Chemical composition and anti-herpes simplex virus type 1 (HSV-1) activity of extracts from Cornus canadensis

Serge Lavoie, Isabelle Côté, André Pichette, Charles Gauthier, Michaël Ouellet, Francine Nagau-Lavoie, Vakhtang Mshvildadze, Jean Legault, Serge Lavoie, Isabelle Côté, André Pichette, Charles Gauthier, Michaël Ouellet, Francine Nagau-Lavoie, Vakhtang Mshvildadze, Jean Legault

Abstract

Background: Many plants of boreal forest of Quebec have been used by Native Americans to treat a variety of microbial infections. However, the antiviral activities of these plants have been seldom evaluated on cellular models to validate their in vitro efficiencies. In this study, Cornus canadensis L. (Cornaceae), a plant used in Native American traditional medicine to treat possible antiviral infections, has been selected for further examination.

Methods: The plant was extracted by decoction and infusion with water, water/ethanol 1:1 and ethanol to obtain extracts similar to those used by Native Americans. The effects of the extracts were tested on herpes simplex virus type-1 (HSV-1) using a plaque reduction assay. Moreover, bioassay-guided fractionation was achieved to isolate bioactive compounds.

Results: Water/ethanol 1:1 infusion of C. canadensis leaves were the most active extracts to inhibit virus absorption with EC50 of about 9 μg mL-1, whereas for direct mode, both extraction methods using water or water/ethanol 1:1 as solvent were relatively similar with EC50 ranging from 11 to 17 μg mL-1. The fractionation led to the identification of active fractions containing hydrolysable tannins. Tellimagrandin I was found the most active compound with an EC50 of 2.6 μM for the direct mode and 5.0 μM for the absorption mode.

Conclusion: Altogether, the results presented in this work support the antiviral activity of Cornus canadensis used in Native American traditional medicine.

Keywords: Cornus canadensis; HSV-1; Native American; Tellimagrandin I; Traditional medicine; hydrolysable tannins.

Figures

Fig. 1
Fig. 1
Antiviral activities against HSV-1 of crude extract and fractions obtained from C. canadensis. Extract and fractions were incubated with viruses prior infection (direct mode) or together with Vero cells and viruses during infection (absorption mode). The results are expressed as the percentage of inhibition of the lysis plaques at the indicated concentration
Fig. 2
Fig. 2
HPLC profiles of fractions F1-F6. In parentheses are the masses obtained after column chromatography. Column: Zorbax Eclipse XDB-C18 column (4.6 × 250 mm, 5 μm); Injection: 10μL at 10 mg mL−1; Éluent: H2O + 0.1% HCOOH and CH3CN + 0.1% HCOOH; Program: 5% held for 5 min, 5% to 20% in 20 min, 20% to 90% in 5 min, 90% held for 10 min; Flow: 1 mL min−1; Detection: UV 254 ± 50 nm
Fig. 3
Fig. 3
HPLC profiles of fractions F4.1-F4.7. In parentheses are the masses obtained after column chromatography. Column: Zorbax Eclipse XDB-C18 column (4.6 × 250 mm, 5 μm); Injection: 10μL at 10 mg mL−1; Eluent: H2O + 0.1% HCOOH and CH3CN + 0.1% HCOOH; Program: 5% held for 5 min, 5% to 20% in 20 min, 20% to 90% in 5 min, 90% held for 10 min; Flow: 1 mL min−1; Detection: UV 254 ± 50 nm
Fig. 4
Fig. 4
Structures of the isolated compounds from Cornus canadensis

