Preformed circulating HLA-specific memory B cells predict high risk of humoral rejection in kidney transplantation

Marc Lúcia, Sergi Luque, Elena Crespo, Edoardo Melilli, Josep M Cruzado, Jaume Martorell, Marta Jarque, Salvador Gil-Vernet, Anna Manonelles, Josep M Grinyó, Oriol Bestard, Marc Lúcia, Sergi Luque, Elena Crespo, Edoardo Melilli, Josep M Cruzado, Jaume Martorell, Marta Jarque, Salvador Gil-Vernet, Anna Manonelles, Josep M Grinyó, Oriol Bestard

Abstract

The accurate evaluation of donor-specific antibodies (DSAs) has allowed a precise identification of sensitized patients at risk of antibody-mediated rejection (ABMR). However, the scale of the humoral response is not always fully addressed, as it excludes the complete memory B-cell (mBC) pool such as that caused by antigen-specific mBC. Using a novel B-cell ELISpot assay approach, we assessed circulating mBC frequencies against class I and II HLA antigens in highly sensitized and nonsensitized patients in the waiting list for kidney transplantation. Also, kidney transplant patients undergoing ABMR were evaluated for the presence of donor-specific mBCs both at the time of rejection and before transplantation. For this purpose, 278 target HLA-sp antigens from 70 patients were studied and compared to circulating HLA-sp antibodies. Both class I and II HLA-sp mBC frequencies were identified in highly sensitized individuals but not in nonsensitized and healthy individuals, many years after first sensitization. Also, high donor-specific mBC responses were clearly found both during ABMR and before transplantation, regardless of circulating DSA. The higher the donor-specific mBC response, the more aggressive the allograft rejection. Thus, assessing donor-specific mBC frequencies may be relevant to better refine patient alloimmune-risk stratification, and provides new insight into the mechanisms of the adaptive humoral alloimmune response taking place in kidney transplantation.

References

    1. Am J Transplant. 2008 Jan;8(1):133-43
    1. N Engl J Med. 2007 Nov 8;357(19):1903-15
    1. Am J Transplant. 2014 Feb;14(2):272-83
    1. Hum Immunol. 2015 Mar;76(2-3):129-36
    1. Transplantation. 2009 May 27;87(10):1505-13
    1. Clin J Am Soc Nephrol. 2006 May;1(3):415-20
    1. N Engl J Med. 2013 Sep 26;369(13):1215-26
    1. J Immunol Methods. 2010 Jun 30;358(1-2):56-65
    1. Am J Transplant. 2007;7(5 Pt 2):1424-33
    1. J Immunol. 2003 Nov 15;171(10):4969-73
    1. Vaccine. 1996 Aug;14(11):1019-27
    1. Am J Transplant. 2014 Apr;14(4):779-87
    1. J Immunol Methods. 2004 Mar;286(1-2):111-22
    1. Transpl Int. 1995;8(5):360-5
    1. J Am Soc Nephrol. 2007 Apr;18(4):1046-56
    1. Transplantation. 2007 Apr 15;83(7):982-8
    1. Clin Exp Immunol. 2014 Jul;177(1):47-63
    1. Lancet. 2013 Jan 26;381(9863):313-9
    1. Clin Transpl. 2006;:371-8
    1. Science. 2013 Sep 13;341(6151):1205-11
    1. Am J Transplant. 2004 Mar;4(3):438-43
    1. Nature. 1995 Apr 6;374(6522):546-9
    1. Eur J Immunol. 2009 May;39(5):1260-70
    1. J Am Soc Nephrol. 2005 Sep;16(9):2804-12
    1. Clin Infect Dis. 2014 Dec 1;59(11):1537-45
    1. Lancet. 2011 Oct 15;378(9800):1428-37
    1. Vaccine. 2009 Dec 10;28(1):179-86
    1. Transplantation. 2009 Feb 27;87(4):563-9
    1. Am J Transplant. 2012 Jun;12(6):1469-78
    1. Kidney Int. 2015 Jun;87(6):1230-40
    1. Curr Opin Immunol. 1999 Apr;11(2):172-9
    1. J Am Soc Nephrol. 2001 Dec;12(12):2807-14
    1. Hum Immunol. 1995 Sep;44(1):1-11
    1. J Immunol. 2003 Dec 15;171(12):6599-603
    1. J Immunol Methods. 2013 May 31;391(1-2):50-9
    1. Transplantation. 2007 Apr 15;83(7):989-94
    1. Immunol Rev. 2010 Jul;236:125-38
    1. Am J Transplant. 2013 Nov;13(11):2855-64
    1. Nephrol Dial Transplant. 2006 Sep;21(9):2625-9
    1. Vaccine. 2006 Jan 30;24(5):572-7
    1. Transplantation. 2015 Jan;99(1):21-8
    1. Transplantation. 2010 Jul 15;90(1):68-74
    1. J Am Soc Nephrol. 2010 Aug;21(8):1398-406
    1. Hum Immunol. 2009 Jan;70(1):29-34
    1. Transplantation. 1993 Jan;55(1):192-6

Source: PubMed

3
Předplatit