Personalized vaccinology: A review

G A Poland, I G Ovsyannikova, R B Kennedy, G A Poland, I G Ovsyannikova, R B Kennedy

Abstract

At the current time, the field of vaccinology remains empirical in many respects. Vaccine development, vaccine immunogenicity, and vaccine efficacy have, for the most part, historically been driven by an empiric "isolate-inactivate-inject" paradigm. In turn, a population-level public health paradigm of "the same dose for everyone for every disease" model has been the normative thinking in regard to prevention of vaccine-preventable infectious diseases. In addition, up until recently, no vaccines had been designed specifically to overcome the immunosenescence of aging, consistent with a post-WWII mentality of developing vaccines and vaccine programs for children. It is now recognized that the current lack of knowledge concerning how immune responses to vaccines are generated is a critical barrier to understanding poor vaccine responses in the elderly and in immunoimmaturity, discovery of new correlates of vaccine immunogenicity (vaccine response biomarkers), and a directed approach to new vaccine development. The new fields of vaccinomics and adversomics provide models that permit global profiling of the innate, humoral, and cellular immune responses integrated at a systems biology level. This has advanced the science beyond that of reductionist scientific approaches by revealing novel interactions between and within the immune system and other biological systems (beyond transcriptional level), which are critical to developing "downstream" adaptive humoral and cellular responses to infectious pathogens and vaccines. Others have applied systems level approaches to the study of antibody responses (a.k.a. "systems serology"), [1] high-dimensional cell subset immunophenotyping through CyTOF, [2,3] and vaccine induced metabolic changes [4]. In turn, this knowledge is being utilized to better understand the following: identifying who is at risk for which infections; the level of risk that exists regarding poor immunogenicity and/or serious adverse events; and the type or dose of vaccine needed to fully protect an individual. In toto, such approaches allow for a personalized approach to the practice of vaccinology, analogous to the substantial inroads that individualized medicine is playing in other fields of human health and medicine. Herein we briefly review the field of vaccinomics, adversomics, and personalized vaccinology.

Keywords: Adaptive; Cellular immunity; Humoral immunity; Immunity; Immunization; Immunogenetics; Innate immunity; Vaccination; Vaccines.

Copyright © 2017 Elsevier Ltd. All rights reserved.

Figures

Fig. 1
Fig. 1
Personalized Vaccinology Paradigm.

References

    1. Chung A.W., Kumar M.P., Arnold K.B., Yu W.H., Schoen M.K., Dunphy L.J. Dissecting polyclonal vaccine-induced humoral immunity against HIV using systems serology. Cell. 2015;163(4):988–998.
    1. Newell E.W., Sigal N., Bendall S.C., Nolan G.P., Davis M.M. Cytometry by time-of-flight shows combinatorial cytokine expression and virus-specific cell niches within a continuum of CD8 + T cell phenotypes. Immunity. 2012;36(1):142–152.
    1. Porpiglia E., Samusik N., Van Ho A.T., Cosgrove B.D., Mai T., Davis K.L. High-resolution myogenic lineage mapping by single-cell mass cytometry. Nat Cell Biol. 2017;19(5):558–567.
    1. Li S., Sullivan N.L., Rouphael N., Yu T., Banton S., Maddur M.S. Metabolic phenotypes of response to vaccination in humans. Cell. 2017;169(5):862–877. e17.
    1. Poland G.A., Ovsyannikova I.G., Jacobson R.M., Smith D.I. Heterogeneity in vaccine immune response: the role of immunogenetics and the emerging field of vaccinomics. Clin Pharmacol Ther. 2007;82(6):653–664.
    1. Poland G.A., Kennedy R.B., McKinney B.A., Ovsyannikova I.G., Lambert N.D., Jacobson R.M. Vaccinomics, adversomics, and the immune response network theory: individualized vaccinology in the 21st century. Semin Immunol. 2013;25(2):89–103.
    1. Poland G.A. Pharmacology, vaccinomics, and the second golden age of vaccinology. Clin PharmacolTher. 2007;82(6):623–626.
