hCG: Biological Functions and Clinical Applications

Chinedu Nwabuobi, Sefa Arlier, Frederick Schatz, Ozlem Guzeloglu-Kayisli, Charles Joseph Lockwood, Umit Ali Kayisli, Chinedu Nwabuobi, Sefa Arlier, Frederick Schatz, Ozlem Guzeloglu-Kayisli, Charles Joseph Lockwood, Umit Ali Kayisli

Abstract

Human chorionic gonadotropin (hCG) is produced primarily by differentiated syncytiotrophoblasts, and represents a key embryonic signal that is essential for the maintenance of pregnancy. hCG can activate various signaling cascades including mothers against decapentaplegic homolog 2 (Smad2), protein kinase C (PKC), and/or protein kinase A (PKA) in several cells types by binding to luteinizing hormone/chorionic gonadotropin receptor (LHCGR) or potentially by direct/indirect interaction with transforming growth factor beta receptor (TGFβR). The molecule displays specialized roles in promoting angiogenesis in the uterine endothelium, maintaining myometrial quiescence, as well as fostering immunomodulation at the maternal-fetal interface. It is a member of the glycoprotein hormone family that includes luteinizing hormone (LH), thyroid-stimulating hormone (TSH), and follicle-stimulating hormone (FSH). The α-subunit of hCG displays homologies with TSH, LH, and FSH, whereas the β subunit is 80-85% homologous to LH. The hCG molecule is produced by a variety of organs, exists in various forms, exerts vital biological functions, and has various clinical roles ranging from diagnosis and monitoring of pregnancy and pregnancy-related disorders to cancer surveillance. This review presents a detailed examination of hCG and its various clinical applications.

Keywords: clinical applications; human chorionic gonadotropin (hCG); luteinizing hormone/chorionic gonadotropin receptor (LHCGR); pregnancy; trophoblasts; α and β hCG subunits.

Conflict of interest statement

The authors declare no conflict of interest.

Figures

Figure 1
Figure 1
Cellular sources, targets, associated signaling cascades, and functions of various hCG isoforms in non-pregnant and pregnant women. LHCGR: luteinizing hormone/choriogonadotropin receptor; TGFβR: transforming growth factor beta receptor; ?: hCG may bind to relevant receptor in target cells; Smad2: similar to drosophila gene ‘mothers against decapentaplegic’ 2; Gq: heterotrimeric G protein subunit that activates phospholipase C (PLC)-associated protein kinase C (PKC); Gs: heterotrimeric G protein subunit that activates cAMP-dependent protein kinase A (PKA) signaling by activating adenylyl cyclase; hCH-S: sulfated hCG; hCG-H: hyperglycosylated hCG.

References

    1. Fournier T., Guibourdenche J., Evain-Brion D. Review: hCGs: Different sources of production, different glycoforms and functions. Placenta. 2015;36:S60–S65. doi: 10.1016/j.placenta.2015.02.002.
    1. Hay D.L., Lopata A. Chorionic gonadotropin secretion by human embryos in vitro. J. Clin. Endocrinol. Metab. 1988;67:1322–1324. doi: 10.1210/jcem-67-6-1322.
    1. Hay D.L. Placental histology and the production of human choriogonadotrophin and its subunits in pregnancy. Br. J. Obstet. Gynaecol. 1988;95:1268–1275. doi: 10.1111/j.1471-0528.1988.tb06817.x.
    1. Zygmunt M., Herr F., Keller-Schoenwetter S., Kunzi-Rapp K., Munstedt K., Rao C.V., Lang U., Preissner K.T. Characterization of human chorionic gonadotropin as a novel angiogenic factor. J. Clin. Endocrinol. Metab. 2002;87:5290–5296. doi: 10.1210/jc.2002-020642.
    1. Ambrus G., Rao C.V. Novel regulation of pregnant human myometrial smooth muscle cell gap junctions by human chorionic gonadotropin. Endocrinology. 1994;135:2772–2779. doi: 10.1210/endo.135.6.7988470.
    1. Schumacher A., Heinze K., Witte J., Poloski E., Linzke N., Woidacki K., Zenclussen A.C. Human chorionic gonadotropin as a central regulator of pregnancy immune tolerance. J. Immunol. 2013;190:2650–2658. doi: 10.4049/jimmunol.1202698.
    1. Bansal A.S., Bora S.A., Saso S., Smith J.R., Johnson M.R., Thum M.Y. Mechanism of human chorionic gonadotrophin-mediated immunomodulation in pregnancy. Expert Rev. Clin. Immunol. 2012;8:747–753. doi: 10.1586/eci.12.77.
    1. Nisula B.C., Blithe D.L., Akar A., Lefort G., Wehmann R.E. Metabolic fate of human choriogonadotropin. J. Steroid Biochem. 1989;33:733–737. doi: 10.1016/0022-4731(89)90485-8.
    1. Cole L.A. Immunoassay of human chorionic gonadotropin, its free subunits, and metabolites. Clin. Chem. 1997;43:2233–2243.
