A randomized trial of an early measles vaccine at 4½ months of age in Guinea-Bissau: sex-differential immunological effects

Kristoffer Jarlov Jensen, Mia Søndergaard, Andreas Andersen, Erliyani Sartono, Cesario Martins, May-Lill Garly, Jesper Eugen-Olsen, Henrik Ullum, Maria Yazdanbakhsh, Peter Aaby, Christine Stabell Benn, Christian Erikstrup, Kristoffer Jarlov Jensen, Mia Søndergaard, Andreas Andersen, Erliyani Sartono, Cesario Martins, May-Lill Garly, Jesper Eugen-Olsen, Henrik Ullum, Maria Yazdanbakhsh, Peter Aaby, Christine Stabell Benn, Christian Erikstrup

Abstract

Background: After measles vaccine (MV), all-cause mortality is reduced more than can be explained by the prevention of measles, especially in females.

Objective: We aimed to study the biological mechanisms underlying the observed non-specific and sex-differential effects of MV on mortality.

Methods: Within a large randomised trial of MV at 4.5 months of age blood samples were obtained before and six weeks after randomisation to early MV or no early MV. We measured concentrations of cytokines and soluble receptors from plasma (interleukin-1 receptor agonist (IL-1Ra), IL-6, IL-8, IL-10, tumor necrosis factor (TNF)-α, monocyte chemoattractant protein (MCP)-1, soluble urokinase-type plasminogen activator receptor), and secreted cytokines (interferon-γ, TNF-α, IL-5, IL-10, IL-13, IL-17) after in vitro challenge with innate agonists and recall antigens. We analysed the effect of MV in multiple imputation regression, overall and stratified by sex. The majority of the infants had previously been enrolled in a randomised trial of neonatal vitamin A. Post hoc we explored the potential effect modification by neonatal vitamin A.

Results: Overall, MV versus no MV was associated with higher plasma MCP-1 levels, but the effect was only significant among females. Additionally, MV was associated with increased plasma IL-1Ra. MV had significantly positive effects on plasma IL-1Ra and IL-8 levels in females, but not in males. These effects were strongest in vitamin A supplemented infants. Vitamin A shifted the effect of MV in a pro-inflammatory direction.

Conclusions: In this explorative study we found indications of sex-differential effects of MV on several of the plasma biomarkers investigated; in particular MV increased levels in females, most strongly in vitamin A recipients. The findings support that sex and micronutrient supplementation should be taken into account when analysing vaccine effects.

Trial registration: clinicaltrials.gov number NCT 00168545.

Trial registration: ClinicalTrials.gov NCT00168545.

Conflict of interest statement

Competing Interests: The authors have declared that no competing interests exist.

Figures

Figure 1. Flow chart of the immunological…
Figure 1. Flow chart of the immunological study.
Numbers in parentheses designates group assignment, early MV or control group, respectively.