    1. Poland G.A., Ovsyannikova I.G., Kennedy R.B., Lambert N.D., Kirkland J.L. A systems biology approach to the effect of aging, immunosenescence and vaccine response. Curr Opin Immunol. 2014;9(29C):62–68.
    1. Castiblanco J., Anaya J.M. Genetics and vaccines in the era of personalized medicine. Curr Genom. 2015;16(1):47–59.
    1. Painter S.D., Ovsyannikova I.G., Poland G.A. The weight of obesity on the human immune response to vaccination. Vaccine. 2015;33(36):4422–4429.
    1. Goronzy J.J., Weyand C.M. Understanding immunosenescence to improve responses to vaccines. Nat Immunol. 2013;14(5):428–436.
    1. Poland G.A., Ovsyannikova I.G., Jacobson R.M. Vaccine immunogenetics: bedside to bench to population. Vaccine. 2008;26:6183–6188.
    1. Pulendran B. Learning immunology from the yellow fever vaccine: innate immunity to systems vaccinology. Nat Rev Immunol. 2009;9(10):741–747.
    1. Rappuoli R., Black S., Lambert P.H. Vaccine discovery and translation of new vaccine technology. Lancet. 2011;378(9788):360–368.
    1. Nakaya H.I., Li S., Pulendran B. Systems vaccinology: learning to compute the behavior of vaccine induced immunity. Wiley Interdiscip Rev Syst Biol Med. 2012;4(2):193–205.
    1. Fitzmaurice K., Hurst J., Dring M., Rauch A., McLaren P.J., Gunthard H.F. Additive effects of HLA alleles and innate immune genes determine viral outcome in HCV infection. Gut. 2014;64(5):813–819.
    1. Jarduli L.R., Sell A.M., Reis P.G., Sippert E.A., Ayo C.M., Mazini P.S. Role of HLA, KIR, MICA, and cytokines genes in leprosy. Biomed Res Int. 2013;2013:989837.
    1. Ali S., Chopra R., Aggarwal S., Srivastava A.K., Kalaiarasan P., Malhotra D. Association of variants in BAT1-LTA-TNF-BTNL2 genes within 6p21.3 region show graded risk to leprosy in unrelated cohorts of Indian population. Human Genet. 2012;131(5):703–716.
    1. Martin M.P., Carrington M. Immunogenetics of HIV disease. Immunol Rev. 2013;254(1):245–264.
    1. Ovsyannikova I.G., Haralambieva I.H., Vierkant R.A., O'Byrne M.M., Jacobson R.M., Poland G.A. The association of CD46, SLAM, and CD209 cellular receptor gene SNPs with variations in measles vaccine-induced immune responses–a replication study and examination of novel polymorphisms. Human Hered. 2011;72(3):206–223.
    1. Ovsyannikova I.G., Haralambieva I.H., Vierkant R.A., O'Byrne M.M., Poland G.A. Associations between polymorphisms in the antiviral TRIM genes and measles vaccine immunity. Human Immunol. 2013;74(6):768–774.
    1. Ovsyannikova I.G., Haralambieva I.H., Vierkant R.A., O'Byrne M.M., Jacobson R.M., Poland G.A. Effects of vitamin A and D receptor gene polymorphisms/haplotypes on immune responses to measles vaccine. Pharmacogenet Genom. 2012;22(1):20–31.
    1. Wu T.W., Chen C.F., Lai S.K., Lin H.H., Chu C.C., Wang L.Y. SNP rs7770370 in HLA-DPB1 loci as a major genetic determinant of response to booster hepatitis B vaccination: results of a genome-wide association study. J Gastroenterol Hepatol. 2015;30(5):891–899.
    1. Davila S., Froeling F.E., Tan A., Bonnard C., Boland G.J., Snippe H. New genetic associations detected in a host response study to hepatitis B vaccine. Genes Immun. 2010;11(3):232–238.
