Commercial head-mounted display virtual reality for upper extremity rehabilitation in chronic stroke: a single-case design study

Mattias Erhardsson, Margit Alt Murphy, Katharina S Sunnerhagen, Mattias Erhardsson, Margit Alt Murphy, Katharina S Sunnerhagen

Abstract

Background: Rehabilitation is crucial for maximizing recovery after stroke. Rehabilitation activities that are fun and rewarding by themselves can be more effective than those who are not. Gamification with virtual reality (VR) exploits this principle. This single-case design study probes the potential for using commercial off-the-shelf, room-scale head-mounted virtual reality for upper extremity rehabilitation in individuals with chronic stroke, the insights of which can inform further research.

Methods: A heterogeneous volunteer sample of seven participants living with stroke were recruited through advertisement. A single-case design was employed with a 5-week baseline (A), followed by a 10-week intervention (B) and a 6-month follow-up. Upper extremity motor function was assessed with validated kinematic analysis of drinking task. Activity capacity was assessed with Action Research Arm Test, Box and Block Test and ABILHAND questionnaire. Assessments were done weekly and at follow-up. Playing games on a VR-system with head-mounted display (HTC Vive) was used as rehabilitation intervention. Approximately 300 games were screened and 6 tested. Visual analysis and Tau-U statistics were used to interpret the results.

Results: Visual analysis of trend, level shift and overlap as well as Tau-U statistics indicated improvement of Action Research Arm Test in six participants. Four of these had at least a moderate Tau-U score (0.50-0.92), in at least half of the assessed outcomes. These four participants trained a total of 361 to 935 min. Two out of four participants who were able to perform the drinking task, had the highest training dose (> 900 min) and showed also improvements in kinematics. The predominant game played was Beat Saber. No serious adverse effects related to the study were observed, one participant interrupted the intervention phase due to a fall at home.

Conclusions: This first study of combining commercial games, a commercial head-mounted VR, and commercial haptic hand controls, showed promising results for upper extremity rehabilitation in individuals with chronic stroke. By being affordable yet having high production values, as well as being an easily accessible off-the-shelf product, this variant of VR technology might facilitate widespread adaption. Insights garnered in this study can facilitate the execution of future studies. Trial registration The study was registered at researchweb.org (project number 262331, registered 2019-01-30, https://www.researchweb.org/is/vgr/project/262331 ) prior to participant enrolment.

Keywords: Activity; Head-mounted display; Kinematics; Movement; Rehabilitation; Stroke; Upper extremity; Video games; Virtual reality.

Conflict of interest statement

The authors declare that they have no competing interests.

Figures

Fig. 1
Fig. 1
Participant recruitment flowchart
Fig. 2
Fig. 2
Screenshot of Mixed Reality footage of a participant playing Beat Saber. Mixed Reality was provided by the 3rd party software LIV, and was captured with OBS Studio
Fig. 3
Fig. 3
Activity domain outcome measures: Action Research Arm Test (a), Box and Blocks Test (b) and the ABILHAND (c) questionnaire. Outcomes were assessed on a weekly basis during baseline (Phase A) and intervention (Phase B), and at 6-month follow-up
Fig. 4
Fig. 4
Kinematic body function outcome measures: Total Movement Time (a), Number of Movement Units (b) and Trunk Displacement (c). Outcomes were assessed on a weekly basis during baseline (Phase A) and intervention (Phase B), and at 6-month follow-up

