Canadian Consensus for Biomarker Testing and Treatment of TRK Fusion Cancer in Pediatric Patients

Sébastien Perreault, Rose Chami, Rebecca J Deyell, Dina El Demellawy, Benjamin Ellezam, Nada Jabado, Daniel A Morgenstern, Aru Narendran, Poul H B Sorensen, Jonathan D Wasserman, Stephen Yip, Sébastien Perreault, Rose Chami, Rebecca J Deyell, Dina El Demellawy, Benjamin Ellezam, Nada Jabado, Daniel A Morgenstern, Aru Narendran, Poul H B Sorensen, Jonathan D Wasserman, Stephen Yip

Abstract

Neurotrophic tyrosine receptor kinase gene fusions (NTRK) are oncogenic drivers present at a low frequency in most tumour types (<5%), and at a higher frequency (>80%) in a small number of rare tumours (e.g., infantile fibrosarcoma [IFS]) and considered mutually exclusive with other common oncogenic drivers. Health Canada recently approved two tyrosine receptor kinase (TRK) inhibitors, larotrectinib (for adults and children) and entrectinib (for adults), for the treatment of solid tumours harbouring NTRK gene fusions. In Phase I/II trials, these TRK inhibitors have demonstrated promising overall response rates and tolerability in patients with TRK fusion cancer who have exhausted other treatment options. In these studies, children appear to have similar responses and tolerability to adults. In this report, we provide a Canadian consensus on when and how to test for NTRK gene fusions and when to consider treatment with a TRK inhibitor for pediatric patients with solid tumours. We focus on three pediatric tumour types: non-rhabdomyosarcoma soft tissue sarcoma/unspecified spindle cell tumours including IFS, differentiated thyroid carcinoma, and glioma. We also propose a tumour-agnostic consensus based on the probability of the tumour harbouring an NTRK gene fusion. For children with locally advanced or metastatic TRK fusion cancer who have either failed upfront therapy or lack satisfactory treatment options, TRK inhibitor therapy should be considered.

Trial registration: ClinicalTrials.gov NCT02122913 NCT02637687 NCT02576431.

Keywords: NTRK; TRK fusion; entrectinib; larotrectinib; molecular testing; oncogenic drivers; targeted therapy; tumour-agnostic.

Conflict of interest statement

S.P.: Advisory board/Conference-Bayer-Larotrectinib, Research support-Novartis-Trametinib; R.J.D.: Advisory board member and travel allowance from Bayer; D.A.M.: Consultancy/advisory board member: Bayer, Roche, Boehringer-Ingelheim, EUSA Pharma, ymAbs Therapeutics, Clarity Pharmaceuticals. Speaker fees: EUSA Pharma, ymAbs Therapeutics. Institutional research funding: BMS; P.H.B.S.: has received honoraria fees from Bayer Pharmaceuticals Canada for speaking engagements on NTRK fusions; J.D.W.: Advisory board member: Bayer; S.Y.: Advisory board member and have received travel allowance from—Amgen, AstraZeneca, Bayer, Pfizer, Roche, Serono.

Figures

Figure 1
Figure 1
Biomarker testing and treatment for neurotrophic tyrosine receptor kinase (NTRK) gene fusions in sarcoma. White boxes with black outlines represent either NTRK gene fusion testing or treatment with a TRKi. Black boxes with white text indicate all other steps that do not include either NTRK gene fusion testing or treatment with a TRKi. a At discretion of lab; b Consider re-biopsy and molecular test to confirm acquired resistance mutation. ETV6 = ETS variant transcription factor 6; IFS = infantile fibrosarcoma; IHC = immunohistochemistry; L = line; NGS = next generation sequencing; RMS = rhabdomyosarcoma; STS = soft tissue sarcoma; TRK = tyrosine receptor kinase; TRKi = TRK inhibitor; VA = vincristine and adriamycin; VAC = vincristine, adriamycin, and cyclophosphamide. Knezevich et al. 1998 [47]; National Cancer Institute [56]; Knezevich et al. 1998 [60]; Bourgeois et al. 2000 [61]; Rubin et al. 1998 [62]; Sheng et al. 2001 [63]; Loh et al. 2002 [64].
Figure 2
Figure 2
Biomarker testing and treatment for neurotrophic tyrosine receptor kinase (NTRK) gene fusions in differentiated thyroid cancer. White boxes with black outlines represent either NTRK gene fusion testing or treatment with a TRKi. Black boxes with white text indicate all other steps that do not include either NTRK gene fusion testing or treatment with a TRKi. a Consider re-biopsy and molecular test to confirm acquired resistance mutation. ALK = ALK receptor tyrosine kinase; ATA = American Thyroid Association; BRAF = B-Raf proto-oncogene, serine/threonine kinase; DTC = differentiated thyroid carcinoma; L = line; MET = MET proto-oncogene, receptor tyrosine kinase; RAI = radioactive iodine; RET = ret proto-oncogene; TRK = tyrosine receptor kinase; TRKi = TRK inhibitor. National Cancer Institute [56]; Francis et al. 2015 [82]; Kazahaya et al. 2020 [85]; Schmidt et al. 2017 [87].