    1. Pan L., Zhang L., Zhang W., Wu X., Li Y., Yan B. A genome-wide association study identifies polymorphisms in the HLA-DR region associated with non-response to hepatitis B vaccination in Chinese Han populations. Human Mol Genet. 2014;23(8):2210–2219.
    1. Lambert N.D., Haralambieva I.H., Kennedy R.B., Ovsyannikova I.G., Pankrantz V.S., Poland G.A. Polymorphisms in HLA-DPB1 are associated with differences in rubella-specific humoral immunity after vaccination. J Infect Dis. 2015;211(6):898–905.
    1. Cummins N.W., Weaver E.A., May S.M., Croatt A.J., Foreman O., Kennedy R.B. Heme oxygenase-1 regulates the immune response to influenza virus infection and vaccination in aged mice. FASEB J. 2012;26(7):2911–2918.
    1. Ovsyannikova I.G., Kennedy R.B., O'Byrne M., Jacobson R.M., Pankratz V.S., Poland G.A. Genome-wide association study of antibody response to smallpox vaccine. Vaccine. 2012;30(28):4182–4189.
    1. Kennedy R.B., Ovsyannikova I.G., Pankratz V.S., Haralambieva I.H., Vierkant R.A., Jacobson R.M. Genome-wide genetic associations with IFNgamma response to smallpox vaccine. Human Genet. 2012;131(9):1433–1451.
    1. Poland G.A., Ovsyannikova I.G., Jacobson R.M. Immunogenetics of seasonal influenza vaccine response. Vaccine. 2008;26S:D35–D40.
    1. Ovsyannikova I.G., Pankratz V.S., Vierkant R.A., Pajewski N.M., Quinn C.P., Kaslow R.A. Human leukocyte antigens and cellular immune responses to anthrax vaccine adsorbed. Infect Immun. 2013;81(7):2584–2591.
    1. Ovsyannikova I.G., Jacobson R.M., Dhiman N., Vierkant R.A., Pankratz V.S., Poland G.A. Human leukocyte antigen and cytokine receptor gene polymorphisms associated with heterogeneous immune responses to mumps viral vaccine. Pediatrics. 2008;121(5):e1091–e1099.
    1. Kennedy R.B., Ovsyannikova I.G., Haralambieva I.H., Lambert N.D., Pankratz V.S., Poland G.A. Genetic polymorphisms associated with rubella virus-specific cellular immunity following MMR vaccination. Human Genet. 2014;133(11):1407–1417.
    1. Poland G.A., Ovsyannikova I.G., Jacobson R.M. The Jordan Report. U.S Department of Health and Human Services; 2012. Vaccinomics and personalized vaccinology.
    1. Ovsyannikova I.G., Pankratz V.S., Vierkant R.A., Jacobson R.M., Poland G.A. Consistency of HLA associations between two independent measles vaccine cohorts: a replication study. Vaccine. 2012;30(12):2146–2152.
    1. Haralambieva I.H., Kennedy R.B., Ovsyannikova I.G., Whitaker J.A., Poland G.A. Variability in humoral immunity to measles vaccine: new developments. Trends Mol Med. 2015;21(12):789–801.
    1. Ovsyannikova I.G., Johnson K.L., Muddiman D.C., Vierkant R.A., Poland G.A. Identification and characterization of novel, naturally processed measles virus class II HLA-DRB1 peptides. J Virol. 2004;78(1):42–51.
    1. Johnson K.L., Ovsyannikova I.G., Poland G., Muddiman D.C. Identification of class II HLA-DRB1*03-bound measles virus peptides by 2D-liquid chromatography tandem mass spectrometry. J Proteome Res. 2005;4:2243–2249.
    1. Homan E.J., Bremel R.D. Are cases of mumps in vaccinated patients attributable to mismatches in both vaccine T-cell and B-cell epitopes?: An immunoinformatic analysis. Hum Vaccin Immunother. 2014;10(2):290–300.
    1. Akira S., Takeda K., Kaisho T. Toll-like receptors: critical proteins linking innate and acquired immunity. Nat Immunol. 2001;2(8):675–680.
