Is the 1-minute sit-to-stand test a good tool for the evaluation of the impact of pulmonary rehabilitation? Determination of the minimal important difference in COPD

Trija Vaidya, Claire de Bisschop, Marc Beaumont, Hakima Ouksel, Véronique Jean, François Dessables, Arnaud Chambellan, Trija Vaidya, Claire de Bisschop, Marc Beaumont, Hakima Ouksel, Véronique Jean, François Dessables, Arnaud Chambellan

Abstract

Background: The 1-minute sit-to-stand (STS) test could be valuable to assess the level of exercise tolerance in chronic obstructive pulmonary disease (COPD). There is a need to provide the minimal important difference (MID) of this test in pulmonary rehabilitation (PR).

Methods: COPD patients undergoing the 1-minute STS test before PR were included. The test was performed at baseline and the end of PR, as well as the 6-minute walk test, and the quadriceps maximum voluntary contraction (QMVC). Home and community-based programs were conducted as recommended. Responsiveness to PR was determined by the difference in the 1-minute STS test between baseline and the end of PR. The MID was evaluated using distribution and anchor-based methods.

Results: Forty-eight COPD patients were included. At baseline, the significant predictors of the number of 1-minute STS repetitions were the 6-minute walk distance (6MWD) (r=0.574; P<10-3), age (r=-0.453; P=0.001), being on long-term oxygen treatment (r=-0.454; P=0.017), and the QMVC (r=0.424; P=0.031). The multivariate analysis explained 75.8% of the variance of 1-minute STS repetitions. The improvement of the 1-minute STS repetitions at the end of PR was 3.8±4.2 (P<10-3). It was mainly correlated with the change in QMVC (r=0.572; P=0.004) and 6MWD (r=0.428; P=0.006). Using the distribution-based analysis, an MID of 1.9 (standard error of measurement method) or 3.1 (standard deviation method) was found. With the 6MWD as anchor, the receiver operating characteristic curve identified the MID for the change in 1-minute STS repetitions at 2.5 (sensibility: 80%, specificity: 60%) with area under curve of 0.716.

Conclusion: The 1-minute STS test is simple and sensitive to measure the efficiency of PR. An improvement of at least three repetitions is consistent with physical benefits after PR.

Keywords: 6-minute walk test; COPD; exercise tolerance; pulmonary rehabilitation; sit-to-stand test.

Conflict of interest statement

The authors report no conflicts of interest in this work.

Figures

Figure 1
Figure 1
Association between change in 1-minute STS test and change in (A) 6-minute walk distance (6MWD) and (B) quadriceps maximal voluntary contraction (QMVC) with pulmonary rehabilitation. Note: (A and B) The black dotted line is the linear regression of the relation between the two variables. Abbreviations: 6MWD, 6-minute walk distance; QMVC, quadriceps maximal voluntary contraction; STS, sit-to-stand.
Figure 2
Figure 2
Receiver operating characteristic curve for the identification of the minimal important difference of the 1-minute STS test using a 30 m improvement in 6-minute walk test as anchor. Abbreviations: STS, sit-to-stand; AUC, area under curve.