Figure 3
Figure 3
Biomarker testing and treatment for neurotrophic tyrosine receptor kinase (NTRK) gene fusions in glioma. White boxes with black outlines represent either NTRK gene fusion testing or treatment with a TRKi. Black boxes with white text indicate all other steps that do not include either NTRK gene fusion testing or treatment with a TRKi. a Rare cases of NTRK fusion and H3K27M mutation have been described; b Consider re-biopsy and molecular test to confirm acquired resistance mutation. BRAF = B-Raf proto-oncogene, serine/threonine kinase; FFPE = formalin-fixed paraffin-embedded; HGG = high grade glioma; IHC = immunohistochemistry; LGG = low grade glioma; TMZ/CCNU = temozolomide and lomustine; TRK = tyrosine receptor kinase; TRKi = TRK inhibitor. National Cancer Institute [56].
Figure 4
Figure 4
Biomarker testing and treatment for neurotrophic tyrosine receptor kinase (NTRK) gene fusions. White boxes with black outlines represent either NTRK gene fusion testing or treatment with a TRKi. Black boxes with white text indicate all other steps that do not include either NTRK gene fusion testing or treatment with a TRKi. a Consider re-biopsy and molecular test to confirm acquired resistance mutation. NGS = next generation sequencing; SOC = standard of care; TRK = tyrosine receptor kinase; TRKi = TRK inhibitor.

References

    1. Vaishnavi A., Le A.T., Doebele R.C. TRKing Down an Old Oncogene in a New Era of Targeted Therapy. Cancer Discov. 2014;5:25–34. doi: 10.1158/-14-0765.
    1. Pulciani S., Santos E., Lauver A.V., Long L.K., Aaronson S.A., Barbacid M. Oncogenes in Solid Human Tumours. Nat. Cell Biol. 1982;300:539–542. doi: 10.1038/300539a0.
    1. Greco A., Miranda C., Pierotti M. Rearrangements of NTRK1 Gene in Papillary Thyroid Carcinoma. Mol. Cell. Endocrinol. 2010;321:44–49. doi: 10.1016/j.mce.2009.10.009.
    1. Chao M.V. Neurotrophins and Their Receptors: A Convergence Point for Many Signalling Pathways. Nat. Rev. Neurosci. 2003;4:299–309. doi: 10.1038/nrn1078.
    1. Stephens R.M., Loeb D.M., Copeland T.D., Pawson T., Greene L.A., Kaplan D.R. Trk Receptors Use Redundant Signal Transduction Pathways Involving SHC and PLC-γ1 to Mediate NGF Responses. Neuron. 1994;12:691–705. doi: 10.1016/0896-6273(94)90223-2.
    1. Holgado-Madruga M., Moscatello D.K., Emlet D.R., Dieterich R., Wong A.J. Grb2-Associated Binder-1 Mediates Phosphatidylinositol 3-Kinase Activation and the Promotion of Cell Survival by Nerve Growth Factor. Proc. Natl. Acad. Sci. USA. 1997;94:12419–12424. doi: 10.1073/pnas.94.23.12419.
    1. Qian X., Riccio A., Zhang Y., Ginty D.D. Identification and Characterization of Novel Substrates of Trk Receptors in Developing Neurons. Neuron. 1998;21:1017–1029. doi: 10.1016/S0896-6273(00)80620-0.
    1. U.S. National Library of Medicine NTRK1 Neurotrophic Receptor Tyrosine Kinase 1 [Homo Sapiens (Human)] [(accessed on 1 April 2020)]; Available online: .
    1. U.S. National Library of Medicine NTRK2 Neurotrophic Receptor Tyrosine Kinase 2 [Homo Sapiens (Human)] [(accessed on 1 April 2020)]; Available online: .
    1. U.S. National Library of Medicine NTRK3 Neurotrophic Receptor Tyrosine Kinase 3 [Homo Sapiens (Human)] [(accessed on 1 April 2020)]; Available online: .
    1. Latysheva N.S., Babu M.M. Discovering and Understanding Oncogenic Gene Fusions through Data Intensive Computational Approaches. Nucleic Acids Res. 2016;44:4487–4503. doi: 10.1093/nar/gkw282.
    1. Lassen U. How I treat NTRK Gene Fusion-Positive Cancers. ESMO Open. 2019;4:e000612. doi: 10.1136/esmoopen-2019-000612.
    1. Rosen E.Y., Goldman D.A., Hechtman J.F., Benayed R., Schram A.M., Cocco E., Shifman S., Gong Y., Kundra R., Solomon J.P., et al. TRK Fusions Are Enriched in Cancers with Uncommon Histologies and the Absence of Canonical Driver Mutations. Clin. Cancer Res. 2020;26:1624–1632. doi: 10.1158/1078-0432.CCR-19-3165.
    1. Tao J.J., Schram A.M., Hyman D.M. Basket Studies: Redefining Clinical Trials in the Era of Genome-Driven Oncology. Annu. Rev. Med. 2018;69:319–331. doi: 10.1146/annurev-med-062016-050343.
    1. Hong D.S., Dubois S.G., Kummar S., Farago A.F., Albert C.M., Rohrberg K.S., Van Tilburg C.M., Nagasubramanian R., Berlin J.D., Federman N., et al. Larotrectinib in Patients with TRK Fusion-Positive Solid Tumours: A Pooled Analysis of Three Phase 1/2 Clinical Trials. Lancet Oncol. 2020;21:531–540. doi: 10.1016/S1470-2045(19)30856-3.