    1. Schnare M., Barton G.M., Holt A.C., Takeda K., Akira S., Medzhitov R. Toll-like receptors control activation of adaptive immune responses. Nat Immunol. 2001;2(10):947–950.
    1. Ovsyannikova I.G., Haralambieva I.H., Vierkant R.A., Pankratz V.S., Poland G.A. The role of polymorphisms in toll-like receptors and their associated intracellular signaling genes in measles vaccine immunity. Human Genet. 2011;130(4):547–561.
    1. Ovsyannikova I.G., Dhiman N., Haralambieva I.H., Vierkant R.A., O'Byrne M.M., Jacobson R.M. Rubella vaccine-induced cellular immunity: evidence of associations with polymorphisms in the Toll-like, vitamin A and D receptors, and innate immune response genes. Human Genet. 2010;127:207–221.
    1. Young K.R., Nzula S., Burt D.S., Ward B.J. Immunologic characterization of a novel inactivated nasal mumps virus vaccine adjuvanted with Protollin. Vaccine. 2014;32(2):238–245.
    1. Klein S.L., Jedlicka A., Pekosz A. The Xs and Y of immune responses to viral vaccines. Lancet Infect Dis. 2010;10(5):338–349.
    1. Klein S.L., Poland G.A. Personalized vaccinology: one size and dose might not fit both sexes. Vaccine. 2013;31(23):2599–2600.
    1. Engler R.J., Nelson M.R., Klote M.M., VanRaden M.J., Huang C.Y., Cox N.J. Half- vs full-dose trivalent inactivated influenza vaccine (2004–2005): age, dose, and sex effects on immune responses. Arch Intern Med. 2008;168(22):2405–2414.
    1. Couch R.B., Winokur P., Brady R., Belshe R., Chen W.H., Cate T.R. Safety and immunogenicity of a high dosage trivalent influenza vaccine among elderly subjects. Vaccine. 2007;25(44):7656–7663.
    1. Stanberry L.R., Spruance S.L., Cunningham A.L., Bernstein D.I., Mindel A., Sacks S. Glycoprotein-D-adjuvant vaccine to prevent genital herpes. New Engld J Med. 2002;347:1652–1661.
    1. Kennedy R.B., Ovsyannikova I.G., Pankratz V.S., Vierkant R.A., Jacobson R.M., Ryan M.A. Gender effects on humoral immune responses to smallpox vaccine. Vaccine. 2009;27(25–26):3319–3323.
    1. Furman D., Hejblum B.P., Simon N., Jojic V., Dekker C.L., Thiebaut R. Systems analysis of sex differences reveals an immunosuppressive role for testosterone in the response to influenza vaccination. Proc Natl Acad Sci U.S.A. 2014;111(2):869–874.
    1. Veit O., Niedrig M., Chapuis-Taillard C., Cavassini M., Mossdorf E., Schmid P. Immunogenicity and safety of yellow fever vaccination for 102 HIV-infected patients. Clin Infect Dis. 2009;48(5):659–666.
    1. Kanesa-Thasan N., Sun W., Ludwig G.V., Rossi C., Putnak J.R., Mangiafico J.A. Atypical antibody responses in dengue vaccine recipients. Am J Trop Med Hyg. 2003;69(6 Suppl):32–38.
    1. Lorenzo M.E., Hodgson A., Robinson D.P., Kaplan J.B., Pekosz A., Klein S.L. Antibody responses and cross protection against lethal influenza A viruses differ between the sexes in C57BL/6 mice. Vaccine. 2011;29(49):9246–9255.
    1. Klein S.L., Hodgson A., Robinson D.P. Mechanisms of sex disparities in influenza pathogenesis. J Leukocyte Biol. 2012;92(1):67–73.
    1. Cook I.F., Barr I., Hartel G., Pond D., Hampson A.W. Reactogenicity and immunogenicity of an inactivated influenza vaccine administered by intramuscular or subcutaneous injection in elderly adults. Vaccine. 2006;24(13):2395–2402.