    1. Stenman U.H., Tiitinen A., Alfthan H., Valmu L. The classification, functions and clinical use of different isoforms of HCG. Hum. Reprod. Update. 2006;12:769–784. doi: 10.1093/humupd/dml029.
    1. Lapthorn A.J., Harris D.C., Littlejohn A., Lustbader J.W., Canfield R.E., Machin K.J., Morgan F.J., Isaacs N.W. Crystal structure of human chorionic gonadotropin. Nature. 1994;369:455–461. doi: 10.1038/369455a0.
    1. Stenman U.H., Alfthan H. Determination of human chorionic gonadotropin. Best Pract. Res. Clin. Endocrinol. Metab. 2013;27:783–793. doi: 10.1016/j.beem.2013.10.005.
    1. Pierce J.G., Parsons T.F. Glycoprotein hormones: Structure and function. Annu. Rev. Biochem. 1981;50:465–495. doi: 10.1146/annurev.bi.50.070181.002341.
    1. Cole L.A. hCG, the wonder of today’s science. Reprod. Biol. Endocrinol. 2012;10:24. doi: 10.1186/1477-7827-10-24.
    1. Jameson J.L., Hollenberg A.N. Regulation of chorionic gonadotropin gene expression. Endocr. Rev. 1993;14:203–221.
    1. Dufau M.L. The luteinizing hormone receptor. Ann. Rev. Physiol. 1998;60:461–496. doi: 10.1146/annurev.physiol.60.1.461.
    1. O’Connor J.F., Birken S., Lustbader J.W., Krichevsky A., Chen Y., Canfield R.E. Recent advances in the chemistry and immunochemistry of human chorionic gonadotropin: Impact on clinical measurements. Endocr. Rev. 1994;15:650–683.
    1. Kovalevskaya G., Birken S., Kakuma T., Ozaki N., Sauer M., Lindheim S., Cohen M., Kelly A., Schlatterer J., O’Connor J.F. Differential expression of human chorionic gonadotropin (hCG) glycosylation isoforms in failing and continuing pregnancies: Preliminary characterization of the hyperglycosylated hCG epitope. J. Endocrinol. 2002;172:497–506. doi: 10.1677/joe.0.1720497.
    1. Kovalevskaya G., Genbacev O., Fisher S.J., Caceres E., O’Connor J.F. Trophoblast origin of hCG isoforms: Cytotrophoblasts are the primary source of choriocarcinoma-like hCG. Mol. Cell. Endocrinol. 2002;194:147–155. doi: 10.1016/S0303-7207(02)00135-1.
    1. Cole L.A. hCG, five independent molecules. Clin. Chim. Acta Int. J. Clin. Chem. 2012;413:48–65. doi: 10.1016/j.cca.2011.09.037.
    1. Berndt S., Blacher S., Munaut C., Detilleux J., Perrier d’Hauterive S., Huhtaniemi I., Evain-Brion D., Noel A., Fournier T., Foidart J.M. Hyperglycosylated human chorionic gonadotropin stimulates angiogenesis through TGF-β receptor activation. FASEB J. Off. Publ. Fed. Am. Soc. Exp. Biol. 2013;27:1309–1321. doi: 10.1096/fj.12-213686.
    1. Elliott M.M., Kardana A., Lustbader J.W., Cole L.A. Carbohydrate and peptide structure of the α- and β-subunits of human chorionic gonadotropin from normal and aberrant pregnancy and choriocarcinoma. Endocrine. 1997;7:15–32. doi: 10.1007/BF02778058.
    1. Birken S., Yershova O., Myers R.V., Bernard M.P., Moyle W. Analysis of human choriogonadotropin core 2 o-glycan isoforms. Mol. Cell. Endocrinol. 2003;204:21–30. doi: 10.1016/S0303-7207(03)00153-9.
    1. Fiddes J.C., Goodman H.M. The gene encoding the common alpha subunit of the four human glycoprotein hormones. J. Mol. Appl. Genet. 1981;1:3–18.
    1. Boorstein W.R., Vamvakopoulos N.C., Fiddes J.C. Human chorionic gonadotropin β-subunit is encoded by at least eight genes arranged in tandem and inverted pairs. Nature. 1982;300:419–422. doi: 10.1038/300419a0.
    1. Rull K., Hallast P., Uuskula L., Jackson J., Punab M., Salumets A., Campbell R.K., Laan M. Fine-scale quantification of HCG bata gene transcription in human trophoblastic and non-malignant non-trophoblastic tissues. Mol. Hum. Reprod. 2008;14:23–31. doi: 10.1093/molehr/gam082.
    1. Hallast P., Rull K., Laan M. The evolution and genomic landscape of CGB1 and CGB2 genes. Mol. Cell. Endocrinol. 2007;260–262:2–11. doi: 10.1016/j.mce.2005.11.049.