    1. Doebele R.C., Drilon A., Paz-Ares L., Siena S., Shaw A.T., Farago A.F., Blakely C.M., Seto T., Cho B.C., Tosi D., et al. Entrectinib in Patients with Advanced or Metastatic NTRK Fusion-Positive Solid Tumours: Integrated Analysis of Three Phase 1–2 Trials. Lancet Oncol. 2020;21:271–282. doi: 10.1016/S1470-2045(19)30691-6.
    1. Hong D.S., Bauer T., Lee J., Dowlati A., Brose M., Farago A., Taylor M., Shaw A., Montez S., Meric-Bernstam F., et al. Larotrectinib in Adult Patients with Solid Tumours: A Multi-Centre, Open-Label, Phase I Dose-Escalation Study. Ann. Oncol. 2019;30:325–331. doi: 10.1093/annonc/mdy539.
    1. Laetsch T., Dubois S.G., Mascarenhas L., Turpin B., Federman N., Albert C.M., Nagasubramanian R., Davis J.L., Rudzinski E., Feraco A.M., et al. Larotrectinib for Paediatric Solid Tumours Harbouring NTRK Gene Fusions: Phase 1 Results from a Multicentre, Open-Label, Phase 1/2 Study. Lancet Oncol. 2018;19:705–714. doi: 10.1016/S1470-2045(18)30119-0.
    1. Mascarenhas L., Albert C.M., Pappo A., Geoerger B., Doz F.F., Nagasubramanian N.R., Bielack S., DuBois S.G.M.D., Schulte J., Shukla N., et al. Larotrectinib Demonstrates Durable Efficacy and Safety in an Expanded Dataset of Pediatric Patients with TRK Fusion Cancer; Proceedings of the 52nd Congress of the International Society of Paediatric Oncology (SIOP); Virtual. 14–17 October 2020; p. 935.
    1. Perreault S., Doz F., Drilon A., Geoerger B., Boni V., Chisholm J., Dubois S.G., Grilley-Olson E.J., Hong D.S., Italiano A., et al. CTNI-67. Efficacy and Safety of Larotrectinib in Patients with Tropomyosin Receptor Kinase (TRK) Fusion Primary Central Nervous System (CNK) Tumors: An Expanded Dataset. Neuro-Oncology. 2020;22:ii58. doi: 10.1093/neuonc/noaa215.233.
    1. Joshi S.K., Davare M.A., Druker B.J., Tognon C.E. Revisiting NTRKs as an Emerging Oncogene in Hematological Malignancies. Leukemia. 2019;33:2563–2574. doi: 10.1038/s41375-019-0576-8.
    1. Taylor J., Pavlick D., Yoshimi A., Marcelus C., Chung S.S., Hechtman J.F., Benayed R., Cocco E., Durham B.H., Bitner L., et al. Oncogenic TRK Fusions Are Amenable to Inhibition in Hematologic Malignancies. J. Clin. Investig. 2018;128:3819–3825. doi: 10.1172/JCI120787.
    1. Desai A.V., Robinson G.W., Basu E.M., Foster J., Gauvain K., Sabnis A., Shusterman S., Macy M.E., Maese L., Yoon J., et al. Updated Entrectinib Data in Children and Adolescents with Recurrent or Refractory Solid Tumors, Including Primary CNS Tumors. J. Clin. Oncol. 2020;38:107. doi: 10.1200/JCO.2020.38.15_suppl.107.
    1. Drilon A., Nagasubramanian R., Blake J.F., Ku N., Tuch B.B., Ebata K., Smith S., Lauriault V., Kolakowski G.R., Brandhuber B.J., et al. A Next-Generation TRK Kinase Inhibitor Overcomes Acquired Resistance to Prior TRK Kinase Inhibition in Patients with TRK Fusion–Positive Solid Tumors. Cancer Discov. 2017;7:963–972. doi: 10.1158/-17-0507.
    1. Drilon A., Ou S.-H.I., Cho B.C., Kim D.-W., Lee J., Lin J.J., Zhu V.W., Ahn M.-J., Camidge D.R., Nguyen J., et al. Repotrectinib (TPX-0005) Is a Next-Generation ROS1/TRK/ALK Inhibitor That Potently Inhibits ROS1/TRK/ALK Solvent-Front Mutations. Cancer Discov. 2018;8:1227–1236. doi: 10.1158/-18-0484.
    1. Drilon A. TRK Inhibitors in TRK Fusion-Positive Cancers. Ann. Oncol. 2019;30:viii23–viii30. doi: 10.1093/annonc/mdz282.
    1. Papadopoulos K.P., Borazanci E., Shaw A.T., Katayama R., Shimizu Y., Zhu V.W., Sun T.Y., Wakelee H.A., Madison R., Schrock A.B., et al. US Phase 1 First-in-Human Study of Taletrectinib (DS-6051b/AB-106), a ROS1/TRK Inhibitor, in Patients with Advanced Solid Tumors. Clin. Cancer Res. 2020;26 doi: 10.1158/1078-0432.CCR-20-1630.
    1. Health Canada Summary Basis of Decision—Vitrakvi—Health Canada. [(accessed on 9 April 2020)]; Available online: .
    1. Health Canada Rozlytrek—Notice of Compliance with Conditions—Qualifying Notice. [(accessed on 9 April 2020)]; Available online: .
    1. U.S. Food & Drug Administration Rozlytrek Highlights of Prescribing Information. [(accessed on 22 November 2020)]; Available online: .