References

    1. Looker KJ, Magaret AS, May MT, Turner KME, Vickerman P, Gottlieb SL, Newman LM. Global and regional estimates of prevalent and incident herpes simplex virus type 1 infections in 2012. PLoS One. 2015;10.
    1. Stock C, Guillén-Grima F, De Mendoza JH, Marin-Fernandez B, Aguinaga-Ontoso I, Krämer A. Risk factors of herpes simplex type 1 (HSV-1) infection and lifestyle factors associated with HSV-1 manifestations. Eur J Epidemiol. 2001;17:885–890. doi: 10.1023/A:1015652713971.
    1. Whitley RJ, Tyring SK, Hollier LM, Brunton SA. Emerging issues in the management of herpes simplex virus infections. Johns Hopkins Advanced Studies in Medicine. 2006;6:S1092–S1103.
    1. Dreno B, Malkin JE, Saiag P. Understanding recurrent herpes labialis management and impact on patients’ quality of life: The HERPESCOPE study. Eur J Dermatol. 2013;23:491–499.
    1. Levitz RE. Herpes simplex encephalitis: A review. Heart Lung. 1998;27:209–212. doi: 10.1016/S0147-9563(98)90009-7.
    1. Steiner I, Benninger F. Update on herpes virus infections of the nervous system. Curr Neurol Neurosci Rep. 2013;13:414. doi: 10.1007/s11910-013-0414-8.
    1. James SH, Prichard MN. Current and future therapies for herpes simplex virus infections: Mechanism of action and drug resistance. Curr Opin Virol. 2014;8:54–61. doi: 10.1016/j.coviro.2014.06.003.
    1. Cunningham A, Griffiths P, Leone P, Mindel A, Patel R, Stanberry L, Whitley R. Current management and recommendations for access to antiviral therapy of herpes labialis. J Clin Virol. 2012;53:6–11. doi: 10.1016/j.jcv.2011.08.003.
    1. Orion E, Matz H, Wolf R. The life-threatening complications of dermatologic therapies. Clin Dermatol. 2005;23:182–192. doi: 10.1016/j.clindermatol.2004.06.013.
    1. Newman DJ, Cragg GM. Natural products as sources of new drugs from 1981 to 2014. J Nat Prod. 2016;79:629–661. doi: 10.1021/acs.jnatprod.5b01055.
    1. Hassan STS, Masarčíková R, Berchová K. Bioactive natural products with anti-herpes simplex virus properties. J Pharm Pharmacol. 2015;67:1325–1336. doi: 10.1111/jphp.12436.
    1. Kolb AW, Ané C, Brandt CR. Using HSV-1 Genome phylogenetics to track past human migrations. PLoS One. 2013;8:e76267. doi: 10.1371/journal.pone.0076267.
    1. Moerman DE. Native american ethnobotany. Portland: Timber Press Inc.; 1998.
    1. Wagner H, Bladt S. Plant Drug Analysis. A Thin Layer Chromatography Atlas. 2. Berlin Heidelberg New York: Springer-Verlag; 1996.
    1. Owen RW, Haubner R, Hull WE, Erben G, Spiegelhalder B, Bartsch H, Haber B. Isolation and structure elucidation of the major individual polyphenols in carob fibre. Food Chem Toxicol. 2003;41:1727–1738. doi: 10.1016/S0278-6915(03)00200-X.
    1. Wang KJ, Yang CR, Zhang YJ. Phenolic antioxidants from Chinese toon (fresh young leaves and shoots of Toona sinensis) Food Chem. 2006;101:365–371. doi: 10.1016/j.foodchem.2006.01.044.
    1. Cheng KW, Yang RY, Tsou SCS, Lo CSC, Ho CT, Lee TC, Wang M. Analysis of antioxidant activity and antioxidant constituents of Chinese toon. J Funct Foods. 2009;1:253–259. doi: 10.1016/j.jff.2009.01.013.
    1. Cho JY, Sohn MJ, Lee J, Kim WG. Isolation and identification of pentagalloylglucose with broad-spectrum antibacterial activity from Rhus trichocarpa Miquel. Food Chem. 2010;123:501–506. doi: 10.1016/j.foodchem.2010.04.072.
    1. Chen Y, Wang J, Ou Y, Chen H, Xiao S, Liu G, Cao Y, Huang Q. Cellular antioxidant activities of polyphenols isolated from Eucalyptus leaves (Eucalyptus grandis × Eucalyptus urophylla GL9) J Funct Foods. 2014;7:737–745. doi: 10.1016/j.jff.2013.12.003.
    1. Takaoka S, Takaoka N, Minoshima Y, Huang JM, Kubo M, Harada K, Hioki H, Fukuyama Y. Isolation, synthesis, and neurite outgrowth-promoting activity of illicinin A from the flowers of Illicium anisatum. Tetrahedron. 2009;65:8354–8361. doi: 10.1016/j.tet.2009.08.015.
    1. Kelley CJ, Harruff RC, Carmack M. Polyphenolic acids of Lithospermum ruderale. II. Carbon-13 nuclear magnetic resonance of lithospermic and rosmarinic acids. J Org Chem. 1976;41:449–455. doi: 10.1021/jo00865a007.
    1. Han JT, Bang MH, Chun OK, Kim DO, Lee CY, Baek NI. Flavonol glycosides from the aerial parts of Aceriphyllum rossii and their antioxidant activities. Arch Pharmacal Res. 2004;27:390–395. doi: 10.1007/BF02980079.
    1. Scharbert S, Holzmann N, Hofmann T. Identification of the astringent taste compounds in black tea infusions by combining instrumental analysis and human bioresponse. J Agric Food Chem. 2004;52:3498–3508. doi: 10.1021/jf049802u.