References

    1. Aaby P, Roth A, Ravn H, Napirna BM, Rodrigues A, et al. (2011) Randomized trial of BCG vaccination at birth to low-birth-weight children: beneficial nonspecific effects in the neonatal period? J Infect Dis 204: 245–252.
    1. Aaby P, Martins CL, Garly ML, Bale C, Andersen A, et al. (2010) Non-specific effects of standard measles vaccine at 4.5 and 9 months of age on childhood mortality: randomised controlled trial. BMJ 341: c6495.
    1. Aaby P, Jensen H, Rodrigues A, Garly ML, Benn CS, et al. (2004) Divergent female-male mortality ratios associated with different routine vaccinations among female-male twin pairs. IntJEpidemiol 33: 367–373.
    1. Aaby P, Benn C, Nielsen J, Lisse IM, Rodrigues A, et al... (2012) Testing the hypothesis that diphtheria-tetanus-pertussis vaccine has negative non-specific and sex-differential effects on child survival in high-mortality countries. BMJ Open 2.
    1. Liu L, Johnson HL, Cousens S, Perin J, Scott S, et al. (2012) Global, regional, and national causes of child mortality: an updated systematic analysis for 2010 with time trends since 2000. Lancet 379: 2151–2161.
    1. Ovsyannikova IG, Reid KC, Jacobson RM, Oberg AL, Klee GG, et al. (2003) Cytokine production patterns and antibody response to measles vaccine. Vaccine 21: 3946–3953.
    1. Schnorr JJ, Cutts FT, Wheeler JG, Akramuzzaman SM, Alam MS, et al. (2001) Immune modulation after measles vaccination of 6–9 months old Bangladeshi infants. Vaccine 19: 1503–1510.
    1. Eriksson M, Sartono E, Martins CL, Bale C, Garly ML, et al. (2007) A comparison of ex vivo cytokine production in venous and capillary blood. Clin Exp Immunol 150: 469–476.
    1. Jorgensen MJ, Fisker AB, Sartono E, Andersen A, Erikstrup C, et al... (2012) The effect of at-birth vitamin A supplementation on differential leucocyte counts and in vitro cytokine production: an immunological study nested within a randomised trial in Guinea-Bissau. Br J Nutr: 1–11.
    1. Ostrowski SR, Ullum H, Goka BQ, Hoyer-Hansen G, Obeng-Adjei G, et al. (2005) Plasma concentrations of soluble urokinase-type plasminogen activator receptor are increased in patients with malaria and are associated with a poor clinical or a fatal outcome. J Infect Dis 191: 1331–1341.
    1. Uh HW, Hartgers FC, Yazdanbakhsh M, Houwing-Duistermaat JJ (2008) Evaluation of regression methods when immunological measurements are constrained by detection limits. BMC Immunol 9: 59.
    1. Andersen A (2012) Statistical Analysis of Population-Based Immunological Studies: Faculty of Health and Medical Sciences, University of Copenhagen.
    1. Newson RB (2010) Frequentist q-values for multiple-test procedures. The Stata Journal 10 (4): 568–584.
    1. Baggiolini M (2001) Chemokines in pathology and medicine. J Intern Med 250: 91–104.
    1. Chae P, Im M, Gibson F, Jiang Y, Graves DT (2002) Mice lacking monocyte chemoattractant protein 1 have enhanced susceptibility to an interstitial polymicrobial infection due to impaired monocyte recruitment. Infect Immun 70: 3164–3169.
    1. Peters W, Dupuis M, Charo IF (2000) A mechanism for the impaired IFN-gamma production in C-C chemokine receptor 2 (CCR2) knockout mice: role of CCR2 in linking the innate and adaptive immune responses. J Immunol 165: 7072–7077.
    1. Eckmann L, Kagnoff MF, Fierer J (1993) Epithelial cells secrete the chemokine interleukin-8 in response to bacterial entry. Infect Immun 61: 4569–4574.
    1. Gabay C, Lamacchia C, Palmer G (2010) IL-1 pathways in inflammation and human diseases. Nat Rev Rheumatol 6: 232–241.
    1. Njie-Jobe J, Nyamweya S, Miles DJ, van der Sande M, Zaman S, et al. (2012) Immunological impact of an additional early measles vaccine in Gambian children: responses to a boost at 3 years. Vaccine 30: 2543–2550.
    1. Kleinnijenhuis J, Quintin J, Preijers F, Joosten LA, Ifrim DC, et al. (2012) Bacille Calmette-Guerin induces NOD2-dependent nonspecific protection from reinfection via epigenetic reprogramming of monocytes. Proc Natl Acad Sci U S A 109: 17537–17542.
    1. Benn CS, Bale C, Sommerfelt H, Friis H, Aaby P (2003) Hypothesis: Vitamin A supplementation and childhood mortality: amplification of the non-specific effects of vaccines? Int J Epidemiol 32: 822–828.
    1. Benn CS, Fisker AB, Jorgensen MJ, Aaby P (2008) Conflicting evidence for neonatal vitamin A supplementation. Vaccine 26: 4111–4112.
    1. Benn CS, Rodrigues A, Yazdanbakhsh M, Fisker AB, Ravn H, et al. (2009) The effect of high-dose vitamin A supplementation administered with BCG vaccine at birth may be modified by subsequent DTP vaccination. Vaccine 27: 2891–2898.
    1. Aaby P, Samb B, Simondon F, Seck AM, Knudsen K, et al. (1995) Non-specific beneficial effect of measles immunisation: analysis of mortality studies from developing countries. BMJ 311: 481–485.
    1. Rager-Zisman B, Bazarsky E, Skibin A, Tam G, Chamney S, et al. (2004) Differential immune responses to primary measles-mumps-rubella vaccination in Israeli children. Clin Diagn Lab Immunol 11: 913–918.
    1. Snopov SA, Kharit SM, Norval M, Ivanova VV (2005) Circulating leukocyte and cytokine responses to measles and poliovirus vaccination in children after ultraviolet radiation exposures. Arch Virol 150: 1729–1743.

Source: PubMed

3
Předplatit