    1. Knofler M. What factors regulate HCG production in Down’s syndrome pregnancies? Regulation of HCG during normal gestation and in pregnancies affected by Down’s syndrome. Mol. Hum. Reprod. 1999;5:895–897. doi: 10.1093/molehr/5.10.895.
    1. Handschuh K., Guibourdenche J., Cocquebert M., Tsatsaris V., Vidaud M., Evain-Brion D., Fournier T. Expression and regulation by PPARgamma of hCG α- and β-subunits: Comparison between villous and invasive extravillous trophoblastic cells. Placenta. 2009;30:1016–1022. doi: 10.1016/j.placenta.2009.09.006.
    1. Handschuh K., Guibourdenche J., Tsatsaris V., Guesnon M., Laurendeau I., Evain-Brion D., Fournier T. Human chorionic gonadotropin produced by the invasive trophoblast but not the villous trophoblast promotes cell invasion and is down-regulated by peroxisome proliferator-activated receptor-γ. Endocrinology. 2007;148:5011–5019. doi: 10.1210/en.2007-0286.
    1. Murthi P., Kalionis B., Cocquebert M., Rajaraman G., Chui A., Keogh R.J., Evain-Brion D., Fournier T. Homeobox genes and down-stream transcription factor PPARgamma in normal and pathological human placental development. Placenta. 2013;34:299–309. doi: 10.1016/j.placenta.2013.01.005.
    1. Wilcox A.J., Baird D.D., Weinberg C.R. Time of implantation of the conceptus and loss of pregnancy. N. Engl. J. Med. 1999;340:1796–1799. doi: 10.1056/NEJM199906103402304.
    1. Edelman G.M., Crossin K.L. Cell adhesion molecules: Implications for a molecular histology. Annu. Rev. Biochem. 1991;60:155–190. doi: 10.1146/annurev.bi.60.070191.001103.
    1. Norwitz E.R., Schust D.J., Fisher S.J. Implantation and the survival of early pregnancy. N. Engl. J. Med. 2001;345:1400–1408. doi: 10.1056/NEJMra000763.
    1. Dey S.K., Lim H., Das S.K., Reese J., Paria B.C., Daikoku T., Wang H. Molecular cues to implantation. Endocr. Rev. 2004;25:341–373. doi: 10.1210/er.2003-0020.
    1. Genbacev O., DiFederico E., McMaster M., Fisher S.J. Invasive cytotrophoblast apoptosis in pre-eclampsia. Hum. Reprod. 1999;14:59–66. doi: 10.1093/humrep/14.suppl_2.59.
    1. Tarrade A., Goffin F., Munaut C., Lai-Kuen R., Tricottet V., Foidart J.M., Vidaud M., Frankenne F., Evain-Brion D. Effect of matrigel on human extravillous trophoblasts differentiation: Modulation of protease pattern gene expression. Biol. Reprod. 2002;67:1628–1637. doi: 10.1095/biolreprod.101.001925.
    1. Gudermann T., Birnbaumer M., Birnbaumer L. Evidence for dual coupling of the murine luteinizing hormone receptor to adenylyl cyclase and phosphoinositide breakdown and Ca2+ mobilization. Studies with the cloned murine luteinizing hormone receptor expressed in L cells. J. Biol. Chem. 1992;267:4479–4488.
    1. Casarini L., Lispi M., Longobardi S., Milosa F., La Marca A., Tagliasacchi D., Pignatti E., Simoni M. LH and hCG action on the same receptor results in quantitatively and qualitatively different intracellular signalling. PLoS ONE. 2012;7:e46682. doi: 10.1371/journal.pone.0046682.
    1. Maymo J.L., Perez Perez A., Maskin B., Duenas J.L., Calvo J.C., Sanchez Margalet V., Varone C.L. The alternative Epac/cAMP pathway and the MAPK pathway mediate hCG induction of leptin in placental cells. PLoS ONE. 2012;7:e46216. doi: 10.1371/journal.pone.0046216.
    1. Keryer G., Alsat E., Tasken K., Evain-Brion D. Cyclic AMP-dependent protein kinases and human trophoblast cell differentiation in vitro. Pt 7J. Cell Sci. 1998;111:995–1004.
    1. Riccetti L., Yvinec R., Klett D., Gallay N., Combarnous Y., Reiter E., Simoni M., Casarini L., Ayoub M.A. Human Luteinizing Hormone and Chorionic Gonadotropin Display Biased Agonism at the LH and LH/CG Receptors. Sci. Rep. 2017;7:940. doi: 10.1038/s41598-017-01078-8.
    1. Resnik R., Creasy R.K., Iams J.D., Lockwood C.J., MHCM, Moore T., Greene M.F. Creasy & Resnik’s Maternal-Fetal Medicine: Principles and Practice. 7th ed. Elsevier Saunders; Philadelphia, PA, USA: 2014.
    1. Salamonsen L.A., Evans J., Nguyen H.P., Edgell T.A. The Microenvironment of Human Implantation: Determinant of Reproductive Success. Am. J. Reprod. Immunol. 2016;75:218–225. doi: 10.1111/aji.12450.