    1. Hyun AJ, Ae RK, Hae YC, Jae SC. In vitro antioxidant activity of some selected Prunus species in Korea. Arch Pharmacal Res. 2002;25:865–872. doi: 10.1007/BF02977006.
    1. Kadota S, Takamori Y, Khin NN, Kikuchi T, Tanaka K. Ekimoto. Constituents of the leaves of Woodfordia fruticosa KURZ. I. Isolation, structure, and proton and carbon-13 nuclear magnetic resonance signal assignments of woodfruticosin (Woodfordin C), an inhibitor of deoxyribonucleic acid topoisomerase II. Chem Pharm Bull. 1990;38:2687–2697. doi: 10.1248/cpb.38.2687.
    1. Hyoung KJ, Woo E-R, Park H. A novel lignan and flavonoids from Polygonum aviculare. J Nat Prod. 1994;57:581–586. doi: 10.1021/np50107a003.
    1. Lin HC, Tsai SF, Lee SS. Flavonoid glycosides from the leaves of Machilus philippinensis. J Chin Chem Soc. 2011;58:555–562. doi: 10.1002/jccs.201190020.
    1. D’Abrosca B, DellaGreca M, Fiorentino A, Monaco P, Previtera L, Simonet AM, Zarrelli A. Potential allelochemicals from Sambucus nigra. Phytochemistry. 2001;58:1073–1081. doi: 10.1016/S0031-9422(01)00401-0.
    1. Matsunami K, Otsuka H, Takeda Y. Structural revisions of blumenol C glucoside and byzantionoside B. Chem Pharm Bull. 2010;58:438–441. doi: 10.1248/cpb.58.438.
    1. Russell WC. A sensitive and precise plaque assay for herpes virus. Nature. 1962;195:1028–1029. doi: 10.1038/1951028a0.
    1. O’Brien J, Wilson I, Orton T, Pognan F. Investigation of the Alamar Blue (resazurin) fluorescent dye for the assessment of mammalian cell cytotoxicity. Eur J Biochem. 2000;267:5421–5426. doi: 10.1046/j.1432-1327.2000.01606.x.
    1. Koch C, Reichling J, Schneele J, Schnitzler P. Inhibitory effect of essential oils against herpes simplex virus type 2. Phytomedicine. 2008;15:71–78. doi: 10.1016/j.phymed.2007.09.003.
    1. Stermitz FR, Krull RE. Iridoid glycosides of Cornus canadensis: A comparison with some other Cornus species. Biochem Syst Ecol. 1998;26:845–849. doi: 10.1016/S0305-1978(98)00050-7.
    1. Bermejo P, Abad MJ, Díaz AM, Fernández L, De Santos J, Sanchez S, Villaescusa L, Carrasco L, Irurzun A. Antiviral activity of seven iridoids, three saikosaponins and one phenylpropanoid glycoside extracted from Bupleurum rigidum and Scrophularia scorodonia. Planta Med. 2002;68:106–110. doi: 10.1055/s-2002-20238.
    1. Bain JF, Denford KE. The flavonoid glycosides of Cornus canadensis L. and its allies in Northwestern North America. Experientia. 1979;35:863–864. doi: 10.1007/BF01955114.
    1. Khan MTH, Ather A, Thompson KD, Gambari R. Extracts and molecules from medicinal plants against herpes simplex viruses. Antiviral Res. 2005;67:107–119. doi: 10.1016/j.antiviral.2005.05.002.
    1. Kaul TN, Middleton E, Jr, Ogra PL. Antiviral effect of flavonoids on human viruses. J Med Virol. 1985;15:71–79. doi: 10.1002/jmv.1890150110.
    1. Takechi M, Tanaka Y, Takehara M, Nonaka GI, Nishioka I. Structure and antiherpetic activity among the Tannins. Phytochemistry. 1985;24:2245–2250. doi: 10.1016/S0031-9422(00)83018-6.
    1. Kurokawa M, Hozumi T, Basnet P, Nakano M, Kadota S, Namba T, Kawana T, Shiraki K. Purification and characterization of Eugeniin as an anti-herpes virus compound from Geum japonicum and Syzygium aromaticum. J Pharmacol Exp Ther. 1998;284:728–735.
    1. Pei Y, Chen ZP, Ju HQ, Komatsu M, Ji YH, Liu G, Guo CW, Zhang YJ, Yang CR, Wang YF, Kitazato K. Autophagy is involved in anti-viral activity of pentagalloylglucose (PGG) against Herpes simplex virus type 1 infection in vitro. Biochem Biophys Res Commun. 2011;405:186–191. doi: 10.1016/j.bbrc.2011.01.006.
    1. Pei Y, Xiang YF, Chen JN, Lu CH, Hao J, Du Q, Lai CC, Qu C, Li S, Ju HQ, Ren Z, Liu QY, Xiong S, Qian CW, Zeng FL, Zhang PZ, Yang CR, Zhang YJ, Xu J, Kitazato K, Wang YF. Pentagalloylglucose downregulates cofilin1 and inhibits HSV-1 infection. Antiviral Res. 2011;89:98–108. doi: 10.1016/j.antiviral.2010.11.012.
    1. Fukuchi K, Sakagami H, Okuda T, Hatano T, Tanuma S, Kitajima K, Inoue Y, Inoue S, Ichikawa S, Nonoyama M, Konno K. Inhibition of herpes simplex virus infection by tannins and related compounds. Antiviral Res. 1989;11:285–297. doi: 10.1016/0166-3542(89)90038-7.
    1. Legault J, Pichette A, Côté I, Lavoie S, inventors. Université du Québec à Chicoutimi, assignee. Use of plant extracts against herpes simplex virus. World patent WO 2015/010205 A1. 2015 January 29

Source: PubMed

3
Předplatit