    1. Tsao M.S., Torlakovic E., Stockley T., Lo B. CANTRK: A Canadian Multi-Centre NTRK Gene Fusion Testing Validation in Solid Tumors Project; Proceedings of the Association for Molecular Pathology Annual Meeting; Virtual. 16–20 November 2020; ST07.
    1. Jennings L.J., Arcila M.E., Corless C., Kamel-Reid S., Lubin I.M., Pfeifer J., Temple-Smolkin R.L., Voelkerding K.V., Nikiforova M.N. Guidelines for Validation of Next-Generation Sequencing–Based Oncology Panels. J. Mol. Diagn. 2017;19:341–365. doi: 10.1016/j.jmoldx.2017.01.011.
    1. Hechtman J.F., Benayed R., Hyman D.M., Drilon A., Zehir A., Frosina D., Arcila M.E., Dogan S., Klimstra D.S., Ladanyi M., et al. Pan-Trk Immunohistochemistry Is an Efficient and Reliable Screen for the Detection of NTRK Fusions. Am. J. Surg. Pathol. 2017;41:1547–1551. doi: 10.1097/PAS.0000000000000911.
    1. Gatalica Z., Xiu J., Swensen J., Vranic S. Molecular Characterization of Cancers with NTRK Gene Fusions. Mod. Pathol. 2019;32:147–153. doi: 10.1038/s41379-018-0118-3.
    1. Hsiao S.J., Zehir A., Sireci A.N., Aisner D.L. Detection of Tumor NTRK Gene Fusions to Identify Patients Who May Benefit from Tyrosine Kinase (TRK) Inhibitor Therapy. J. Mol. Diagn. 2019;21:553–571. doi: 10.1016/j.jmoldx.2019.03.008.
    1. Penault-Llorca F., Rudzinski E.R., Sepulveda A.R. Testing Algorithm for Identification of Patients with TRK Fusion Cancer. J. Clin. Pathol. 2019;72:460–467. doi: 10.1136/jclinpath-2018-205679.
    1. Negri T., Tamborini E., Dagrada G.P., Greco A., Staurengo S., Guzzo M., Locati L.D., Carbone A., Pierotti M.A., Licitra L., et al. TRK-A, HER-2/neu, and KIT Expression/Activation Profiles in Salivary Gland Carcinoma. Transl. Oncol. 2008;1:121–128. doi: 10.1593/tlo.08127.
    1. Yu X., Liu L., Cai B., He Y., Wan X. Suppression of Anoikis by the Neurotrophic Receptor TrkB in Human Ovarian Cancer. Cancer Sci. 2008;99:543–552. doi: 10.1111/j.1349-7006.2007.00722.x.
    1. Wadhwa S., Nag T.C., Jindal A., Kushwaha R., Mahapatra A.K., Sarkar C. Expression of the Neurotrophin Receptors Trk A and Trk B in Adult Human Astrocytoma and Glioblastoma. J. Biosci. 2003;28:181–188. doi: 10.1007/BF02706217.
    1. Hung Y.P., Fletcher C.D.M., Hornick J.L. Evaluation of Pan-TRK Immunohistochemistry in Infantile Fibrosarcoma, Lipofibromatosis-like Neural Tumour and Histological Mimics. Histopathology. 2018;73:634–644. doi: 10.1111/his.13666.
    1. Scaltriti M., Scaltriti M., Ladanyi M., Iafrate A., Bibeau F., Dietel M., Hechtman J., Troiani T., López-Rios F., Douillard J.-Y., et al. ESMO Recommendations on the Standard Methods to Detect NTRK Fusions in Daily Practice and Clinical Research. Ann. Oncol. 2019;30:1417–1427. doi: 10.1093/annonc/mdz204.
    1. Solomon J.P., Linkov I., Rosado A., Mullaney K., Rosen E.Y., Frosina D., Jungbluth A.A., Zehir A., Benayed R., Drilon A., et al. NTRK Fusion Detection across Multiple Assays and 33,997 Cases: Diagnostic Implications and Pitfalls. Mod. Pathol. 2020;33:38–46. doi: 10.1038/s41379-019-0324-7.
    1. Kao Y.-C., Sung Y.-S., Argani P., Swanson D., Alaggio R., Tap W., Wexler L., Dickson B.C., Antonescu C.R. NTRK3 Overexpression in Undifferentiated Sarcomas with YWHAE and BCOR Genetic Alterations. Mod. Pathol. 2020;33:1341–1349. doi: 10.1038/s41379-020-0495-2.
    1. Solomon J.P., Hechtman J.F. Detection of NTRK Fusions: Merits and Limitations of Current Diagnostic Platforms. Cancer Res. 2019;79:3163–3168. doi: 10.1158/0008-5472.CAN-19-0372.
    1. Antonescu C.R. Emerging Soft Tissue Tumors with Kinase Fusions: An Overview of the Recent Literature with an Emphasis on Diagnostic Criteria. Genes Chromosom. Cancer. 2020;59:437–444. doi: 10.1002/gcc.22846.
    1. Church A.J., Calicchio M.L., Nardi V., Skalova A., Pinto A., Dillon D.A., Gomez-Fernandez C.R., Manoj N., Haimes J.D., Stahl A.J., et al. Recurrent EML4–NTRK3 Fusions in Infantile Fibrosarcoma and Congenital Mesoblastic Nephroma Suggest a Revised Testing Strategy. Mod. Pathol. 2018;31:463–473. doi: 10.1038/modpathol.2017.127.
