Seyed Ahmad Raeissadat, Afshin Karimzadeh, Masoud Hashemi, Leila Bagherzadeh

Abstract

Background: Carpal tunnel syndrome is the most common peripheral entrapment neuropathy, for which conservative treatments are the first measures taken. However, these measures are not usually sufficient. Recently major attention has been drawn to platelet-rich plasma for its possible effects on axon regeneration and neurological recovery. Although few studies have evaluated the effects of this treatment in carpal tunnel syndrome, further investigation is required to reach concrete conclusion.

Methods: In this randomized controlled trial, women referring to the physical medicine and rehabilitation clinic at Shahid Modarres Hospital during 2016 with a diagnosis of mild and moderate idiopathic carpal tunnel syndrome were chosen. They were randomly assigned to two groups: (i) a control group using only a wrist splint, and (ii) a platelet-rich plasma group that received wrist splints along with a single local injection of platelet-rich plasma. The outcome measures were assessed via Visual Analogue Scale, the Boston Carpal Tunnel Syndrome Questionnaire and electrophysiological findings including the peak latency of sensory nerve action potential and the onset latency of the compound muscle action potential.

Results: A total of 41 women were included (20 wrists as control group) and (21 wrists as platelet-rich plasma group). Before treatment there were no significant differences between the two groups except for the median peak latency of sensory nerve action potential which was significantly higher among the patients in the platelet-rich plasma group (p = 0.03). All the measured variables significantly decreased in both groups after 10 weeks of treatment except for the median onset latency of the compound muscle action potential (p = 0.472). Finally, the changes in neither of the evaluated outcome measures were found to significantly differ between the two groups, even when the analyses were adjusted for age of the patients.

Conclusion: The findings of this study showed that in a relatively short period of time after treatment, a single injection of platelet-rich plasma in the wrist does not significantly add to the effects of conservative treatment with wrist splints, in regards to the women pain and symptom severity, functional status and electrophysiological parameters.

Trial registration: The trial has been retrospectively registered with an ID: IRCT2017041513442N13 (Date of registration: 2017-06-19).

Keywords: Carpal tunnel syndrome; Clinical trial; Platelet-rich plasma; Wrist splint.

Conflict of interest statement

Ethics approval and consent to participate

The study protocol was evaluated and approved by the institutional review board of Shahid Beheshti University of Medical Sciences. An informed written consent was obtained from the subjects enrolled.

Consent for publication

Not applicable.

Competing interests

The authors declare that they have no competing interests.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Figures