    1. Fang J.W.S., Lai C.L., Chung H.T., Wu P.C., Lau J.Y.N. Female children respond to recombinant hepatitis B vaccine with a higher titre than male. J Trop Pediatr. 1994;40:104–107.
    1. Klein S.L., Pekosz A. Sex-based biology and the rational design of influenza vaccination strategies. J Infect Dis. 2014;15(209 Suppl 3):S114–S119.
    1. Klein S.L., Marriott I., Fish E.N. Sex-based differences in immune function and responses to vaccination. Trans R Soc Trop Med Hyg. 2015;109(1):9–15.
    1. Beery A.K., Zucker I. Sex bias in neuroscience and biomedical research. Neurosci Biobehav Rev. 2011;35(3):565–572.
    1. Klein S.L. Immune cells have sex and so should journal articles. Endocrinology. 2012;153(6):2544–2550.
    1. Ovsyannikova I.G., Salk H.M., Kennedy R.B., Haralambieva I.H., Zimmermann M.T., Grill D.E. Gene signatures associated with adaptive humoral immunity following seasonal influenza A/H1N1 vaccination. Genes Immun. 2016;17(7):371–379.
    1. Poland G.A., Kennedy R.B., Ovsyannikova I.G. Vaccinomics and personalized vaccinology: Is science leading us toward a new path of directed vaccine development and discovery? PLoS Pathogens. 2011;7(12):e1002344.
    1. Poland G.A., Ovsyannikova I.G., Jacobson R.M. Personalized vaccines: the emerging field of vaccinomics. Expert Opin Biol Ther. 2008;8(11):1659–1667.
    1. Weng N.P. Aging of the immune system: how much can the adaptive immune system adapt? Immunity. 2006;24(5):495–499.
    1. Gomez C.R., Boehmer E.D., Kovacs E.J. The aging innate immune system. Curr Opin Immunol. 2005;17(5):457–462.
    1. Lambert N.D., Ovsyannikova I.G., Pankratz V.S., Jacobson R.M., Poland G.A. Understanding the immune response to seasonal influenza vaccination in older adults: a systems biology approach. Expert Rev Vaccines. 2012;11(8):985–994.
    1. Allman D., Miller J.P. The aging of early B-cell precursors. Immunol Rev. 2005;205:18–29.
    1. Franceschi C., Bonafe M., Valensin S., Olivieri F., De L.M., Ottaviani E. Inflamm-aging. An evolutionary perspective on immunosenescence. Ann NY Acad Sci. 2000;908:244–254.
    1. Zhang Y., Wallace D.L., de Lara C.M., Ghattas H., Asquith B., Worth A. In vivo kinetics of human natural killer cells: the effects of ageing and acute and chronic viral infection. Immunology. 2007;121(2):258–265.
    1. Qian F., Wang X., Zhang L., Chen S., Piecychna M., Allore H. Age-associated elevation in TLR5 leads to increased inflammatory responses in the elderly. Aging Cell. 2012;11(1):104–110.
    1. Cunningham A.L., Lal H., Kovac M., Chlibek R., Hwang S.J., Diez-Domingo J. Efficacy of the Herpes Zoster subunit vaccine in adults 70 years of age or older. New Engl J Med. 2016;375(11):1019–1032.
    1. Lal H., Cunningham A.L., Godeaux O., Chlibek R., Diez-Domingo J., Hwang S.J. Efficacy of an adjuvanted herpes zoster subunit vaccine in older adults. New Engl J Med. 2015;372(22):2087–2096.
    1. Behzad H., Huckriede A.L., Haynes L., Gentleman B., Coyle K., Wilschut J.C. GLA-SE, a synthetic toll-like receptor 4 agonist, enhances T-cell responses to influenza vaccine in older adults. J Infect Dis. 2012;205(3):466–473.