    1. Paiva P., Hannan N.J., Hincks C., Meehan K.L., Pruysers E., Dimitriadis E., Salamonsen L.A. Human chorionic gonadotrophin regulates FGF2 and other cytokines produced by human endometrial epithelial cells, providing a mechanism for enhancing endometrial receptivity. Hum. Reprod. 2011;26:1153–1162. doi: 10.1093/humrep/der027.
    1. Evans J., Catalano R.D., Brown P., Sherwin R., Critchley H.O., Fazleabas A.T., Jabbour H.N. Prokineticin 1 mediates fetal-maternal dialogue regulating endometrial leukemia inhibitory factor. FASEB J. Off. Publ. Fed. Am. Soc. Exp. Biol. 2009;23:2165–2175. doi: 10.1096/fj.08-124495.
    1. Stewart C.L., Kaspar P., Brunet L.J., Bhatt H., Gadi I., Kontgen F., Abbondanzo S.J. Blastocyst implantation depends on maternal expression of leukaemia inhibitory factor. Nature. 1992;359:76–79. doi: 10.1038/359076a0.
    1. Evans J. Hyperglycosylated hCG: A Unique Human Implantation and Invasion Factor. Am. J. Reprod. Immunol. 2016;75:333–340. doi: 10.1111/aji.12459.
    1. Lindhard A., Bentin-Ley U., Ravn V., Islin H., Hviid T., Rex S., Bangsboll S., Sorensen S. Biochemical evaluation of endometrial function at the time of implantation. Fertil. Steril. 2002;78:221–233. doi: 10.1016/S0015-0282(02)03240-5.
    1. Guibourdenche J., Handschuh K., Tsatsaris V., Gerbaud P., Leguy M.C., Muller F., Brion D.E., Fournier T. Hyperglycosylated hCG is a marker of early human trophoblast invasion. J. Clin. Endocrinol. Metab. 2010;95:E240–E244. doi: 10.1210/jc.2010-0138.
    1. Evans J., Salamonsen L.A., Menkhorst E., Dimitriadis E. Dynamic changes in hyperglycosylated human chorionic gonadotrophin throughout the first trimester of pregnancy and its role in early placentation. Hum. Reprod. 2015;30:1029–1038. doi: 10.1093/humrep/dev016.
    1. Koistinen H., Hautala L., Koli K., Stenman U.H. Absence of TGF-β Receptor Activation by Highly Purified hCG Preparations. Mol. Endocrinol. 2015;29:1787–1791. doi: 10.1210/me.2015-1187.
    1. Cole L.A., Butler S. Hyperglycosylated hCG, hCGβ and Hyperglycosylated hCGβ: Interchangeable cancer promoters. Mol. Cell. Endocrinol. 2012;349:232–238. doi: 10.1016/j.mce.2011.10.029.
    1. Iles R.K., Delves P.J., Butler S.A. Does hCG or hCGβ play a role in cancer cell biology? Mol. Cell. Endocrinol. 2010;329:62–70. doi: 10.1016/j.mce.2010.07.014.
    1. Lehnert S.A., Akhurst R.J. Embryonic expression pattern of TGF beta type-1 RNA suggests both paracrine and autocrine mechanisms of action. Development. 1988;104:263–273.
    1. Fluhr H., Bischof-Islami D., Krenzer S., Licht P., Bischof P., Zygmunt M. Human chorionic gonadotropin stimulates matrix metalloproteinases-2 and -9 in cytotrophoblastic cells and decreases tissue inhibitor of metalloproteinases-1, -2, and -3 in decidualized endometrial stromal cells. Fertil. Steril. 2008;90:1390–1395. doi: 10.1016/j.fertnstert.2007.08.023.
    1. Schumacher A., Brachwitz N., Sohr S., Engeland K., Langwisch S., Dolaptchieva M., Alexander T., Taran A., Malfertheiner S.F., Costa S.D., et al. Human chorionic gonadotropin attracts regulatory T cells into the fetal-maternal interface during early human pregnancy. J. Immunol. 2009;182:5488–5497. doi: 10.4049/jimmunol.0803177.
    1. Wehmann R.E., Nisula B.C. Characterization of a discrete degradation product of the human chorionic gonadotropin β-subunit in humans. J. Clin. Endocrinol. Metab. 1980;51:101–105. doi: 10.1210/jcem-51-1-101.
    1. Norman R.J., Menabawey M., Lowings C., Buck R.H., Chard T. Relationship between blood and urine concentrations of intact human chorionic gonadotropin and its free subunits in early pregnancy. Obstet. Gynecol. 1987;69:590–593.
    1. Wehmann R.E., Nisula B.C. Metabolic and renal clearance rates of purified human chorionic gonadotropin. J. Clin. Investig. 1981;68:184–194. doi: 10.1172/JCI110234.
    1. Korhonen J., Alfthan H., Ylostalo P., Veldhuis J., Stenman U.H. Disappearance of human chorionic gonadotropin and its α- and β-subunits after term pregnancy. Clin. Chem. 1997;43:2155–2163.