References

    1. World Health Organization . The International Classification of Functioning, Disability and Health (ICF) Geneva: WHO Press; 2001.
    1. O’Donnell DE, Laveneziana P. Dyspnea and activity limitation in COPD: mechanical factors. COPD. 2007;4(3):225–236.
    1. Rasekaba T, Lee AL, Naughton MT, Williams TJ, Holland AE. The six-minute walk test: a useful metric for the cardiopulmonary patient. Intern Med J. 2009;39(8):495–501.
    1. Revill SM, Morgan MD, Singh SJ, Williams J, Hardman AE. The endurance shuttle walk: a new field test for the assessment of endurance capacity in chronic obstructive pulmonary disease. Thorax. 1999;54(3):213–222.
    1. Singh SJ, Morgan MD, Scott S, Walters D, Hardman AE. Development of a shuttle walking test of disability in patients with chronic airways obstruction. Thorax. 1992;47(12):1019–1024.
    1. Villiot-Danger E. A stairclimbing test in COPD patients assessment. Rev Mal Respir. 2009;26(5):530–536.
    1. Ozalevli S, Ozden A, Itil O, Akkoclu A. Comparison of the sit-to-stand test with 6 min walk test in patients with chronic obstructive pulmonary disease. Respir Med. 2007;101(2):286–293.
    1. Coquart JB, Lemaitre F, Castres I, Saison S, Bart F, Grosbois JM. Reproducibility and sensitivity of the 6-minute stepper test in patients with COPD. COPD. 2015;12(5):533–538.
    1. Lord SR, Murray SM, Chapman K, Munro B, Tiedemann A. Sit-to-stand performance depends on sensation, speed, balance, and psychological status in addition to strength in older people. J Gerontol A Biol Sci Med Sci. 2002;57(8):M539–M543.
    1. Gross MM, Stevenson PJ, Charette SL, Pyka G, Marcus R. Effect of muscle strength and movement speed on the biomechanics of rising from a chair in healthy elderly and young women. Gait Posture. 1998;8(3):175–185.
    1. Jones SE, Kon SS, Canavan JL, et al. The five-repetition sit-to-stand test as a functional outcome measure in COPD. Thorax. 2013;68(11):1015–1020.
    1. Vestbo J, Hurd SS, Agusti AG, et al. Global strategy for the diagnosis, management, and prevention of chronic obstructive pulmonary disease: GOLD executive summary. Am J Respir Crit Care Med. 2013;187(4):347–365.
    1. Spruit MA, Singh SJ, Garvey C, et al. An official American Thoracic Society/European Respiratory Society statement: key concepts and advances in pulmonary rehabilitation. Am J Respir Crit Care Med. 2013;188(8):e13–e64.
    1. Miller MR, Hankinson J, Brusasco V, et al. Standardisation of spirometry. Eur Respir J. 2005;26(2):319–338.
    1. Wanger J, Clausen JL, Coates A, et al. Standardisation of the measurement of lung volumes. Eur Respir J. 2005;26(3):511–522.
    1. Quanjer PH, Tammeling GJ, Cotes JE, Pedersen OF, Peslin R, Yernault JC. Lung volumes and forced ventilatory flows. report working party standardization of lung function tests, European community for steel and coal. Official statement of the European respiratory society. Eur Respir J Suppl. 1993;16:5–40.
    1. American Thoracic S, American College of Chest P ATS/ACCP Statement on cardiopulmonary exercise testing. Am J Respir Crit Care Med. 2003;167(2):211–277.
    1. Strassmann A, Steurer-Stey C, Lana KD, et al. Population-based reference values for the 1-min sit-to-stand test. Int J Public Health. 2013;58(6):949–953.
    1. Singh SJ, Puhan MA, Andrianopoulos V, et al. An official systematic review of the European Respiratory Society/American Thoracic Society: measurement properties of field walking tests in chronic respiratory disease. Eur Respir J. 2014;44(6):1447–1478.
    1. Holland AE, Spruit MA, Troosters T, et al. An official European Respiratory Society/American Thoracic Society technical standard: field walking tests in chronic respiratory disease. Eur Respir J. 2014;44(6):1428–1446.
    1. Bachasson D, Villiot-Danger E, Verges S, et al. Maximal isometric voluntary quadriceps strength assessment in COPD. Rev Mal Respir. 2014;31(8):765–770.
    1. Bohannon RW, Kindig J, Sabo G, Duni AE, Cram P. Isometric knee extension force measured using a handheld dynamometer with and without belt-stabilization. Physiother Theory Pract. 2012;28(7):562–568.
    1. Revicki D, Hays RD, Cella D, Sloan J. Recommended methods for determining responsiveness and minimally important differences for patient-reported outcomes. J Clin Epidemiol. 2008;61(2):102–109.
    1. Csuka M, McCarty DJ. Simple method for measurement of lower extremity muscle strength. Am J Med. 1985;78(1):77–81.
    1. Bisca GW, Morita AA, Hernandes NA, Probst VS, Pitta F. Simple lower limb functional tests in patients with chronic obstructive pulmonary disease: a systematic review. Arch Phys Med Rehabil. 2015;96(12):2221–2230.
    1. van Gestel AJ, Clarenbach CF, Stowhas AC, et al. Predicting daily physical activity in patients with chronic obstructive pulmonary disease. PLoS One. 2012;7(11):e48081.
    1. Kuo YL. The influence of chair seat height on the performance of community-dwelling older adults’ 30-second chair stand test. Aging Clin Exp Res. 2013;25(3):305–309.
    1. Butcher SJ, Pikaluk BJ, Chura RL, Walkner MJ, Farthing JP, Marciniuk DD. Associations between isokinetic muscle strength, high-level functional performance, and physiological parameters in patients with chronic obstructive pulmonary disease. Int J Chron Obstruct Pulmon Dis. 2012;7:537–542.
    1. Rausch-Osthoff AK, Kohler M, Sievi NA, Clarenbach CF, van Gestel AJ. Association between peripheral muscle strength, exercise performance, and physical activity in daily life in patients with chronic obstructive pulmonary disease. Multidiscip Respir Med. 2014;9(1):37.
    1. Aguilaniu B, Roth H, Gonzalez-Bermejo J, et al. A simple semipaced 3-minute chair rise test for routine exercise tolerance testing in COPD. Int J Chron Obstruct Pulmon Dis. 2014;9:1009–1019.
    1. Panton LB, Golden J, Broeder CE, Browder KD, Cestaro-Seifer DJ, Seifer FD. The effects of resistance training on functional outcomes in patients with chronic obstructive pulmonary disease. Eur J Appl Physiol. 2004;91(4):443–449.
    1. Janssen WG, Bussmann HB, Stam HJ. Determinants of the sit-to-stand movement: a review. Phys Ther. 2002;82(9):866–879.
    1. Rodosky MW, Andriacchi TP, Andersson GB. The influence of chair height on lower limb mechanics during rising. J Orthop Res. 1989;7(2):266–271.
    1. Bohannon RW, Bubela DJ, Magasi SR, Wang YC, Gershon RC. Sit-to-stand test: performance and determinants across the age-span. Isokinet Exerc Sci. 2010;18(4):235–240.
    1. Uldry C, Fitting JW. Maximal values of sniff nasal inspiratory pressure in healthy subjects. Thorax. 1995;50(4):371–375.
    1. Wedzicha JA. Domiciliary oxygen therapy services: clinical guidelines and advice for prescribers. Summary of a report of the Royal College of Physicians. J R Coll Physicians Lond. 1999;33(5):445–447.
    1. Troosters T, Gosselink R, Decramer M. Six minute walking distance in healthy elderly subjects. Eur Respir J. 1999;14(2):270–274.
    1. Hogrel JY, Payan CA, Ollivier G, et al. Development of a French isometric strength normative database for adults using quantitative muscle testing. Arch Phys Med Rehabil. 2007;88(10):1289–1297.
    1. Hansen JE, Sue DY, Wasserman K. Predicted values for clinical exercise testing. Am Rev Respir Dis. 1984;129(2 Pt 2):S49–S55.

Source: PubMed

3
Předplatit