References

    1. Persson HC, Parziali M, Danielsson A, Sunnerhagen KS. Outcome and upper extremity function within 72 hours after first occasion of stroke in an unselected population at a stroke unit. A part of the SALGOT study. BMC Neurol. 2012;12:162. doi: 10.1186/1471-2377-12-162.
    1. Nijland RH, van Wegen EE, van der Harmeling Wel BC, Kwakkel G. Presence of finger extension and shoulder abduction within 72 hours after stroke predicts functional recovery: early prediction of functional outcome after stroke: the EPOS cohort study. Stroke. 2010;41(4):745–50. doi: 10.1161/STROKEAHA.109.572065.
    1. Tistad M, von Koch L, Sjostrand C, Tham K, Ytterberg C. What aspects of rehabilitation provision contribute to self-reported met needs for rehabilitation one year after stroke-amount, place, operator or timing? Health Expect. 2013;16(3):e24–35. doi: 10.1111/hex.12095.
    1. Lohse KR, Hilderman CG, Cheung KL, Tatla S, Van der Loos HF. Virtual reality therapy for adults post-stroke: a systematic review and meta-analysis exploring virtual environments and commercial games in therapy. PLoS ONE. 2014;9(3):e93318. doi: 10.1371/journal.pone.0093318.
    1. Howard MC. A meta-analysis and systematic literature review of virtual reality rehabilitation programs. Comput Hum Behav. 2017;70:317–327. doi: 10.1016/j.chb.2017.01.013.
    1. Laver KE, Lange B, George S, Deutsch JE, Saposnik G, Crotty M. Virtual reality for stroke rehabilitation. Cochrane Database Syst Rev. 2017;11:CD008349.
    1. Aminov A, Rogers JM, Middleton S, Caeyenberghs K, Wilson PH. What do randomized controlled trials say about virtual rehabilitation in stroke? A systematic literature review and meta-analysis of upper-limb and cognitive outcomes. J Neuroeng Rehabil. 2018;15(1):29. doi: 10.1186/s12984-018-0370-2.
    1. Marsh R, Hao X, Xu D, Wang Z, Duan Y, Liu J, et al. A virtual reality-based FMRI study of reward-based spatial learning. Neuropsychologia. 2010;48(10):2912–2921. doi: 10.1016/j.neuropsychologia.2010.05.033.
    1. Tran DA, Pajaro-Blazquez M, Daneault JF, Gallegos JG, Pons J, Fregni F, et al. Combining dopaminergic facilitation with robot-assisted upper limb therapy in stroke survivors: a focused review. Am J Phys Med Rehabil. 2016;95(6):459–474. doi: 10.1097/PHM.0000000000000438.
    1. Birckhead B, Khalil C, Liu X, Conovitz S, Rizzo A, Danovitch I, et al. Recommendations for methodology of virtual reality clinical trials in health care by an international working group: iterative study. JMIR Ment Health. 2019;6(1):e11973. doi: 10.2196/11973.
    1. Crosbie JH, Lennon S, McGoldrick MC, McNeill MD, McDonough SM. Virtual reality in the rehabilitation of the arm after hemiplegic stroke: a randomized controlled pilot study. Clin Rehabil. 2012;26(9):798–806. doi: 10.1177/0269215511434575.
    1. McNulty PA, Thompson-Butel AG, Faux SG, Lin G, Katrak PH, Harris LR, et al. The efficacy of Wii-based movement therapy for upper limb rehabilitation in the chronic poststroke period: a randomized controlled trial. Int J Stroke. 2015;10(8):1253–1260. doi: 10.1111/ijs.12594.
    1. Nguyen AV, Ong YA, Luo CX, Thuraisingam T, Rubino M, Levin MF, et al. Virtual reality exergaming as adjunctive therapy in a sub-acute stroke rehabilitation setting: facilitators and barriers. Disabil Rehabil Assist Technol. 2019;14(4):317–324. doi: 10.1080/17483107.2018.1447608.
    1. Demers M, Chan Chun Kong D, Levin MF. Feasibility of incorporating functionally relevant virtual rehabilitation in sub-acute stroke care: perception of patients and clinicians. Disabil Rehabil Assist Technol. 2019;14(4):361–7. doi: 10.1080/17483107.2018.1449019.
    1. Warland A, Paraskevopoulos I, Tsekleves E, Ryan J, Nowicky A, Griscti J, et al. The feasibility, acceptability and preliminary efficacy of a low-cost, virtual-reality based, upper-limb stroke rehabilitation device: a mixed methods study. Disabil Rehabil. 2019;41(18):2119–2134. doi: 10.1080/09638288.2018.1459881.
    1. Saposnik G, Cohen LG, Mamdani M, Pooyania S, Ploughman M, Cheung D, et al. Efficacy and safety of non-immersive virtual reality exercising in stroke rehabilitation (EVREST): a randomised, multicentre, single-blind, controlled trial. Lancet Neurol. 2016;15(10):1019–1027. doi: 10.1016/S1474-4422(16)30121-1.