    1. Rizkallah T., Gurpide E., Vande Wiele R.L. Metabolism of HCG in man. J. Clin. Endocrinol. Metab. 1969;29:92–100. doi: 10.1210/jcem-29-1-92.
    1. Blithe D.L., Nisula B.C. Similarity of the clearance rates of free α-subunit and α-subunit dissociated from intact human chorionic gonadotropin, despite differences in sialic acid contents. Endocrinology. 1987;121:1215–1220. doi: 10.1210/endo-121-4-1215.
    1. Lambert A., Talbot J.A., Anobile C.J., Robertson W.R. Gonadotrophin heterogeneity and biopotency: Implications for assisted reproduction. Mol. Hum. Reprod. 1998;4:619–629. doi: 10.1093/molehr/4.7.619.
    1. Liu L., Southers J.L., Cassels J.W., Jr., Banks S.M., Wehmann R.E., Blithe D.L., Chen H.C., Nisula B.C. Structure-kinetic relationships of choriogonadotropin and related molecules. Pt 6Am. J. Physiol. 1989;256:E721–E724.
    1. Rosa C., Amr S., Birken S., Wehmann R., Nisula B. Effect of desialylation of human chorionic gonadotropin on its metabolic clearance rate in humans. J. Clin. Endocrinol. Metab. 1984;59:1215–1219. doi: 10.1210/jcem-59-6-1215.
    1. Vaitukaitis J.L., Braunstein G.D., Ross G.T. A radioimmunoassay which specifically measures human chorionic gonadotropin in the presence of human luteinizing hormone. Am. J. Obstet. Gynecol. 1972;113:751–758. doi: 10.1016/0002-9378(72)90553-4.
    1. Montagnana M., Trenti T., Aloe R., Cervellin G., Lippi G. Human chorionic gonadotropin in pregnancy diagnostics. Clin. Chim. Acta Int. J. Clin. Chem. 2011;412:1515–1520. doi: 10.1016/j.cca.2011.05.025.
    1. Ehrlich P.H., Moustafa Z.A., Krichevsky A., Birken S., Armstrong E.G., Canfield R.E. Characterization and relative orientation of epitopes for monoclonal antibodies and antisera to human chorionic gonadotropin. Am. J. Reprod. Immunol. Microbiol. 1985;8:48–54. doi: 10.1111/j.1600-0897.1985.tb00349.x.
    1. Bidart J.M., Ozturk M., Bellet D.H., Jolivet M., Gras-Masse H., Troalen F., Bohuon C.J., Wands J.R. Identification of epitopes associated with hCG and the beta hCG carboxyl terminus by monoclonal antibodies produced against a synthetic peptide. J. Immunol. 1985;134:457–464.
    1. Norman R.J., Poulton T., Gard T., Chard T. Monoclonal antibodies to human chorionic gonadotropin: Implications for antigenic mapping, immunoradiometric assays, and clinical applications. J. Clin. Endocrinol. Metab. 1985;61:1031–1038. doi: 10.1210/jcem-61-6-1031.
    1. Schwarz S., Berger P., Wick G. The antigenic surface of human chorionic gonadotropin as mapped by murine monoclonal antibodies. Endocrinology. 1986;118:189–197. doi: 10.1210/endo-118-1-189.
    1. Alfthan H., Haglund C., Dabek J., Stenman U.H. Concentrations of human choriogonadotropin, its β-subunit, and the core fragment of the β-subunit in serum and urine of men and nonpregnant women. Clin. Chem. 1992;38:1981–1987.
    1. Berger P., Sturgeon C., Bidart J.M., Paus E., Gerth R., Niang M., Bristow A., Birken S., Stenman U.H. The ISOBM TD-7 Workshop on hCG and related molecules. Towards user-oriented standardization of pregnancy and tumor diagnosis: Assignment of epitopes to the three-dimensional structure of diagnostically and commercially relevant monoclonal antibodies directed against human chorionic gonadotropin and derivatives. Tumour Biol. J. Int. Soc. Oncodev. Biol. Med. 2002;23:1–38.
    1. Cole L.A., Butler S. Detection of hCG in trophoblastic disease. The USA hCG reference service experience. J. Reprod. Med. 2002;47:433–444.
    1. McChesney R., Wilcox A.J., O’Connor J.F., Weinberg C.R., Baird D.D., Schlatterer J.P., McConnaughey D.R., Birken S., Canfield R.E. Intact HCG, free HCG beta subunit and HCG beta core fragment: Longitudinal patterns in urine during early pregnancy. Hum. Reprod. 2005;20:928–935. doi: 10.1093/humrep/deh702.
