Asthma-associated risk for COVID-19 development

Chrysanthi Skevaki, Antonina Karsonova, Alexander Karaulov, Min Xie, Harald Renz, Chrysanthi Skevaki, Antonina Karsonova, Alexander Karaulov, Min Xie, Harald Renz

Abstract

The newly described severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is responsible for a pandemic (coronavirus disease 2019 [COVID-19]). It is now well established that certain comorbidities define high-risk patients. They include hypertension, diabetes, and coronary artery disease. In contrast, the context with bronchial asthma is controversial and shows marked regional differences. Because asthma is the most prevalent chronic inflammatory lung disease worldwide and SARS-CoV-2 primarily affects the upper and lower airways leading to marked inflammation, the question arises about the possible clinical and pathophysiological association between asthma and SARS-CoV-2/COVID-19. Here, we analyze the global epidemiology of asthma among patients with COVID-19 and propose the concept that patients suffering from different asthma endotypes (type 2 asthma vs non-type 2 asthma) present with a different risk profile in terms of SARS-CoV-2 infection, development of COVID-19, and progression to severe COVID-19 outcomes. This concept may have important implications for future COVID-19 diagnostics and immune-based therapy developments.

Keywords: COVID-19; SARS-CoV-2; asthma; endotypes; non–type 2 asthma; type 2 asthma.

Copyright © 2020 American Academy of Allergy, Asthma & Immunology. Published by Elsevier Inc. All rights reserved.

Figures

Fig 1
Fig 1
Asthma prevalence. A, Countries with high prevalence of asthma among COVID-19 comorbidities in comparison with asthma prevalence in the general population (high asthma-COVID-19 zone) are marked in red color. Countries with low/equal prevalence of asthma among COVID-19 comorbidities in comparison with asthma prevalence in the general population (low asthma-COVID-19 zone) are marked in green. B, Asthma prevalence (%) among patients with COVID-19 in comparison with the general population in various countries.,,, , , , , , ,
Fig 2
Fig 2
The impact of asthma endotypes on infection of airway epithelium with SARS-CoV-2, development and progression of COVID-19. The 2 major asthma endotypes, type 2 asthma and non–type 2 asthma, are defined by unique inflammatory patterns on the level of adaptive immunity and effector cell responses. Type 2 asthma is characterized by the presence of TH2 cells secreting IL-4, IL-5, and IL-13. These cytokines have a strong impact on the regulation of helper-cell subsets, airway epithelial function, and regulation of effector cell responses, including eosinophils and mast cells. In contrast, non–type 2 asthma is defined by the presence of TH1 cells and/or TH17 cells among other effector T-cell responses. The subset of these patients shows vascular and metabolic comorbidities, which are underlined by the presence of subclinical chronic inflammatory responses (eg, activation of IL-1 signaling pathways). EDN, Eosinophil-derived neurotoxin; pDC, plasmacytoid dendritic cell; T2D, type 2 diabetes.