    1. Gallaher W.R. Towards a sane and rational approach to management of Influenza H1N1 2009. Virol J. 2009;6(1):51.
    1. Querec T.D., Akondy R.S., Lee E.K., Cao W., Nakaya H.I., Teuwen D. Systems biology approach predicts immunogenicity of the yellow fever vaccine in humans. Nat Immunol. 2009;10(1):116–125.
    1. Nakaya H.I., Wrammert J., Lee E.K., Racioppi L., Marie-Kunze S., Haining W.N. Systems biology of seasonal influenza vaccination in humans. Nat Immunol. 2011;12(8):786–795.
    1. Fourati S., Cristescu R., Loboda A., Talla A., Filali A., Railkar R. Pre-vaccination inflammation and B-cell signalling predict age-related hyporesponse to hepatitis B vaccination. Nat Commun. 2016;08(7):10369.
    1. Ogden C.L., Carroll M.D., Kit B.K., Flegal K.M. Prevalence of childhood and adult obesity in the United States, 2011–2012. JAMA. 2014;311(8):806–814.
    1. Weber D.J., Rutala W.A., Samsa G.P., Santimaw J.E., Lemon S.M. Obesity as a predictor of poor antibody response to hepatitis B plasma vaccine. JAMA. 1985;254(22):3187–3189.
    1. Eliakim A., Schwindt C., Zaldivar F., Casali P., Cooper D.M. Reduced tetanus antibody titers in overweight children. Autoimmunity. 2006;39(2):137–141.
    1. Banga N., Guss P., Banga A., Rosenman K.D. Incidence and variables associated with inadequate antibody titers after pre-exposure rabies vaccination among veterinary medical students. Vaccine. 2014;32(8):979–983.
    1. Talbot H.K., Coleman L.A., Crimin K., Zhu Y., Rock M.T., Meece J. Association between obesity and vulnerability and serologic response to influenza vaccination in older adults. Vaccine. 2012;30(26):3937–3943.
    1. Zhang Y., Scarpace P.J. The role of leptin in leptin resistance and obesity. Physiol Behav. 2006;88(3):249–256.
    1. Karlsson E.A., Sheridan P.A., Beck M.A. Diet-induced obesity impairs the T cell memory response to influenza virus infection. J Immunol. 2010;184(6):3127–3133.
    1. Ovsyannikova I.G., White S.J., Larrabee B.R., Grill D.E., Jacobson R.M., Poland G.A. Leptin and leptin-related gene polymorphisms, obesity, and influenza A/H1N1 vaccine-induced immune responses in older individuals. Vaccine. 2014;32(7):881–887.
    1. Sheridan P.A., Paich H.A., Handy J., Karlsson E.A., Hudgens M.G., Sammon A.B. Obesity is associated with impaired immune response to influenza vaccination in humans. Int J Obesity. 2012;36(8):1072–1077.
    1. White S.J., Taylor M.J., Hurt R.T., Jensen M.D., Poland G.A. Leptin-based adjuvants: an innovative approach to improve vaccine response. Vaccine. 2013;31(13):1666–1672.
    1. Poland G.A., Ovsyannikova I.G., Jacobson R.M. Adversomics: the emerging field of vaccine adverse event immunogenetics. Pediatr Infect Dis J. 2009;28(5):431–432.
    1. Whitaker J.A., Ovsyannikova I.G., Poland G.A. Adversomics: a new paradigm for vaccine safety and design. Expert Rev Vaccines. 2015;2:1–13.
    1. McKinney B.A., Reif D.M., Rock M.T., Edwards K.M., Kingsmore S.F., Moore J.H. Cytokine expression patterns associated with systemic adverse events following smallpox immunization. J Infect Dis. 2006;194(4):444–453.
    1. Stanley S.L., Jr., Frey S.E., Taillon-Miller P., Guo J., Miller R.D., Koboldt D.C. The immunogenetics of smallpox vaccination. J Infect Dis. 2007;196(2):212–219.
    1. Reif D.M., McKinney B.A., Motsinger A.A., Chanock S.J., Edwards K.M., Rock M.T. Genetic basis for adverse events after smallpox vaccination. J Infect Dis. 2008;198(1):16–22.