    1. Knezevich S.R., Garnett M.J., Pysher T.J., Beckwith J.B., Grundy P.E., Sorensen P.H. ETV6-NTRK3 Gene Fusions and Trisomy 11 Establish a Histogenetic Link between Mesoblastic Nephroma and Congenital Fibrosarcoma. Cancer Res. 1998;58:5046–5048.
    1. Wegert J., Vokuhl C., Collord G., Velasco-Herrera M.D.C., Farndon S.J., Guzzo C., Jorgensen M., Anderson J., Slater O., Duncan C., et al. Recurrent Intragenic Rearrangements of EGFR and BRAF in Soft Tissue Tumors of Infants. Nat. Commun. 2018;9:1–6. doi: 10.1038/s41467-018-04650-6.
    1. Solomon J., Benayed R., Hechtman J., Ladanyi M. Identifying Patients with NTRK Fusion Cancer. Ann. Oncol. 2019;30:viii16–viii22. doi: 10.1093/annonc/mdz384.
    1. Beadling C., Wald A.I., Warrick A., Neff T.L., Zhong S., Nikiforov Y.E., Corless C.L., Nikiforova M.N. A Multiplexed Amplicon Approach for Detecting Gene Fusions by Next-Generation Sequencing. J. Mol. Diagn. 2016;18:165–175. doi: 10.1016/j.jmoldx.2015.10.002.
    1. Sheikine Y., Kuo F., Lindeman N.I. Clinical and Technical Aspects of Genomic Diagnostics for Precision Oncology. J. Clin. Oncol. 2017;35:929–933. doi: 10.1200/JCO.2016.70.7539.
    1. Geoerger B., Van Tilburg C.M., DuBois S.G., Albert C.M., Federman N., Nagasubramanian R., Doz F., Orbach D., Bielack S., Neerav S., et al. Larotrectinib Efficacy and Saffety in Paediatric Patients with TRK Fusion Cancer; Proceedings of the 51st Congress of the International Society of Paediatric Oncology (SIOP); Lyon, France. 23–26 October 2019; FP114 SIOP19-0869.
    1. Drilon A.E., Dubois S.G., Farago A.F., Geoerger B., Grilley-Olson J.E., Hong D.S., Sohal D., Van Tilburg C.M., Ziegler D.S., Ku N., et al. Activity of Larotrectinib in TRK Fusion Cancer Patients with Brain Metastases or Primary Central Nervous System Tumors. J. Clin. Oncol. 2019;37:2006. doi: 10.1200/JCO.2019.37.15_suppl.2006.
    1. Smrke A., Wang Y., Simmons C.E. Update on Systemic Therapy for Advanced Soft-Tissue Sarcoma. Curr. Oncol. 2020;27:25–33. doi: 10.3747/co.26.5475.
    1. Shern J.F., Yohe M.E., Khan J. Pediatric Rhabdomyosarcoma. Crit. Rev. Oncog. 2015;20:227–243. doi: 10.1615/CritRevOncog.2015013800.
    1. National Cancer Institute Cancer Stat Facts: Childhood Brain and Other Nervous System Cancer (Ages 0–19) [(accessed on 28 August 2020)]; Available online: .
    1. Enhanced Childhood Surveillance System Cancer in Young People: A Report From the Enhanced Childhood Cancer Surveillance System. [(accessed on 7 May 2020)]; Available online: .
    1. Rudzinski E.R., Lockwood C.M., Stohr B.A., Vargas S.O., Sheridan R., Black J.O., Rajaram V., Laetsch T., Davis J.L. Pan-Trk Immunohistochemistry Identifies NTRK Rearrangements in Pediatric Mesenchymal Tumors. Am. J. Surg. Pathol. 2018;42:927–935. doi: 10.1097/PAS.0000000000001062.
    1. Agaram N.P., Zhang L., Sung Y.-S., Chen C.-L., Chung C.T., Antonescu C.R., Fletcher C.D.M. Recurrent NTRK1 Gene Fusions Define a Novel Subset of Locally Aggressive Lipofibromatosis-like Neural Tumors. Am. J. Surg. Pathol. 2016;40:1407–1416. doi: 10.1097/PAS.0000000000000675.
    1. Knezevich S.R., McFadden D.E., Tao W., Lim J.F., Sorensen P.H. A novel ETV6-NTRK3 Gene Fusion in Congenital Fibrosarcoma. Nat. Genet. 1998;18:184–187. doi: 10.1038/ng0298-184.
    1. Bourgeois J.M., Knezevich S.R., Mathers J.A., Sorensen P.H.B. Molecular Detection of the ETV6-NTRK3 Gene Fusion Differentiates Congenital Fibrosarcoma From Other Childhood Spindle Cell Tumors. Am. J. Surg. Pathol. 2000;24:937–946. doi: 10.1097/00000478-200007000-00005.
    1. Rubin B.P., Chen C.-J., Morgan T.W., Xiao S., Grier H.E., Kozakewich H.P., Perez-Atayde A.R., Fletcher J.A. Congenital Mesoblastic Nephroma t(12;15) is Associated withETV6-NTRK3 Gene Fusion. Am. J. Pathol. 1998;153:1451–1458. doi: 10.1016/S0002-9440(10)65732-X.