References

    1. Wu Z, McGoogan JM. Characteristics of and important lessons from the coronavirus disease 2019 (COVID-19) outbreak in China: summary of a report of 72 314 cases from the Chinese Center for Disease Control and Prevention [published online ahead of print 2020]. JAMA. .
    1. Li X., Xu S., Yu M., Wang K., Tao Y., Zhou Y. Risk factors for severity and mortality in adult COVID-19 inpatients in Wuhan. J Allergy Clin Immunol. 2020;146:110–118.
    1. Zhang J.-J., Dong X., Cao Y.-Y., Yuan Y.-D., Yang Y.-B., Yan Y.-Q. Clinical characteristics of 140 patients infected with SARS-CoV-2 in Wuhan, China. Allergy. 2020;75:1730–1741.
    1. Zhang J.-J., Cao Y.-Y., Dong X., Wang B.-C., Liao M.-Y., Lin J. Distinct characteristics of COVID-19 patients with initial rRT-PCR-positive and rRT-PCR-negative results for SARS-CoV-2. Allergy. 2020;75:1809–1812.
    1. Zhou F., Yu T., Du R., Fan G., Liu Y., Liu Z. Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: a retrospective cohort study. Lancet. 2020;395:1054–1062.
    1. Avdeev S, Moiseev S, Brovko M, Yavorovskiy A, Umbetova K, Akulkina L, et al. Low prevalence of bronchial asthma and chronic obstructive lung disease among intensive care unit patients with COVID-19 [published online ahead of print 2020]. Allergy. .
    1. Shabrawishi M, Al-Gethamy MM, Naser AY, Ghazawi MA, Alsharif GF, Obaid EF, et al. Clinical, radiological and therapeutic characteristics of patients with COVID-19 in Saudi Arabia [published online ahead of print 2020]. Medrxiv. . Available at: .
    1. Rezende L.F.M., Thome B., Schveitzer M.C., Souza-Júnior P.R.B.d., Szwarcwald C.L. Adults at high-risk of severe coronavirus disease-2019 (Covid-19) in Brazil. Revista Saude Publica. 2020;54:50.
    1. Solís P, Carreňo H. COVID-19 fatality and comorbidity risk factors among confirmed patients in Mexico [published online ahead of print 2020]. medRxiv. . Available at: .
    1. Aggarwal A., Shrivastava A., Kumar A., Ali A. Clinical and epidemiological features of SARS-CoV-2 patients in SARI ward of a tertiary care centre in New Delhi. J Assoc Phys India. 2020;68:19–26.
    1. Gémes K., Talbäck M., Modig K., Ahlbom A., Berglund A., Feychting M. Burden and prevalence of prognostic factors for severe COVID-19 in Sweden. Eur J Epidemiol. 2020;35:401–409.
    1. Caminati M., Lombardi C., Micheletto C., Roca E., Bigni B., Furci F. Asthmatic patients in COVID-19 outbreak: few cases despite many cases. J Allergy Clin Immunol. 2020;146:541–542.
    1. Grasselli G., Zangrillo A., Zanella A., Antonelli M., Cabrini L., Castelli A. Baseline characteristics and outcomes of 1591 patients infected with SARS-CoV-2 admitted to ICUs of the Lombardy region, Italy. JAMA. 2020;323:1574.
    1. Borobia A.M., Carcas A.J., Arnalich F., Álvarez-Sala R., Monserrat-Villatoro J., Quintana M. A cohort of patients with COVID-19 in a major teaching hospital in Europe. J Clin Med. 2020;9:E1733.
    1. Prieto-Albhambra D, Ballo E, Coma-Redon E, Mora N, Aragon M, Prats-Uribe A, et al. Hospitalization and 30-day fatality in 121,263 COVID-19 outpatient cases [published online ahead of print 2020]. medRxiv. .
    1. Butler MW, O’Reilly A, Dunican EM, Mallon P, Feeney ER, Keane MP, et al. Prevalence of comorbid asthma in COVID-19 patients [published online ahead of print 2020]. J Allergy Clin Immunol. .
    1. Identifier: NCT03137043 Prevalence of severe asthma in Spanish hospitals—full text view. Available at:
    1. From Healthy Ireland, Department of Health. Available at:
    1. Wang X.D., Zheng M., Lou H.F., Wang C.S., Zhang Y., Bo M.Y. An increased prevalence of self-reported allergic rhinitis in major Chinese cities from 2005 to 2011. Allergy. 2016;71:1170–1180.