    1. Broeren J, Claesson L, Goude D, Rydmark M, Sunnerhagen KS. Virtual rehabilitation in an activity centre for community-dwelling persons with stroke. The possibilities of 3-dimensional computer games. Cerebrovas Dis. 2008;26(3):289–96. doi: 10.1159/000149576.
    1. Borrego A, Latorre J, Alcaniz M, Llorens R. Comparison of oculus rift and HTC Vive: feasibility for virtual reality-based exploration, navigation, exergaming, and rehabilitation. Games Health J. 2018;7(3):151–156. doi: 10.1089/g4h.2017.0114.
    1. Lee SH, Jung HY, Yun SJ, Oh BM, Seo HG. Upper Extremity rehabilitation using fully immersive virtual reality games with a head mount display: a feasibility study. PMR J Injury Funct Rehabil. 2020;12(3):257–262. doi: 10.1002/pmrj.12206.
    1. Weber LM, Nilsen DM, Gillen G, Yoon J, Stein J. Immersive virtual reality mirror therapy for upper limb recovery after stroke: a pilot study. Am J Phys Med Rehabil. 2019;98(9):783–788. doi: 10.1097/PHM.0000000000001190.
    1. Tieri G, Morone G, Paolucci S, Iosa M. Virtual reality in cognitive and motor rehabilitation: facts, fiction and fallacies. Expert Rev Med Devices. 2018;15(2):107–117. doi: 10.1080/17434440.2018.1425613.
    1. Hatem SM, Saussez G, Della Faille M, Prist V, Zhang X, Dispa D, et al. Rehabilitation of motor function after stroke: a multiple systematic review focused on techniques to stimulate upper extremity recovery. Front Hum Neurosci. 2016;10:442. doi: 10.3389/fnhum.2016.00442.
    1. Tate RL, Perdices M, Rosenkoetter U, McDonald S, Togher L, Shadish W, et al. The Single-Case Reporting Guideline In BEhavioural Interventions (SCRIBE) 2016: explanation and elaboration. Archiv Sci Psychol. 2016;4(1):10–31.
    1. Sunnerhagen KS. Implementation of off-the-shelf room-scale VR for upper extremity rehabilitation in chronic stroke patients: a single subject design pilot study 2019. . Accessed 16 July 2019
    1. Craig P, Dieppe P, Macintyre S, Michie S, Nazareth I, Petticrew M. Developing and evaluating complex interventions: the new Medical Research Council guidance. Int J Nurs Stud. 2013;50(5):587–592. doi: 10.1016/j.ijnurstu.2012.09.010.
    1. O'Cathain A, Croot L, Duncan E, Rousseau N, Sworn K, Turner KM, et al. Guidance on how to develop complex interventions to improve health and healthcare. BMJ Open. 2019;9(8):e029954. doi: 10.1136/bmjopen-2019-029954.
    1. Zhan S, Ottenbacher KJ. Single subject research designs for disability research. Disabil Rehabil. 2001;23(1):1–8. doi: 10.1080/09638280150211202.
    1. Lobo MA, Moeyaert M, Baraldi Cunha A, Babik I. Single-case design, analysis, and quality assessment for intervention research. J Neurol Phys Ther. 2017;41(3):187–197. doi: 10.1097/NPT.0000000000000187.
    1. Page SJ, Fulk GD, Boyne P. Clinically important differences for the upper-extremity Fugl-Meyer Scale in people with minimal to moderate impairment due to chronic stroke. Phys Ther. 2012;92(6):791–798. doi: 10.2522/ptj.20110009.
    1. Van der Lee JH, De Groot V, Beckerman H, Wagenaar RC, Lankhorst GJ, Bouter LM. The intra- and interrater reliability of the action research arm test: a practical test of upper extremity function in patients with stroke. Arch Phys Med Rehabil. 2001;82(1):14–19. doi: 10.1053/apmr.2001.19021.
    1. Chen HM, Chen CC, Hsueh IP, Huang SL, Hsieh CL. Test-retest reproducibility and smallest real difference of 5 hand function tests in patients with stroke. Neurorehabil Neural Repair. 2009;23(5):435–440. doi: 10.1177/1545968308331146.
    1. Mathiowetz V, Volland G, Kashman N, Weber K. Adult norms for the Box and Block Test of manual dexterity. Am J Occup Ther. 1985;39(6):386–391. doi: 10.5014/ajot.39.6.386.
    1. Alt Murphy M, Resteghini C, Feys P, Lamers I. An overview of systematic reviews on upper extremity outcome measures after stroke. BMC Neurol. 2015;15:29. doi: 10.1186/s12883-015-0292-6.