Fig. 1
Fig. 1
CONSORT flow chart

References

    1. Ghasemi-rad M, Nosair E, Vegh A, Mohammadi A, Akkad A, Lesha E, Mohammadi MH, Sayed D, Davarian A, Maleki-Miyandoab T. A handy review of carpal tunnel syndrome: from anatomy to diagnosis and treatment. World J Radiol. 2014;6(6):284. doi: 10.4329/wjr.v6.i6.284.
    1. O'Connor D, Marshall SC, Massy-Westropp N, Pitt V. Non-surgical treatment (other than steroid injection) for carpal tunnel syndrome. Cochrane Database Syst Rev. 2003;(1):CD003219.
    1. Rayegani SM, Bahrami MH, Eliaspour D, Raeissadat SA, Samakoosh ST, Sedihgipour L, Kargozar E. The effects of low intensity laser on clinical and electrophysiological parameters of carpal tunnel syndrome. J Laser Med Sci. 2013;4(4):182.
    1. Dinarvand V, Abdollahi I, Raeissadat SA, Mohseni Bandpei MA, Babaee M, Talimkhani A. The effect of scaphoid and hamate mobilization on treatment of patients with carpal tunnel syndrome. Anesthesiol Pain Med. 2017;7(5):e14621. doi: 10.5812/aapm.14621.
    1. Katz JN, Keller RB, Simmons BP, Rogers WD, Bessette L, Fossel AH, Mooney NA. Maine carpal tunnel study: outcomes of operative and nonoperative therapy for carpal tunnel syndrome in a community-based cohort. J Hand Surg Am. 1998;23(4):697–710. doi: 10.1016/S0363-5023(98)80058-0.
    1. Gerritsen AA, Korthals-de Bos I, Laboyrie P, de Vet H, Scholten R, Bouter LM. Splinting for carpal tunnel syndrome: prognostic indicators of success. J Neurol Neurosurg Psychiatry. 2003;74(9):1342–1344. doi: 10.1136/jnnp.74.9.1342.
    1. Huisstede BM, Hoogvliet P, Randsdorp MS, Glerum S, van Middelkoop M, Koes BW. Carpal tunnel syndrome. Part I: effectiveness of nonsurgical treatments–a systematic review. Arch Phys Med Rehabil. 2010;91(7):981–1004. doi: 10.1016/j.apmr.2010.03.022.
    1. Ahčan U, Arnez ZM, Bajrović F, Zorman P. Surgical technique to reduce scar discomfort after carpal tunnel surgery. J Hand Surg Am. 2002;27(5):821–827. doi: 10.1053/jhsu.2002.35083.
    1. Raeissadat A, Reza Soltani Z. Study of long term effects of laser therapy versus local corticosteroid injection in patients with carpal tunnel syndrome. J Lasers Med Sci. 2011;1(1):7.
    1. Bahrami MH, Shahraeeni S, Raeissadat SA. Comparison between the effects of progesterone versus corticosteroid local injections in mild and moderate carpal tunnel syndrome: a randomized clinical trial. BMC Musculoskelet Disord. 2015;16:322. doi: 10.1186/s12891-015-0752-6.
    1. Raeissadat SA, Rayegani SM, Rezaei S, Sedighipour L, Bahrami MH, Eliaspour D, Karimzadeh A. The effect of polarized polychromatic noncoherent light (bioptron) therapy on patients with carpal tunnel syndrome. J Lasers Med Sci. 2014;5(1):39–46.
    1. Sundman EA, Cole BJ, Fortier LA. Growth factor and catabolic cytokine concentrations are influenced by the cellular composition of platelet-rich plasma. Am J Sports Med. 2011;39(10):2135–2140. doi: 10.1177/0363546511417792.
    1. Sampson S, Gerhardt M, Mandelbaum B. Platelet rich plasma injection grafts for musculoskeletal injuries: a review. Curr Rev Muscoskelet Med. 2008;1(3–4):165–174. doi: 10.1007/s12178-008-9032-5.
    1. Raeissadat SA, Babaee M, Rayegani SM, Hashemi Z, Hamidieh AA, Mojgani P, Fouladi Vanda H. An overview of platelet products (PRP, PRGF, PRF, etc.) in the Iranian studies. Future Sci OA. 2017;3(4):Fso231. doi: 10.4155/fsoa-2017-0045.
    1. Farrag TY, Lehar M, Verhaegen P, Carson KA, Byrne PJ. Effect of platelet rich plasma and fibrin sealant on facial nerve regeneration in a rat model. Laryngoscope. 2007;117(1):157–165. doi: 10.1097/01.mlg.0000249726.98801.77.
    1. Sariguney Y, Yavuzer R, Elmas C, Yenicesu I, Bolay H, Atabay K. Effect of platelet-rich plasma on peripheral nerve regeneration. J Reconstr Microsurg. 2008;24(03):159–167. doi: 10.1055/s-2008-1076752.
    1. Ding X-G, Li S-W, Zheng X-M, Hu L-Q, Hu W-L, Luo Y. The effect of platelet-rich plasma on cavernous nerve regeneration in a rat model. Asian J Androl. 2009;11(2):215. doi: 10.1038/aja.2008.37.
    1. Cho HH, Jang S, Lee SC, Jeong HS, Park JS, Han JY, Lee KH, Cho YB. Effect of neural-induced mesenchymal stem cells and platelet-rich plasma on facial nerve regeneration in an acute nerve injury model. Laryngoscope. 2010;120(5):907–913.