    1. Hur J., Ozgur A., Xiang Z., He Y. Identification of fever and vaccine-associated gene interaction networks using ontology-based literature mining. J Biomed Semantics. 2012;3(1):18.
    1. Feenstra B., Pasternak B., Geller F., Carstensen L., Wang T., Huang F. Common variants associated with general and MMR vaccine-related febrile seizures. Nat Genet. 2014;46(12):1274–1282.
    1. Poland G.A., Jacobson R.M. The clinician's guide to the anti-vaccinationists' galaxy. Human Immunol. 2012;73(8):859–866.
    1. Poland GA, Jacobson RM, Ovsyannikova IG. Trends affecting the future of vaccine development and delivery: the role of demographics, regulatory science, the anti-vaccine and consumer culture and vaccinomics. Vaccine 2009;27(25-26 Special Issue SI):3240–3244.
    1. Poland G.A., Jacobson R.M. Understanding those who do not understand: a brief review of the anti-vaccine movement. Vaccine. 2001;19:2440–2445.
    1. Milian E., Julien T., Biaggio R., Venereo-Sanchez A., Montes J., Manceur A.P. Accelerated mass production of influenza virus seed stocks in HEK-293 suspension cell cultures by reverse genetics. Vaccine. 2017;35(26):3423–3430.
    1. Hegde N.R. Cell culture-based influenza vaccines: A necessary and indispensable investment for the future. Hum Vaccin Immunother. 2015;11(5):1223–1234.
    1. Pavot V. Ebola virus vaccines: where do we stand? Clinical immunology. 2016;173:44–49.
    1. Regules J.A., Beigel J.H., Paolino K.M., Voell J., Castellano A.R., Hu Z. A recombinant vesicular stomatitis virus Ebola vaccine. New Engl J Med. 2017;376(4):330–341.
    1. De Santis O., Audran R., Pothin E., Warpelin-Decrausaz L., Vallotton L., Wuerzner G. Safety and immunogenicity of a chimpanzee adenovirus-vectored Ebola vaccine in healthy adults: a randomised, double-blind, placebo-controlled, dose-finding, phase 1/2a study. Lancet Infect Dis. 2016;16(3):311–320.
    1. Zhu F.C., Hou L.H., Li J.X., Wu S.P., Liu P., Zhang G.R. Safety and immunogenicity of a novel recombinant adenovirus type-5 vector-based Ebola vaccine in healthy adults in China: preliminary report of a randomised, double-blind, placebo-controlled, phase 1 trial. Lancet. 2015;385(9984):2272–2279.
    1. Milligan I.D., Gibani M.M., Sewell R., Clutterbuck E.A., Campbell D., Plested E. Safety and immunogenicity of novel adenovirus type 26- and modified vaccinia ankara-vectored ebola vaccines: a randomized clinical trial. JAMA. 2016;315(15):1610–1623.
    1. Zhou Y., Sullivan N.J. Immunology and evolvement of the adenovirus prime, MVA boost Ebola virus vaccine. Curr Opin Immunol. 2015;35:131–136.
    1. Kibuuka H., Berkowitz N.M., Millard M., Enama M.E., Tindikahwa A., Sekiziyivu A.B. Safety and immunogenicity of Ebola virus and Marburg virus glycoprotein DNA vaccines assessed separately and concomitantly in healthy Ugandan adults: a phase 1 b, randomised, double-blind, placebo-controlled clinical trial. Lancet. 2015;385(9977):1545–1554.
    1. Excler JL, Plotkin S. The prime-boost concept applied to HIV preventive vaccines. AIDS 1997;11(Suppl A):S127-S137.
    1. Amara R.R., Villinger F., Altman J.D., Lydy S.L., O'Neil S.P., Staprans S.I. Control of a mucosal challenge and prevention of AIDS by a multiprotein DNA/MVA vaccine. Science. 2001;292(5514):69–74.