    1. Sheng W.-Q., Hisaoka M., Okamoto S., Tanaka A., Meis-Kindblom J.M., Kindblom L.-G., Ishida T., Nojima T., Hashimoto H. Congenital-Infantile Fibrosarcoma. Am. J. Clin. Pathol. 2001;115:348–355. doi: 10.1309/3H24-E7T7-V37G-AKKQ.
    1. Loh M.L., Ahn P., Perez-Atayde A.R., Gebhardt M.C., Shamberger R.C., Grier H.E. Treatment of Infantile Fibrosarcoma With Chemotherapy and Surgery: Results from the Dana-Farber Cancer Institute and Children’s Hospital, Boston. J. Pediatr. Hematol. 2002;24:722–726. doi: 10.1097/00043426-200212000-00008.
    1. Orbach D., Rey A., Cecchetto G., Oberlin O., Casanova M., Thebaud E., Scopinaro M., Bisogno G., Carli M., Ferrari A. Infantile Fibrosarcoma: Management Based on the European Experience. J. Clin. Oncol. 2010;28:318–323. doi: 10.1200/JCO.2009.21.9972.
    1. Orbach D., Brennan B., De Paoli A., Gallego S., Mudry P., Francotte N., Van Noesel M., Kelsey A., Alaggio R., Ranchère D., et al. Conservative Strategy in Infantile Fibrosarcoma Is Possible: The European Paediatric Soft Tissue Sarcoma Study Group Experience. Eur. J. Cancer. 2016;57:1–9. doi: 10.1016/j.ejca.2015.12.028.
    1. Linch M., Miah A.B., Thway K., Judson I., Benson C. Systemic Treatment of Soft-Tissue Sarcoma—Gold Standard and Novel Therapies. Nat. Rev. Clin. Oncol. 2014;11:187–202. doi: 10.1038/nrclinonc.2014.26.
    1. Ferrari A., De Salvo G.L., Brennan B., Van Noesel M.M., De Paoli A., Casanova M., Francotte N., Kelsey A., Alaggio R., Oberlin O., et al. Synovial Sarcoma in Children and Adolescents: The European Pediatric Soft Tissue Sarcoma Study Group Prospective Trial (EpSSG NRSTS 2005) Ann. Oncol. 2015;26:567–572. doi: 10.1093/annonc/mdu562.
    1. Demetri G.D., Albert C.M., Daniel S.W., Stefan B., Orbach D., DuBois S.G., Federman N., Geoerger B., Kummar S., Laetsch T.W., et al. Larotrectinib Efficacy and Safety in Patients with TRK Fusion Sarcomas; Proceedings of the CTOS Annual Meetinng; Toyko, Japan. 5 November 2019.
    1. Wong V., Pavlick D., Brennan T., Yelensky R., Crawford J.R., Ross J.S., Miller V.A., Malicki D.M., Stephens P.J., Ali S., et al. Evaluation of a Congenital Infantile Fibrosarcoma by Comprehensive Genomic Profiling Reveals an LMNA-NTRK1 Gene Fusion Responsive to Crizotinib. J. Natl. Cancer Inst. 2016;108:djv307. doi: 10.1093/jnci/djv307.
    1. Davis J.L., Vargas S.O., Rudzinski E.R., Marti J.M.L., Janeway K., Forrest S., Winsnes K., Pinto N., Yang S.E., VanSandt M., et al. Recurrent RET Gene Fusions in Paediatric Spindle Mesenchymal Neoplasms. Histopathology. 2020;76:1032–1041. doi: 10.1111/his.14082.
    1. Xie L., Onysko J., Morrison H. Childhood Cancer Incidence in Canada: Demographic and Geographic Variation of Temporal Trends (1992–2010) Health Promot. Chronic Dis. Prev. Can. 2018;38:79–115. doi: 10.24095/hpcdp.38.3.01.
    1. Canadian Cancer Statistics Advisory Committee Canadian Cancer Statistics 2019. [(accessed on 7 May 2020)]; Available online: .
    1. Hogan A.R., Zhuge Y., Perez E.A., Koniaris L.G., Lew J.I., Sola J.E. Pediatric Thyroid Carcinoma: Incidence and Outcomes in 1753 Patients. J. Surg. Res. 2009;156:167–172. doi: 10.1016/j.jss.2009.03.098.
    1. Bauer A.J. Molecular Genetics of Thyroid Cancer in Children and Adolescents. Endocrinol. Metab. Clin. N. Am. 2017;46:389–403. doi: 10.1016/j.ecl.2017.01.014.
    1. Wasserman J.D., Sabbaghian N., Fahiminiya S., Chami R., Mete O., Acker M., Wu M.K., Shlien A., De Kock L., Foulkes W.D. DICER1 Mutations Are Frequent in Adolescent-Onset Papillary Thyroid Carcinoma. J. Clin. Endocrinol. Metab. 2018;103:2009–2015. doi: 10.1210/jc.2017-02698.
    1. Paulson V.A., Rudzinski E.R., Hawkins D.S. Thyroid Cancer in the Pediatric Population. Genes. 2019;10:723. doi: 10.3390/genes10090723.