    1. Kwakkel G, Lannin NA, Borschmann K, English C, Ali M, Churilov L, et al. Standardized measurement of sensorimotor recovery in stroke trials: Consensus-based core recommendations from the Stroke Recovery and Rehabilitation Roundtable. Int J Stroke. 2017;12(5):451–461. doi: 10.1177/1747493017711813.
    1. Kwakkel G, van Wegen EEH, Burridge JH, Winstein CJ, van Dokkum LEH, Alt Murphy M, et al. Standardized measurement of quality of upper limb movement after stroke: consensus-based core recommendations from the second stroke recovery and rehabilitation roundtable. Neurorehabil Neural Repair. 2019;33(11):951–958. doi: 10.1177/1545968319886477.
    1. Nordin A, Alt Murphy M, Danielsson A. Intra-rater and inter-rater reliability at the item level of the Action Research Arm Test for patients with stroke. J Rehabil Med. 2014;46(8):738–745. doi: 10.2340/16501977-1831.
    1. Yozbatiran N, Der-Yeghiaian L, Cramer SC. A standardized approach to performing the Action Research Arm test. Neurorehabil Neural Repair. 2008;22(1):78–90. doi: 10.1177/1545968307305353.
    1. Penta M, Tesio L, Arnould C, Zancan A, Thonnard JL. The ABILHAND questionnaire as a measure of manual ability in chronic stroke patients: Rasch-based validation and relationship to upper limb impairment. Stroke. 2001;32(7):1627–1634. doi: 10.1161/01.STR.32.7.1627.
    1. Wang TN, Lin KC, Wu CY, Chung CY, Pei YC, Teng YK. Validity, responsiveness, and clinically important difference of the ABILHAND questionnaire in patients with stroke. Arch Phys Med Rehabil. 2011;92(7):1086–1091. doi: 10.1016/j.apmr.2011.01.020.
    1. Alt Murphy M, Murphy S, Persson HC, Bergstrom UB, Sunnerhagen KS. Kinematic analysis using 3D motion capture of drinking task in people with and without upper-extremity impairments. J Vis Exp. 2018;133:e57228.
    1. Alt Murphy M, Willen C, Sunnerhagen KS. Kinematic variables quantifying upper-extremity performance after stroke during reaching and drinking from a glass. Neurorehabil Neural Repair. 2011;25(1):71–80. doi: 10.1177/1545968310370748.
    1. Alt Murphy M, Willen C, Sunnerhagen KS. Movement kinematics during a drinking task are associated with the activity capacity level after stroke. Neurorehabil Neural Repair. 2012;26(9):1106–1115. doi: 10.1177/1545968312448234.
    1. Alt Murphy M, Willen C, Sunnerhagen KS. Responsiveness of upper extremity kinematic measures and clinical improvement during the first three months after stroke. Neurorehabil Neural Repair. 2013;27(9):844–853. doi: 10.1177/1545968313491008.
    1. Thrane G, Alt Murphy M, Sunnerhagen KS. Recovery of kinematic arm function in well-performing people with subacute stroke: a longitudinal cohort study. J Neuroeng Rehabil. 2018;15(1):67. doi: 10.1186/s12984-018-0409-4.
    1. Fugl-Meyer AR, Jaasko L, Leyman I, Olsson S, Steglind S. The post-stroke hemiplegic patient. 1. A method for evaluation of physical performance. Scand J Rehabil Med. 1975;7(1):13–31.
    1. Bohannon RW, Smith MB. Interrater reliability of a modified Ashworth scale of muscle spasticity. Phys Ther. 1987;67(2):206–207. doi: 10.1093/ptj/67.2.206.
    1. Grimby G, Borjesson M, Jonsdottir IH, Schnohr P, Thelle DS, Saltin B. The, "Saltin-Grimby Physical Activity Level Scale" and its application to health research. Scand J Med Sci Sports. 2015;25(Suppl 4):119–125. doi: 10.1111/sms.12611.
    1. Borg GA. Psychophysical bases of perceived exertion. Med Sci Sports Exerc. 1982;14(5):377–381. doi: 10.1249/00005768-198205000-00012.
    1. U.S. Department of Education IoES, National Center for Education Evaluation and Regional Assistance. What Works Clearinghouse, Standards Handbook, Version 4.0. 2017.
    1. Tate RL, Perdices M, Rosenkoetter U, Wakim D, Godbee K, Togher L, et al. Revision of a method quality rating scale for single-case experimental designs and n-of-1 trials: the 15-item Risk of Bias in N-of-1 Trials (RoBiNT) Scale. Neuropsychol Rehabil. 2013;23(5):619–638. doi: 10.1080/09602011.2013.824383.
    1. Chen M, Hyppa-Martin JK, Reichle JE, Symons FJ. Comparing single case design overlap-based effect size metrics from studies examining speech generating device interventions. Am J Intellect Dev Disabil. 2016;121(3):169–193. doi: 10.1352/1944-7558-121.3.169.