    1. Huang K., Yang T., Xu J., Yang L., Zhao J., Zhang X. Prevalence, risk factors, and management of asthma in China: a national cross-sectional study. Lancet (London, England) 2019;394:407–418.
    1. Lin J., Wang W., Chen P., Zhou X., Wan H., Yin K. Prevalence and risk factors of asthma in mainland China. The CARE study. Respir Med. 2018;137:48–54.
    1. Chuchalin A.G., Khaltaev N., Antonov N.S., Galkin D.V., Manakov L.G., Antonini P. Chronic respiratory diseases and risk factors in 12 regions of the Russian Federation. Int J Chronic Obstr Pulmon Dis. 2014;9:963–974.
    1. Agrawal S., Pearce N., Millett C., Subramanian S.V., Ebrahim S. Occupations with an increased prevalence of self-reported asthma in Indian adults. J Asthma. 2014;51:814–824.
    1. Del-Rio-Navarro B.E., Navarrete-Rodríguez E.M., Berber A., Reyes-Noriega N., García-Marcos Álvarez L. The burden of asthma in an inner-city area: a historical review 10 years after Isaac. World Allergy Organ J. 2020;13:100092.
    1. Oliveira TB, Persigo ALK, Ferrazza CC, Ferreira ENN, Veiga ABG. Prevalence of asthma, allergic rhinitis and pollinosis in a city of Brazil: a monitoring study [published online ahead of print 2020]. Allergol Immunopathol. .
    1. Musharrafieh U., Tamim H., Houry R., AlBuhairan F. A nationwide study of asthma correlates among adolescents in Saudi Arabia. Asthma Res Pract. 2020;6:3.
    1. Centers for Disease Control and Prevention Asthma prevalence. Available at:
    1. Kalyanaraman Marcello R, Dolle J, Grami S, Adule R, Li Z, Tatem K, et al. Characteristics and outcomes of COVID-19 patients in New York City’s public hospital system [published online ahead of print 2020]. medRxiv. .
    1. Richardson S., Hirsch J.S., Narasimhan M., Crawford J.M., McGinn T., Davidson K.W. Presenting characteristics, comorbidities, and outcomes among 5700 patients hospitalized with COVID-19 in the New York City area. JAMA. 2020;323:2052–2059.
    1. Docherty AB, Harrison EM, Green CA, Hardwick HE, Pius R, Norman L, et al. Features of 16,749 hospitalised UK patients with COVID-19 using the ISARIC WHO Clinical Characterisation Protocol [published online ahead of print 2020]. medRxiv. 10.1101/2020.04.23.20076042.
    1. Khawaja AP, Warwick AN, Hysi PG, Kastner A, Dick A, Khaw PT, et al. Associations with covid-19 hospitalisation amongst 406,793 adults. The UK Biobank prospective cohort study [published online ahead of print 2020]. medRxiv. . Available at: .
    1. Zhu Z, Hasegawa K, Ma B, Fujiogi M, Camargo CA, Liang L. Association of asthma and its genetic predisposition with the risk of severe COVID-19 [published online ahead of print 2020]. J Allergy Clin Immunol. .
    1. Ibrahim L.F., Tosif S., McNab S., Hall S., Lee H.J., Lewena S. SARS-CoV-2 testing and outcomes in the first 30 days after the first case of COVID-19 at an Australian children’s hospital. Emerg Med Australas. 2020;32:801–808.
    1. Petrie S. COVID-19, Australia. Epidemiol Rep. 2020;15
    1. Onder G., Rezza G., Brusaferro S. Case-fatality rate and characteristics of patients dying in relation to COVID-19 in Italy. JAMA. 2020:1775–1776.
    1. Regina J, Papadimitriou-Olivgeris M, Burger R, Filippidis P, Tschopp J, Desgranges F, et al. Epidemiology, risk factors and clinical course of SARS-CoV-2 infected patients in a Swiss university hospital: an observational retrospective study [published online ahead of print 2020]. medRxiv. .
    1. Lieberman-Cribbin W, Rapp J, Alpert N, Tuminello S, Taioli E. The impact of asthma on mortality in patients with COVID-19 [published online ahead of print 2020]. Chest. .
    1. Shi W, Gao Z, Ding Y, Zhu T, Zhang W, Xu Y. Clinical characteristics of COVID-19 patients combined with allergy [published online ahead of print 2020]. Allergy. .