    1. Cole L.A. Familial HCG syndrome. J. Reprod. Immunol. 2012;93:52–57. doi: 10.1016/j.jri.2011.11.001.
    1. Stenman U.H., Alfthan H., Ranta T., Vartiainen E., Jalkanen J., Seppala M. Serum levels of human chorionic gonadotropin in nonpregnant women and men are modulated by gonadotropin-releasing hormone and sex steroids. J. Clin. Endocrinol. Metab. 1987;64:730–736. doi: 10.1210/jcem-64-4-730.
    1. Cole L.A., Sasaki Y., Muller C.Y. Normal production of human chorionic gonadotropin in menopause. N. Engl. J. Med. 2007;356:1184–1186. doi: 10.1056/NEJMc066500.
    1. Poikkeus P., Hiilesmaa V., Tiitinen A. Serum HCG 12 days after embryo transfer in predicting pregnancy outcome. Hum. Reprod. 2002;17:1901–1905. doi: 10.1093/humrep/17.7.1901.
    1. O’Connor J.F., Ellish N., Kakuma T., Schlatterer J., Kovalevskaya G. Differential urinary gonadotrophin profiles in early pregnancy and early pregnancy loss. Prenat. Diagn. 1998;18:1232–1240. doi: 10.1002/(SICI)1097-0223(199812)18:12<1232::AID-PD439>;2-Z.
    1. Wilcox A.J., Weinberg C.R., O’Connor J.F., Baird D.D., Schlatterer J.P., Canfield R.E., Armstrong E.G., Nisula B.C. Incidence of early loss of pregnancy. N. Engl. J. Med. 1988;319:189–194. doi: 10.1056/NEJM198807283190401.
    1. Korhonen J., Stenman U.H., Ylostalo P. Serum human chorionic gonadotropin dynamics during spontaneous resolution of ectopic pregnancy. Fertil. Steril. 1994;61:632–636. doi: 10.1016/S0015-0282(16)56638-2.
    1. Barnhart K.T., Sammel M.D., Rinaudo P.F., Zhou L., Hummel A.C., Guo W. Symptomatic patients with an early viable intrauterine pregnancy: HCG curves redefined. Obstet. Gynecol. 2004;104:50–55. doi: 10.1097/01.AOG.0000128174.48843.12.
    1. Seeber B.E., Sammel M.D., Guo W., Zhou L., Hummel A., Barnhart K.T. Application of redefined human chorionic gonadotropin curves for the diagnosis of women at risk for ectopic pregnancy. Fertil. Steril. 2006;86:454–459. doi: 10.1016/j.fertnstert.2005.12.056.
    1. Silva C., Sammel M.D., Zhou L., Gracia C., Hummel A.C., Barnhart K. Human chorionic gonadotropin profile for women with ectopic pregnancy. Obstet. Gynecol. 2006;107:605–610. doi: 10.1097/01.AOG.0000198635.25135.e7.
    1. Korhonen J., Tiitinen A., Alfthan H., Ylostalo P., Stenman U.H. Ectopic pregnancy after in vitro fertilization is characterized by delayed implantation but a normal increase of serum human chorionic gonadotrophin and its subunits. Hum. Reprod. 1996;11:2750–2757. doi: 10.1093/oxfordjournals.humrep.a019203.
    1. Norris W., Nevers T., Sharma S., Kalkunte S. Review: hCG, preeclampsia and regulatory T cells. Placenta. 2011;32:S182–S185. doi: 10.1016/j.placenta.2011.01.009.
    1. Lockwood C.J., Huang S.J., Krikun G., Caze R., Rahman M., Buchwalder L.F., Schatz F. Decidual hemostasis, inflammation, and angiogenesis in pre-eclampsia. Semin. Thromb. Hemost. 2011;37:158–164. doi: 10.1055/s-0030-1270344.
    1. Roberge S., Giguere Y., Villa P., Nicolaides K., Vainio M., Forest J.C., von Dadelszen P., Vaiman D., Tapp S., Bujold E. Early administration of low-dose aspirin for the prevention of severe and mild preeclampsia: A systematic review and meta-analysis. Am. J. Perinatol. 2012;29:551–556. doi: 10.1097/01.ogx.0000425641.72994.b5.
    1. Roberge S., Villa P., Nicolaides K., Giguere Y., Vainio M., Bakthi A., Ebrashy A., Bujold E. Early administration of low-dose aspirin for the prevention of preterm and term preeclampsia: A systematic review and meta-analysis. Fetal Diagn. Ther. 2012;31:141–146. doi: 10.1159/000336662.
    1. Chen C.P., Piao L., Chen X., Yu J., Masch R., Schatz F., Lockwood C.J., Huang S.J. Expression of Interferon gamma by Decidual Cells and Natural Killer Cells at the Human Implantation Site: Implications for Preeclampsia, Spontaneous Abortion, and Intrauterine Growth Restriction. Reprod. Sci. 2015;22:1461–1467. doi: 10.1177/1933719115585148.
    1. Funghi L., Damiani F., Yen C.F., Lee C.L., Lombardi A., Schatz F., Lockwood C.J., Marcolongo P., Petraglia F., Arcuri F. Expression and regulation of 11beta-hydroxysteroid dehydrogenase type 1 in first trimester human decidua cells: Implication in preeclampsia. Mol. Cell. Endocrinol. 2016;437:163–170. doi: 10.1016/j.mce.2016.08.023.