    1. Manolov R, Losada JL, Chacon-Moscoso S, Sanduvete-Chaves S. Analyzing two-phase single-case data with non-overlap and mean difference indices: illustration, software tools, and alternatives. Front Psychol. 2016;7(32):32.
    1. Manolov R, Moeyaert M. Recommendations for choosing single-case data analytical techniques. Behav Ther. 2017;48(1):97–114. doi: 10.1016/j.beth.2016.04.008.
    1. Parker RI, Vannest KJ, Davis JL, Sauber SB. Combining nonoverlap and trend for single-case research: Tau-U. Behav Ther. 2011;42(2):284–299. doi: 10.1016/j.beth.2010.08.006.
    1. Brossart DF, Laird VC, Armstrong TW, Walla P. Interpreting Kendall’s Tau and Tau-U for single-case experimental designs. Cogent Psychol. 2018 doi: 10.1080/23311908.2018.1518687.
    1. Daniel WW. Biostatistics: Basic Concepts and Methodology for the Health Sciences. Hoboken: Wiley; 2010.
    1. RStudio Team . RStudio: Integrated Development Environment for R. Boston: RStudio, Inc.; 2020.
    1. R Core Team . R: a language and environment for statistical computing. Vienna: R Foundation for Statistical Computing; 2020.
    1. Pustejovsky JE, Swan DM. SingleCaseES: A calculator for single-case effect sizes. 2019.
    1. Wickham H, Bryan J. readxl: Read Excel Files. 2019.
    1. Hussain N, Sunnerhagen KS, Alt Murphy M. End-point kinematics using virtual reality explaining upper limb impairment and activity capacity in stroke. J Neuroeng Rehabil. 2019;16(1):82. doi: 10.1186/s12984-019-0551-7.
    1. Spitzley KA, Karduna AR. Feasibility of using a fully immersive virtual reality system for kinematic data collection. J Biomech. 2019;87:172–176. doi: 10.1016/j.jbiomech.2019.02.015.
    1. Essers B, Meyer S, De Bruyn N, Van Gils A, Boccuni L, Tedesco Triccas L, et al. Mismatch between observed and perceived upper limb function: an eye-catching phenomenon after stroke. Disabil Rehabil. 2019;41(13):1545–1551. doi: 10.1080/09638288.2018.1442504.
    1. Hussain N, Alt Murphy M, Lundgren-Nilsson A, Sunnerhagen KS. Relationship between self-reported and objectively measured manual ability varies during the first year post-stroke. Sci Rep. 2020;10(1):5093. doi: 10.1038/s41598-020-61834-1.
    1. van Lieshout EC, Visser-Meily JMA, Nijland RH, Dijkhuizen RM, Kwakkel G. Comparison of self-reported vs observational clinical measures of improvement in upper limb capacity in patients after stroke. Journal of rehabilitation medicine. 2020;52(4):jrm00051.
    1. Wang ZR, Wang P, Xing L, Mei LP, Zhao J, Zhang T. Leap Motion-based virtual reality training for improving motor functional recovery of upper limbs and neural reorganization in subacute stroke patients. Neur Regener Res. 2017;12(11):1823–1831. doi: 10.4103/1673-5374.219043.
    1. Turkbey TA, Kutlay S, Gok H. Clinical feasibility of Xbox KinectTM training for stroke rehabilitation: a single-blind randomized controlled pilot study. J Rehabil Med. 2017;49(1):22–29. doi: 10.2340/16501977-2183.
    1. Staiano AE, Beyl RA, Guan W, Hendrick CA, Hsia DS, Newton RL., Jr Home-based exergaming among children with overweight and obesity: a randomized clinical trial. Pediatr Obesity. 2018;13(11):724–733. doi: 10.1111/ijpo.12438.
    1. Billinger SA, Arena R, Bernhardt J, Eng JJ, Franklin BA, Johnson CM, et al. Physical activity and exercise recommendations for stroke survivors: a statement for healthcare professionals from the American Heart Association/American Stroke Association. Stroke. 2014;45(8):2532–2553. doi: 10.1161/STR.0000000000000022.
    1. Micarelli A, Viziano A, Micarelli B, Augimeri I, Alessandrini M. Vestibular rehabilitation in older adults with and without mild cognitive impairment: effects of virtual reality using a head-mounted display. Arch Gerontol Geriatr. 2019;83:246–256. doi: 10.1016/j.archger.2019.05.008.
    1. Huang X, Naghdy F, Du H, Naghdy G, Murray G. Design of adaptive control and virtual reality-based fine hand motion rehabilitation system and its effects in subacute stroke patients. Comput Methods Biomech Biomed Eng Imaging Vis. 2017;6(6):1–9. doi: 10.1080/21681163.2017.1343687.

Source: PubMed

3
Předplatit