    1. Wu C., Zheng M. Single-cell RNA expression profiling shows that ACE2, the putative receptor of Wuhan 2019-nCoV, has significant expression in the nasal, mouth, lung and colon tissues, and tends to be co-expressed with HLA-DRB1 in the four tissues. Res Square, Preprint. 2020
    1. Ziegler C.G.K., Allon S.J., Nyquist S.K., Mbano I.M., Miao V.N., Tzouanas C.N. SARS-CoV-2 receptor ACE2 is an interferon-stimulated gene in human airway epithelial cells and is detected in specific cell subsets across tissues. Cell. 2020;181:1016–1035.e19.
    1. Jackson D.J., Busse W.W., Bacharier L.B., Kattan M., O’Connor G.T., Wood R.A. Association of respiratory allergy, asthma, and expression of the SARS-CoV-2 receptor ACE2. J Allergy Clin Immunol. 2020;146:203–206.e3.
    1. Bradding P., Richardson M., Hinks T.S.C., Howarth P.H., Choy D.F., Arron J.R. ACE2, TMPRSS2, and furin gene expression in the airways of people with asthma—implications for COVID-19. J Allergy Clin Immunol. 2020;146:208–211.
    1. Zhou P., Yang X.-L., Wang X.-G., Hu B., Zhang L., Zhang W. A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature. 2020;579:270–273.
    1. Peters M.C., Sajuthi S., DeFord P., Christenson S., Rios C.L., Montgomery M.T. COVID-19 related genes in sputum cells in asthma: relationship to demographic features and corticosteroids. Am J Respir Crit Care Med. 2020;1:83–90.
    1. Yamaya M., Nishimura H., Deng X., Sugawara M., Watanabe O., Nomura K. Inhibitory effects of glycopyrronium, formoterol, and budesonide on coronavirus HCoV-229E replication and cytokine production by primary cultures of human nasal and tracheal epithelial cells. Respir Investig. 2020;58:155–168.
    1. Hoffmann M., Kleine-Weber H., Schroeder S., Krüger N., Herrler T., Erichsen S. SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitor. Cell. 2020;181:271–280.e8.
    1. Wang Q., Zhang Y., Wu L., Niu S., Song C., Zhang Z. Structural and functional basis of SARS-CoV-2 entry by using human ACE2. Cell. 2020;181:894–904.e9.
    1. Sajuthi SP, DeFord P, Jackson ND, Montgomery MT, Everman JL, Rios CL, et al. Type 2 and interferon inflammation strongly regulate SARS-CoV-2 related gene expression in the airway epithelium [published online ahead of print 2020]. bioRxiv. 2020 Apr 10;2020.04.09.034454.
    1. Morais-Almeida M., Pité H., Aguiar R., Ansotegui I., Bousquet J. Asthma and the coronavirus disease 2019 pandemic: a literature review. Int Arch Allergy Immunol. 2020;181:1–9.
    1. Woodruff P.G., Modrek B., Choy D.F., Jia G., Abbas A.R., Ellwanger A. T-helper type 2-driven inflammation defines major subphenotypes of asthma. Am J Respir Crit Care Med. 2009;180:388–395.
    1. Phipps S., Lam C.E., Mahalingam S., Newhouse M., Ramirez R., Rosenberg H.F. Eosinophils contribute to innate antiviral immunity and promote clearance of respiratory syncytial virus. Blood. 2007;110:1578–1586.
    1. Domachowske J.B., Dyer K.D., Bonville C.A., Rosenberg H.F. Recombinant human eosinophil-derived neurotoxin/RNase 2 functions as an effective antiviral agent against respiratory syncytial virus. J Infect Dis. 1998;177:1458–1464.
    1. Qin C., Zhou L., Hu Z., Zhang S., Yang S., Tao Y. Dysregulation of immune response in patients with coronavirus 2019 (COVID-19) in Wuhan, China. Clin Infect Dis. 2020;395:497.
    1. Liu F., Xu A., Zhang Y., Xuan W., Yan T., Pan K. Patients of COVID-19 may benefit from sustained Lopinavir-combined regimen and the increase of eosinophil may predict the outcome of COVID-19 progression. Int J Infect Dis. 2020;95:183–191.
    1. Gibson P.G., Grootendor D.C., Henry R.L., Pin I., Rytila P.H., Wark P. Sputum induction in children. Eur Respir J. 2002;37:44s–46.