    1. Prasad M.L., Vyas M., Horne M.J., Virk R.K., Morotti R., Liu Z., Tallini G., Nikiforova M.N., Christison-Lagay E.R., Udelsman R., et al. NTRK Fusion Oncogenes in Pediatric Papillary Thyroid Carcinoma in Northeast United States. Cancer. 2016;122:1097–1107. doi: 10.1002/cncr.29887.
    1. Lazar L., Lebenthal Y., Steinmetz A., Yackobovitch-Gavan M., Phillip M. Differentiated Thyroid Carcinoma in Pediatric Patients: Comparison of Presentation and Course between Pre-Pubertal Children and Adolescents. J. Pediatr. 2009;154:708–714. doi: 10.1016/j.jpeds.2008.11.059.
    1. Feinmesser R., Lubin E., Segal Κ., Noyek A. Carcinoma of the Thyroid in Children—A Review. J. Pediatr. Endocrinol. Metab. 1997;10:561–568. doi: 10.1515/JPEM.1997.10.6.561.
    1. Hampson S., Stephens D., Wasserman J.D. Young Age is Associated with Increased Rates of Residual and Recurrent Paediatric Differentiated Thyroid Carcinoma. Clin. Endocrinol. 2018;89:212–218. doi: 10.1111/cen.13720.
    1. Francis G.L., Waguespack S.G., Bauer A.J., Angelos P., Benvenga S., Cerutti J.M., Dinauer C.A., Hamilton J.K., Hay I.D., Luster M., et al. Management Guidelines for Children with Thyroid Nodules and Differentiated Thyroid Cancer. Thyroid. 2015;25:716–759. doi: 10.1089/thy.2014.0460.
    1. Fugazzola L., Elisei R., Fuhrer D., Jarzab B., Leboulleux S., Newbold K., Smit J. 2019 European Thyroid Association Guidelines for the Treatment and Follow-Up of Advanced Radioiodine-Refractory Thyroid Cancer. Eur. Thyroid J. 2019;8:227–245. doi: 10.1159/000502229.
    1. Cabanillas E.M., McFadden D.G., Durante C. Thyroid Cancer. Lancet. 2016;388:2783–2795. doi: 10.1016/S0140-6736(16)30172-6.
    1. Kazahaya K., Prickett K.K., Paulson V.A., Dahl J.P., Manning S.C., Rudzinski E.R., Rastatter J.C., Parikh S.R., Hawkins D.S., Brose M.S., et al. Targeted Oncogene Therapy before Surgery in Pediatric Patients with Advanced Invasive Thyroid Cancer at Initial Presentation: Is it Time for a Paradigm shift? JAMA Otolaryngol. Head Neck Surg. 2020 doi: 10.1001/jamaoto.2020.1340.
    1. Cabanillas M., Drilon A., Farago A., Brose M., McDermott R., Sohal D., Oh D.-Y., Almubarak M., Bauman J., Chu E., et al. 1916P Larotrectinib Treatment of Advanced TRK Fusion Thyroid Cancer. Ann. Oncol. 2020;31:S1086. doi: 10.1016/j.annonc.2020.08.1404.
    1. Schmidt A., Iglesias L., Klain M., Pitoia F., Schlumberger M.J. Radioactive Iodine-Refractory Differentiated Thyroid Cancer: An Uncommon but Challenging Situation. Arch. Endocrinol. Metab. 2017;61:81–89. doi: 10.1590/2359-3997000000245.
    1. Ostrom Q.T., De Blank P.M., Kruchko C., Petersen C.M., Liao P., Finlay J.L., Stearns D.S., Wolff J.E., Wolinsky Y., Letterio J.J., et al. Alex’s Lemonade Stand Foundation Infant and Childhood Primary Brain and Central Nervous System Tumors Diagnosed in the United States in 2007–2011. Neuro-Oncology. 2015;16:x1–x36. doi: 10.1093/neuonc/nou327.
    1. Linabery A.M., Ross J.A. Trends in Childhood Cancer Incidence in the U.S. (1992–2004) Cancer. 2007;112:416–432. doi: 10.1002/cncr.23169.
    1. Whittle I.R. The Dilemma of Low Grade Glioma. J. Neurol. Neurosurg. Psychiatry. 2004;75:ii31–ii36. doi: 10.1136/jnnp.2004.040501.
    1. Ryall S., Tabori U., Hawkins C. Pediatric Low-Grade Glioma in the Era of Molecular Diagnostics. Acta Neuropathol. Commun. 2020;8:1–22. doi: 10.1186/s40478-020-00902-z.
    1. Ryall S., Zapotocky M., Fukuoka K., Nobre L., Stucklin A.G., Bennett J., Siddaway R., Li C., Pajovic S., Arnoldo A., et al. Integrated Molecular and Clinical Analysis of 1000 Pediatric Low-Grade Gliomas. Cancer Cell. 2020;37:569–583.e5. doi: 10.1016/j.ccell.2020.03.011.
    1. Jones D.T., the International Cancer Genome Consortium PedBrain Tumor Project. Hutter B., Jäger N., Korshunov A., Kool M., Warnatz H.-J., Zichner T., Lambert S.R., Ryzhova M., et al. Recurrent Somatic Alterations of FGFR1 and NTRK2 in Pilocytic Astrocytoma. Nat. Genet. 2013;45:927–932. doi: 10.1038/ng.2682.