    1. Schneider J., Gilbert S.C., Blanchard T.J., Hanke T., Robson K.J., Hannan C.M. Enhanced immunogenicity for CD8 + T cell induction and complete protective efficacy of malaria DNA vaccination by boosting with modified vaccinia virus Ankara. Nat Med. 1998;4(4):397–402.
    1. McShane H., Brookes R., Gilbert S.C., Hill A.V.S. Enhanced immunogenicity of CD4 + T-cell responses and protective efficacy of a DNA-modified vaccinia virus Ankara prime-boost vaccination regimen for murine tuberculosis. Infect Immun. 2001;69(2):681–686.
    1. Abbasi J. First inactivated Zika vaccine trial. Jama. 2016;316(24):2588.
    1. Durbin A.P. Vaccine development for Zika virus-timelines and strategies. Semin Reprod Med. 2016;34(5):299–304.
    1. Barouch D.H., Thomas S.J., Michael N.L. Prospects for a Zika virus vaccine. Immunity. 2017;46(2):176–182.
    1. Pardi N., Hogan M.J., Pelc R.S., Muramatsu H., Andersen H., DeMaso C.R. Zika virus protection by a single low-dose nucleoside-modified mRNA vaccination. Nature. 2017;543(7644):248–251.
    1. Abbink P., Larocca R.A., De La Barrera R.A., Bricault C.A., Moseley E.T., Boyd M. Protective efficacy of multiple vaccine platforms against Zika virus challenge in rhesus monkeys. Science. 2016;353(6304):1129–1132.
    1. Kim E., Erdos G., Huang S., Kenniston T., Falo L.D., Jr., Gambotto A. Preventative vaccines for zika virus outbreak: preliminary evaluation. EBio Med. 2016;13:315–320.
    1. Kennedy R.B., Poland G.A. The identification of HLA class II-restricted T cell epitopes to vaccinia virus membrane proteins. Virology. 2010;408(2):232–240.
    1. Johnson K.L., Ovsyannikova I.G., Mason C.J., Bergen H.R., III, Poland G.A. Discovery of naturally processed and HLA-presented class I peptides from vaccinia virus infection using mass spectrometry for vaccine development. Vaccine. 2009;28(1):38–47.
    1. Johnson A.J., Kennedy S.C., Lindestam Arlehamn C.S., Goldberg M.F., Saini N.K., Xu J. Identification of mycobacterial RplJ/L10 and RpsA/S1 proteins as novel targets for CD4 + T cells. Infect Immun. 2017;85(4):e01023–e1116.
    1. Hajighahramani N., Nezafat N., Eslami M., Negahdaripour M., Rahmatabadi S.S., Ghasemi Y. Immunoinformatics analysis and in silico designing of a novel multi-epitope peptide vaccine against Staphylococcus aureus. Infect Genet Evol. 2017;48:83–94.
    1. Loeffler F.F., Pfeil J., Heiss K. High-density peptide arrays for malaria vaccine development. Methods Mol Biol. 2016;1403:569–582.
    1. Kuhn T.S. The University of Chicago Press; Chicago: 1996. The structure of scientific revolutions.
    1. Camilloni B., Basileo M., Valente S., Nunzi E., Iorio A.M. Immunogenicity of intramuscular MF59-adjuvanted and intradermal administered influenza enhanced vaccines in subjects aged over 60: a literature review. Hum Vaccin Immunother. 2015;11(3):553–563.
    1. Nolan T., Bravo L., Ceballos A., Mitha E., Gray G., Quiambao B. Enhanced and persistent antibody response against homologous and heterologous strains elicited by a MF59-adjuvanted influenza vaccine in infants and young children. Vaccine. 2014;32(46):6146–6156.
    1. Van Buynder P.G., Konrad S., Van Buynder J.L., Brodkin E., Krajden M., Ramler G. The comparative effectiveness of adjuvanted and unadjuvanted trivalent inactivated influenza vaccine (TIV) in the elderly. Vaccine. 2013;31(51):6122–6128.

Source: PubMed

3
Předplatit