    1. Lockwood C.J., Basar M., Kayisli U.A., Guzeloglu-Kayisli O., Murk W., Wang J., De Paz N., Shapiro J.P., Masch R.J., Semerci N., et al. Interferon-gamma protects first-trimester decidual cells against aberrant matrix metalloproteinases 1, 3, and 9 expression in preeclampsia. Am. J. Pathol. 2014;184:2549–2559. doi: 10.1016/j.ajpath.2014.05.025.
    1. Lockwood C.J., Huang S.J., Chen C.P., Huang Y., Xu J., Faramarzi S., Kayisli O., Kayisli U., Koopman L., Smedts D., et al. Decidual cell regulation of natural killer cell-recruiting chemokines: Implications for the pathogenesis and prediction of preeclampsia. Am. J. Pathol. 2013;183:841–856. doi: 10.1016/j.ajpath.2013.05.029.
    1. Schatz F., Guzeloglu-Kayisli O., Arlier S., Kayisli U.A., Lockwood C.J. The role of decidual cells in uterine hemostasis, menstruation, inflammation, adverse pregnancy outcomes and abnormal uterine bleeding. Hum. Reprod. Update. 2016;22:497–515. doi: 10.1093/humupd/dmw004.
    1. Meekins J.W., Pijnenborg R., Hanssens M., McFadyen I.R., van Asshe A. A study of placental bed spiral arteries and trophoblast invasion in normal and severe pre-eclamptic pregnancies. Br. J. Obstet. Gynaecol. 1994;101:669–674. doi: 10.1111/j.1471-0528.1994.tb13182.x.
    1. Huppertz B. Placental origins of preeclampsia: Challenging the current hypothesis. Hypertension. 2008;51:970–975. doi: 10.1161/HYPERTENSIONAHA.107.107607.
    1. Keikkala E., Vuorela P., Laivuori H., Romppanen J., Heinonen S., Stenman U.H. First trimester hyperglycosylated human chorionic gonadotrophin in serum—A marker of early-onset preeclampsia. Placenta. 2013;34:1059–1065. doi: 10.1016/j.placenta.2013.08.006.
    1. Kalkunte S., Navers T., Norris W., Banerjee P., Fazleabas A., Kuhn C., Jeschke U., Sharma S. Presence of non-functional hCG in preeclampsia and rescue of normal pregnancy by recombinant hCG. Placenta. 2010;31:A126.
    1. Kalkunte S., Boij R., Norris W., Friedman J., Lai Z., Kurtis J., Lim K.H., Padbury J.F., Matthiesen L., Sharma S. Sera from preeclampsia patients elicit symptoms of human disease in mice and provide a basis for an in vitro predictive assay. Am. J. Pathol. 2010;177:2387–2398. doi: 10.2353/ajpath.2010.100475.
    1. Ong C.Y., Liao A.W., Spencer K., Munim S., Nicolaides K.H. First trimester maternal serum free beta human chorionic gonadotrophin and pregnancy associated plasma protein A as predictors of pregnancy complications. BJOG Int. J. Obstet. Gynaecol. 2000;107:1265–1270. doi: 10.1111/j.1471-0528.2000.tb11618.x.
    1. Smith G.C., Stenhouse E.J., Crossley J.A., Aitken D.A., Cameron A.D., Connor J.M. Early pregnancy levels of pregnancy-associated plasma protein a and the risk of intrauterine growth restriction, premature birth, preeclampsia, and stillbirth. J. Clin. Endocrinol. Metab. 2002;87:1762–1767. doi: 10.1210/jcem.87.4.8430.
    1. Ranta J.K., Raatikainen K., Romppanen J., Pulkki K., Heinonen S. Decreased PAPP-A is associated with preeclampsia, premature delivery and small for gestational age infants but not with placental abruption. Eur. J. Obstet. Gynecol. Reprod. Biol. 2011;157:48–52. doi: 10.1016/j.ejogrb.2011.03.004.
    1. Zhong Y., Zhu F., Ding Y. Serum screening in first trimester to predict pre-eclampsia, small for gestational age and preterm delivery: Systematic review and meta-analysis. BMC Pregnancy Childbirth. 2015;15:191. doi: 10.1186/s12884-015-0608-y.
    1. Kagan K.O., Wright D., Baker A., Sahota D., Nicolaides K.H. Screening for trisomy 21 by maternal age, fetal nuchal translucency thickness, free β-human chorionic gonadotropin and pregnancy-associated plasma protein-A. Ultrasound Obstet. Gynecol. Off. J. Int. Soc. Ultrasound Obstet. Gynecol. 2008;31:618–624. doi: 10.1002/uog.5331.