    1. Peltola V., Jartti T., Putto-Laurila A., Mertsola J., Vainionpää R., Waris M. Rhinovirus infections in children: a retrospective and prospective hospital-based study. J Med Virol. 2009;81:1831–1838.
    1. Nicholson K.G., Kent J., Ireland D.C. Respiratory viruses and exacerbations of asthma in adults. BMJ (Clin Res ed) 1993;307:982–986.
    1. Johnston S.L., Pattemore P.K., Sanderson G., Smith S., Lampe F., Josephs L. Community study of role of viral infections in exacerbations of asthma in 9-11 year old children. BMJ (Clin Res ed) 1995;310:1225–1229.
    1. Marshall J.S., Portales-Cervantes L., Leong E. Mast cell responses to viruses and pathogen products. Int J Mol Sci. 2019;20:4241.
    1. Mukai K., Tsai M., Saito H., Galli S.J. Mast cells as sources of cytokines, chemokines, and growth factors. Immunol Rev. 2018;282:121–150.
    1. Ni L., Ye F., Cheng M.-L., Feng Y., Deng Y.-Q., Zhao H. Detection of SARS-CoV-2-specific humoral and cellular immunity in COVID-19 convalescent individuals. Immunity. 2020;52:971–977.e3.
    1. Libraty D.H., O’Neil K.M., Baker L.M., Acosta L.P., Olveda R.M. Human CD4(+) memory T-lymphocyte responses to SARS coronavirus infection. Virology. 2007;368:317–321.
    1. Yang L.-T., Peng H., Zhu Z.-L., Li G., Huang Z.-T., Zhao Z.-X. Long-lived effector/central memory T-cell responses to severe acute respiratory syndrome coronavirus (SARS-CoV) S antigen in recovered SARS patients. Clin Immunol (Orlando, Fla) 2006;120:171–178.
    1. Welsh R.M., Selin L.K. No one is naive: the significance of heterologous T-cell immunity. Nat Rev Immunol. 2002;2:417–426.
    1. Selin L.K., Varga S.M., Wong I.C., Welsh R.M. Protective heterologous antiviral immunity and enhanced immunopathogenesis mediated by memory T cell populations. J Exp Med. 1998;188:1705–1715.
    1. Welsh R.M., Che J.W., Brehm M.A., Selin L.K. Heterologous immunity between viruses. Immunol Rev. 2010;235:244–266.
    1. Skevaki C., Hudemann C., Matrosovich M., Möbs C., Paul S., Wachtendorf A. Influenza-derived peptides cross-react with allergens and provide asthma protection. J Allergy Clin Immunol. 2018;142:804–814.
    1. Balz K., Chen M., Kaushik A., Cemic F., Heger V., Renz H. Homologies between SARS-CoV-2 and allergen proteins may direct T cell-mediated heterologous immune responses. Res Sq [Preprint] 2020 Oct 6 -86873.
    1. Grifoni A., Weiskopf D., Ramirez S.I., Mateus J., Dan J.M., Moderbacher C.R. Targets of T cell responses to SARS-CoV-2 coronavirus in humans with COVID-19 disease and unexposed individuals. Cell. 2020;181:1489–1501.e15.
    1. Braun J, Loyal L, Frentsch M, Wendisch D, Georg P, Kurth F, et al. Presence of SARS-CoV-2 reactive T cells in COVID-19 patients and healthy donors [published online ahead of print 2020]. Nature. .
    1. Cakebread J.A., Xu Y., Grainge C., Kehagia V., Howarth P.H., Holgate S.T. Exogenous IFN-β has antiviral and anti-inflammatory properties in primary bronchial epithelial cells from asthmatic subjects exposed to rhinovirus. J Allergy Clin Immunol. 2011;127:1148–1154.e9.
    1. Zhu J., Message S.D., Mallia P., Kebadze T., Contoli M., Ward C.K. Bronchial mucosal IFN-α/β and pattern recognition receptor expression in patients with experimental rhinovirus-induced asthma exacerbations. J Allergy Clin Immunol. 2019;143:114–125.e4.
    1. Contoli M., Message S.D., Laza-Stanca V., Edwards M.R., Wark P.A.B., Bartlett N.W. Role of deficient type III interferon-lambda production in asthma exacerbations. Nat Med. 2006;12:1023–1026.
    1. Gill M.A., Bajwa G., George T.A., Dong C.C., Dougherty, Jiang N. Counterregulation between the FcepsilonRI pathway and antiviral responses in human plasmacytoid dendritic cells. J Immunol (Baltimore, Md 1950) 2010;184:5999–6006.