    1. Giannessi E, Coli A, Stornelli MR, Miragliotta V, Pirone A, Lenzi C, Burchielli S, Vozzi G, De Maria C, Giorgetti M. An autologously generated platelet-rich plasma suturable membrane may enhance peripheral nerve regeneration after neurorraphy in an acute injury model of sciatic nerve neurotmesis. J Reconstr Microsurg. 2014;30(09):617–626. doi: 10.1055/s-0034-1372483.
    1. Park GY, Kwon DR. Platelet-rich plasma limits the nerve injury caused by 10% dextrose in the rabbit median nerve. Muscle Nerve. 2014;49(1):56–60. doi: 10.1002/mus.23863.
    1. Sánchez M, Anitua E, Delgado D, Prado R, Sánchez P, Fiz N, Guadilla J, Azofra J, Pompei O, Orive G. Ultrasound-guided plasma rich in growth factors injections and scaffolds hasten motor nerve functional recovery in an ovine model of nerve crush injury. J Tissue Eng Regen Med. 2017;11(5):1619–29.
    1. Zheng C, Zhu Q, Liu X, Huang X, He C, Jiang L, Quan D, Zhou X, Zhu Z. Effect of platelet-rich plasma (PRP) concentration on proliferation, neurotrophic function and migration of Schwann cells in vitro. J Tissue Eng Regen Med. 2016;10(5):428–436. doi: 10.1002/term.1756.
    1. Anjayani S, Wirohadidjojo YW, Adam AM, Suwandi D, Seweng A, Amiruddin M. Sensory improvement of leprosy peripheral neuropathy in patients treated with perineural injection of platelet-rich plasma. Int J Dermatol. 2014;53(1):109–113. doi: 10.1111/ijd.12162.
    1. Sanchez M, Yoshioka T, Ortega M, Delgado D, Anitua E. Ultrasound-guided platelet-rich plasma injections for the treatment of common peroneal nerve palsy associated with multiple ligament injuries of the knee. Knee Surg Sports Traumatol Arthrosc. 2014;22(5):1084–1089. doi: 10.1007/s00167-013-2479-y.
    1. Scala M, Mereu P, Spagnolo F, Massa M, Barla A, Mosci S, Forno G, Ingenito A, Strada P. The use of platelet-rich plasma gel in patients with mixed tumour undergoing superficial parotidectomy: a randomized study. In Vivo. 2014;28(1):121–124.
    1. Malahias MA, Johnson EO, Babis GC, Nikolaou VS. Single injection of platelet-rich plasma as a novel treatment of carpal tunnel syndrome. Neural Regen Res. 2015;10(11):1856. doi: 10.4103/1673-5374.165322.
    1. Uzun H, Bitik O, Uzun Ö, Ersoy US, Aktaş E. Platelet-rich plasma versus corticosteroid injections for carpal tunnel syndrome. J Plast Surg Hand Surg. 2017;51(5):301–5.
    1. Wu Y-T, Ho T-Y, Chou Y-C, Ke M-J, Li T-Y, Huang G-S, Chen L-C. Six-month efficacy of platelet-rich plasma for carpal tunnel syndrome: a prospective randomized, single-blind controlled trial. Sci Rep. 2017;7:1. doi: 10.1038/s41598-016-0028-x.
    1. Moher D, Hopewell S, Schulz KF, Montori V, Gøtzsche PC, Devereaux P, Elbourne D, Egger M, Altman DG. Consort 2010 explanation and elaboration: updated guidelines for reporting parallel group randomised trials. Int J Surg. 2012;10(1):28–55. doi: 10.1016/j.ijsu.2011.10.001.
    1. Dumitru D, Amato A, Zwarts M. Electrodiagnostic Medicine. 2. Philadelphia: Hanley and Belfus; 2002. Focal peripheral neuropathies; pp. 1058–1070.
    1. Doig GS, Simpson F. Randomization and allocation concealment: a practical guide for researchers. J Crit Care. 2005;20(2):187–191. doi: 10.1016/j.jcrc.2005.04.005.
    1. Haynesworth S, Kadiyala S, Liang L-N, Bruder S. Transactions of the Annual Meeting-Orthopaedic Research Society. 2002. Mitogenic stimulation of human mesenchymal stem cells by platelet releasate suggests a mechanism for enhancement of bone repair by platelet concentrate; p. 462.
    1. Zhu Y, Yuan M, Meng H, Wang A, Guo Q, Wang Y, Peng J. Basic science and clinical application of platelet-rich plasma for cartilage defects and osteoarthritis: a review. Osteoarthr Cartil. 2013;21(11):1627–1637. doi: 10.1016/j.joca.2013.07.017.
    1. Rezazadeh A, Bakhtiary AH, Samaei A, Moghimi J. Validity and reliability of the Persian Boston questionnaire in Iranian patients with carpal tunnel syndrome. Koomesh. 2014;15(2):138–45.
    1. Corp I. IBM SPSS statistics for windows, version 22.0. NY: IBM Corp Armonk; 2011.

Source: PubMed

3
Předplatit