    1. Lassaletta Á., Scheinemann K., Zelcer S., Hukin J., Wilson B.A., Jabado N., Carret A.-S., Lafay-Cousin L., Larouche V., Hawkins C., et al. Phase II Weekly Vinblastine for Chemotherapy-Naïve Children with Progressive Low-Grade Glioma: A Canadian Pediatric Brain Tumor Consortium Study. J. Clin. Oncol. 2016;34:3537–3543. doi: 10.1200/JCO.2016.68.1585.
    1. Heath J.A., Turner C.D., Poussaint T.Y., Scott R.M., Goumnerova L., Kieran M.W. Chemotherapy for Progressive Low-Grade Gliomas in Children Older than Ten Years: The Dana-Farber Experience. Pediatr. Hematol. Oncol. 2003;20:497–504. doi: 10.1080/08880010390232709.
    1. Stucklin A.S.G., Ryall S., Fukuoka K., Zapotocky M., Lassaletta A., Li C., Bridge T., Kim B., Arnoldo A., Kowalski P.E., et al. Alterations in ALK/ROS1/NTRK/MET Drive a Group of Infantile Hemispheric Gliomas. Nat. Commun. 2019;10:1–13. doi: 10.1038/s41467-019-12187-5.
    1. Warren K.E. Diffuse Intrinsic Pontine GliomA: Poised for Progress. Front. Oncol. 2012;2:205. doi: 10.3389/fonc.2012.00205.
    1. Broniscer A., Baker S.J., West A.N., Fraser M.M., Proko E., Kocak M., Dalton J., Zambetti G.P., Ellison D.W., Kun L.E., et al. Clinical and Molecular Characteristics of Malignant Transformation of Low-Grade Glioma in Children. J. Clin. Oncol. 2007;25:682–689. doi: 10.1200/JCO.2006.06.8213.
    1. Mackay A., Burford A., Carvalho D., Izquierdo E., Fazal-Salom J., Taylor K.R., Bjerke L., Clarke M., Vinci M., Nandhabalan M., et al. Integrated Molecular Meta-Analysis of 1000 Pediatric High-Grade and Diffuse Intrinsic Pontine Glioma. Cancer Cell. 2017;32:520–537.e5. doi: 10.1016/j.ccell.2017.08.017.
    1. Wu G., Diaz A.K., Paugh B.S., Rankin S.L., Ju B., Li Y., Zhu X., Qu C., Chen X., Zhang J., et al. The Genomic Landscape of Diffuse Intrinsic Pontine Glioma and Pediatric Non-brainstem High-Grade Glioma. Nat. Genet. 2014;46:444–450. doi: 10.1038/ng.2938.
    1. Clarke M., Mackay A., Ismer B., Pickles J.C., Tatevossian R.G., Newman S., Bale T.A., Stoler I., Izquierdo E., Temelso S., et al. Infant High-Grade Gliomas Comprise Multiple Subgroups Characterized by Novel Targetable Gene Fusions and Favorable Outcomes. Cancer Discov. 2020;10:942–963. doi: 10.1158/-19-1030.
    1. Torre M., Vasudevaraja V., Serrano J., DeLorenzo M., Malinowski S., Blandin A.-F., Pages M., Ligon A.H., Dong F., Meredith D.M., et al. Molecular and Clinicopathologic Features of Gliomas Harboring NTRK Fusions. Acta Neuropathol. Commun. 2020;8:1–14. doi: 10.1186/s40478-020-00980-z.
    1. Jones C., Karajannis M.A., Jones D.T.W., Kieran M.W., Monje M., Baker S.J., Becher O.J., Cho Y.-J., Gupta N., Hawkins C., et al. Pediatric High-Grade GliomA: Biologically and Clinically in Need of New Thinking. Neuro-Oncology. 2016;19:153–161. doi: 10.1093/neuonc/now101.
    1. Fischer H., Ullah M., De La Cruz C.C., Hunsaker T., Senn C., Wirz T., Wagner B., Draganov D., Vazvaei F., Donzelli M., et al. Entrectinib, a TRK/ROS1 Inhibitor with Anti-CNS Tumor Activity: Differentiation from other Inhibitors in its Class Due to Weak Interaction with P-Glycoprotein. Neuro-Oncology. 2020;22:819–829. doi: 10.1093/neuonc/noaa052.
    1. Davis J.L., Lockwood C.M., Stohr B., Boecking C., Al-Ibraheemi A., Dubois S.G., Vargas S.O., Black J.O., Cox M.C., Luquette M., et al. Expanding the Spectrum of Pediatric NTRK-rearranged Mesenchymal Tumors. Am. J. Surg. Pathol. 2019;43:435–445. doi: 10.1097/pas.0000000000001203.
    1. Drilon A., Laetsch T., Kummar S., Dubois S.G., Lassen U.N., Demetri G.D., Nathenson M., Doebele R.C., Farago A.F., Pappo A.S., et al. Efficacy of Larotrectinib inTRKFusion–Positive Cancers in Adults and Children. N. Engl. J. Med. 2018;378:731–739. doi: 10.1056/NEJMoa1714448.
    1. Ronsley R., Rassekh S.R., Shen Y., Lee A.F., Jantzen C., Halparin J., Albert C., Hawkins D.M., Amed S., Rothstein R., et al. Application of Genomics to Identify Therapeutic Targets in Recurrent Pediatric Papillary Thyroid Carcinoma. Mol. Case Stud. 2018;4:a002568. doi: 10.1101/mcs.a002568.

Source: PubMed

3
Předplatit