    1. Carli G, Cecchi L, Stebbing J, Parronchi P, Farsi A. Is asthma protective against COVID-19? [published online ahead of print 2020]. Allergy. .
    1. Gonzales-van Horn S.R., Farrar J.D. Interferon at the crossroads of allergy and viral infections. J Leukocyte Biol. 2015;98:185–194.
    1. Lebre M.C., van Capel T.M.M., Bos J.D., Knol E.F., Kapsenberg M.L., Jong E.C. d.e. Aberrant function of peripheral blood myeloid and plasmacytoid dendritic cells in atopic dermatitis patients. J Allergy Clin Immunol. 2008;122:969–976.e5.
    1. Maggi E., Parronchi P., Manetti R., Simonelli C., Piccinni M.P., Rugiu F.S. Reciprocal regulatory effects of IFN-gamma and IL-4 on the in vitro development of human Th1 and Th2 clones. J Immunol (Baltimore, Md 1950) 1992;148:2142–2147.
    1. Yang JM, Koh HY, Moon SY, Yoo IK, Ha EK, You S, et al. Allergic disorders and susceptibility to and severity of COVID-19: a nationwide cohort study [published online ahead of print 2020]. J Allergy Clin Immunol. .
    1. Dunn R.M., Busse P.J., Wechsler M.E. Asthma in the elderly and late-onset adult asthma. Allergy. 2018;73:284–294.
    1. Kuo C.-H.S., Pavlidis S., Loza M., Baribaud F., Rowe A., Pandis I. T-helper cell type 2 (Th2) and non-Th2 molecular phenotypes of asthma using sputum transcriptomics in U-BIOPRED. Eur Respir J. 2017;49:1602135.
    1. Huang C., Wang Y., Li X., Ren L., Zhao J., Hu Y. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet. 2020;395:497–506.
    1. Fitzpatrick S., Joks R., Silverberg J.I. Obesity is associated with increased asthma severity and exacerbations, and increased serum immunoglobulin E in inner-city adults. Clin Exp Allergy. 2012;42:747–759.
    1. White S.R., Laxman B., Naureckas E.T., Hogarth D.K., Solway J., Sperling A.I. Evidence for an IL-6-high asthma phenotype in asthmatic patients of African ancestry. J Allergy Clin Immunol. 2019;144:304–306.e4.
    1. Yao H., Teng Y., Sun Q., Xu J., Chen Y.-T., Hou N. Important functional roles of basigin in thymocyte development and T cell activation. Int J Biol Sci. 2013;10:43–52.
    1. Ruiz S., Castro-Castro A., Bustelo X.R. CD147 inhibits the nuclear factor of activated T-cells by impairing Vav1 and Rac1 downstream signaling. J Biol Chem. 2008;283:5554–5566.
    1. Bao W., Min D., Twigg S.M., Shackel N.A., Warner F.J., Yue D.K. Monocyte CD147 is induced by advanced glycation end products and high glucose concentration: possible role in diabetic complications. Am J Physiol Cell Physiol. 2010;299:C1212–C1219.
    1. Peters M.C., McGrath K.W., Hawkins G.A., Hastie A.T., Levy B.D., Israel E. Plasma interleukin-6 concentrations, metabolic dysfunction, and asthma severity: a cross-sectional analysis of two cohorts. Lancet Respir Med. 2016;4:574–584.
    1. Pedersen S.F., Ho Y.-C. SARS-CoV-2: a storm is raging. J Clin Investig. 2020;130:2202–2205.
    1. Leung J.M., Yang C.X., Tam A., Shaipanich T., Hackett T.-L., Singhera G.K. ACE-2 expression in the small airway epithelia of smokers and COPD patients: implications for COVID-19. Eur Respir J. 2020;55
    1. Wang K., Chen W., Zhou Y.-S., Lian J.-Q., Zhang Z., Du P. SARS-CoV-2 invades host cells via a novel route: CD147-spike protein. bioRxiv. 2020 2020.2003.2014.988345 2020.
    1. Wang X, Xu W, Hu G, Xia S, Sun Z, Liu Z, et al. SARS-CoV-2 infects T lymphocytes through its spike protein-mediated membrane fusion [published online ahead of print 2020]. Cell Mol Immunol. .
    1. Bian H, Zheng Z-H, Wei D, Zhang Z, Kang W-Z, Hao C-Q, et al. Meplazumab treats COVID-19 pneumonia: an open-labelled, concurrent controlled add-on clinical trial [published online ahead of print 2020]. medRxiv. .

Source: PubMed

3
Předplatit