    1. Wright D., Spencer K., Kagan K.K., Torring N., Petersen O.B., Christou A., Kallikas J., Nicolaides K.H. First-trimester combined screening for trisomy 21 at 7–14 weeks’ gestation. Ultrasound Obstet. Gynecol. Off. J. Int. Soc. Ultrasound Obstet. Gynecol. 2010;36:404–411. doi: 10.1002/uog.7755.
    1. Cuckle H. Biochemical screening for Down syndrome. Eur. J. Obstet. Gynecol. Reprod. Biol. 2000;92:97–101. doi: 10.1016/S0301-2115(00)00431-0.
    1. American College of Obstetricians and Gynecologists Diagnosis and treatment of gestational trophoblastic disease. Obstet. Gynecol. 2004;103:1365–1377.
    1. Lurain J.R., Brewer J.I., Torok E.E., Halpern B. Natural history of hydatidiform mole after primary evacuation. Am. J. Obstet. Gynecol. 1983;145:591–595. doi: 10.1016/0002-9378(83)91202-4.
    1. Curry S.L., Hammond C.B., Tyrey L., Creasman W.T., Parker R.T. Hydatidiform mole: Diagnosis, management, and long-term followup of 347 patients. Obstet. Gynecol. 1975;45:1–8. doi: 10.1097/00006254-197507000-00025.
    1. Baergen R.N., Rutgers J.L., Young R.H., Osann K., Scully R.E. Placental site trophoblastic tumor: A study of 55 cases and review of the literature emphasizing factors of prognostic significance. Gynecol. Oncol. 2006;100:511–520. doi: 10.1016/j.ygyno.2005.08.058.
    1. Khazaeli M.B., Hedayat M.M., Hatch K.D., To A.C., Soong S.J., Shingleton H.M., Boots L.R., LoBuglio A.F. Radioimmunoassay of free β-subunit of human chorionic gonadotropin as a prognostic test for persistent trophoblastic disease in molar pregnancy. Am. J. Obstet. Gynecol. 1986;155:320–324. doi: 10.1016/0002-9378(86)90818-5.
    1. Berkowitz R., Ozturk M., Goldstein D., Bernstein M., Hill L., Wands J.R. Human chorionic gonadotropin and free subunits’ serum levels in patients with partial and complete hydatidiform moles. Obstet. Gynecol. 1989;74:212–216.
    1. Vaitukaitis J.L., Ebersole E.R. Evidence for altered synthesis of human chorionic gonadotropin in gestational trophoblastic tumors. J. Clin. Endocrinol. Metab. 1976;42:1048–1055. doi: 10.1210/jcem-42-6-1048.
    1. Vartiainen J., Alfthan H., Lehtovirta P., Stenman U.H. Elevated hCG and a high proportion of hCGβ in serum preceding the diagnosis of trophoblastic disease by seven months. BJOG Int. J. Obstet. Gynaecol. 2002;109:589–590. doi: 10.1016/S1470-0328(02)00195-7.
    1. Filicori M., Fazleabas A.T., Huhtaniemi I., Licht P., Rao Ch V., Tesarik J., Zygmunt M. Novel concepts of human chorionic gonadotropin: Reproductive system interactions and potential in the management of infertility. Fertil. Steril. 2005;84:275–284. doi: 10.1016/j.fertnstert.2005.02.033.
    1. Casarini L., Brigante G., Simoni M., Santi D. Clinical Applications of Gonadotropins in the Female: Assisted Reproduction and Beyond. Prog. Mol. Biol. Transl. Sci. 2016;143:85–119.
    1. Santi D., Casarini L., Alviggi C., Simoni M. Efficacy of Follicle-Stimulating Hormone (FSH) Alone, FSH + Luteinizing Hormone, Human Menopausal Gonadotropin or FSH + Human Chorionic Gonadotropin on Assisted Reproductive Technology Outcomes in the “Personalized” Medicine Era: A Meta-analysis. Front. Endocrinol. 2017;8:114. doi: 10.3389/fendo.2017.00114.
    1. Tesarik J., Hazout A., Mendoza C. Luteinizing hormone affects uterine receptivity independently of ovarian function. Reprod. Biomed. Online. 2003;7:59–64. doi: 10.1016/S1472-6483(10)61729-4.
    1. Chang P., Kenley S., Burns T., Denton G., Currie K., DeVane G., O’Dea L. Recombinant human chorionic gonadotropin (rhCG) in assisted reproductive technology: Results of a clinical trial comparing two doses of rhCG (Ovidrel) to urinary hCG (Profasi) for induction of final follicular maturation in in vitro fertilization-embryo transfer. Fertil. Steril. 2001;76:67–74.
    1. Abdelmassih V., Oliveira F.G., Goncalves S.P., Varella A.D., Diamond M.P., Abdelmassih R. A prospective, randomized and blinded comparison between 10,000 IU urinary and 250 microg recombinant human chorionic gonadotropin for oocyte maturation in in vitro fertilization cycles. J. Assist. Reprod. Genet. 2005;22:149–153. doi: 10.1007/s10815-005-4911-9.

Source: PubMed

3
Předplatit