Comparison of glucose-6 phosphate dehydrogenase status by fluorescent spot test and rapid diagnostic test in Lao PDR and Cambodia

Gisela Henriques, Koukeo Phommasone, Rupam Tripura, Thomas J Peto, Shristi Raut, Coco Snethlage, Im Sambo, Nou Sanann, Chea Nguon, Bipin Adhikari, Tiengkham Pongvongsa, Mallika Imwong, Lorenz von Seidlein, Nicholas P Day, Nicholas J White, Arjen M Dondorp, Paul Newton, Benedikt Ley, Mayfong Mayxay, Gisela Henriques, Koukeo Phommasone, Rupam Tripura, Thomas J Peto, Shristi Raut, Coco Snethlage, Im Sambo, Nou Sanann, Chea Nguon, Bipin Adhikari, Tiengkham Pongvongsa, Mallika Imwong, Lorenz von Seidlein, Nicholas P Day, Nicholas J White, Arjen M Dondorp, Paul Newton, Benedikt Ley, Mayfong Mayxay

Abstract

Background: Glucose-6-phosphate dehydrogenase (G6PD) deficiency is the most common enzymopathy worldwide. Primaquine is the only licensed drug that effectively removes Plasmodium vivax hypnozoites from the human host and prevents relapse. While well tolerated by most recipients, primaquine can cause haemolysis in G6PD deficient individuals and is, therefore, underused. Rapid diagnostic tests (RDTs) could permit ascertainment of G6PD status outside of laboratory settings and hence safe treatment in remote areas. The performance of the fluorescent spot test (Trinity, Ireland; FST) and a G6PD RDT (Carestart, USA) against spectrophotometry were assessed.

Methods: Participants were enrolled during cross-sectional surveys in Laos and by purposive sampling in Cambodia. FST and RDT were performed during village surveys and 3 mL of venous blood was collected for subsequent G6PD measurement by spectrophotometry.

Results: A total of 757 participants were enrolled in Laos and 505 in Cambodia. FST and RDT performed best at 30% cut-off activity and performed significantly better in Laos than in Cambodia. When defining intermediate results as G6PD deficient, the FST had a sensitivity of 100% (95%CI 90-100) and specificity of 90% (95%CI 87.7-92.2) in Laos and sensitivity of 98% (94.1-99.6) and specificity of 71% (95%CI 66-76) in Cambodia (p < 0.001). The RDT had sensitivity and specificity of 100% (95%CI 90-100) and 99% (95%CI 97-99) in Laos and sensitivity and specificity of 91% (86-96) and 93% (90-95) in Cambodia (p < 0.001). The RDT performed significantly better (all p < 0.05) than the FST when intermediate FST results were defined as G6PD deficient.

Conclusion: The interpretation of RDT results requires some training but is a good alternative to the FST. Trial registration clinicaltrials.gov; NCT01872702; 06/27/2013; https://ichgcp.net/clinical-trials-registry/NCT01872702.

Keywords: Glucose-6-phosphate dehydrogenase; Malaria; Rapid diagnostic test; Southeast Asia.

Figures

Fig. 1
Fig. 1
G6PD activity distribution by spectrophotometry in Laos. Red lines indicate 10, 30, 70 and 100% G6PD activity of the adjusted male median
Fig. 2
Fig. 2
Distribution of G6PD normal and G6PD deficient test result by quantitative G6PD activity per assay and stratified by country. Red triangles = G6PD deficient test result, blue circles = G6PD normal test result. Red horizontal lines correspond to 10, 30, 70 and 100% G6PD activity of the AMM (from bottom to top), invalid RDT results are excluded

References

    1. Cappellini MD, Fiorelli G. Glucose-6-phosphate dehydrogenase deficiency. Lancet. 2008;371:64–74. doi: 10.1016/S0140-6736(08)60073-2.
    1. Beutler E. Glucose-6-phosphate dehydrogenase deficiency: a historical perspective. Blood. 2008;111:16–24. doi: 10.1182/blood-2007-04-077412.
    1. von Seidlein L, Auburn S, Espino F, Shanks D, Cheng Q, McCarthy J, et al. Review of key knowledge gaps in glucose-6-phosphate dehydrogenase deficiency detection with regard to the safe clinical deployment of 8-aminoquinoline treatment regimens: a workshop report. Malar J. 2013;12:112. doi: 10.1186/1475-2875-12-112.
    1. Galappaththy GN, Tharyan P, Kirubakaran R. Primaquine for preventing relapse in people with Plasmodium vivax malaria treated with chloroquine. Cochrane Database Syst Rev. 2013;10:CD004389.
    1. Minucci A, Moradkhani K, Hwang MJ, Zuppi C, Giardina B, Capoluongo E. Glucose-6-phosphate dehydrogenase (G6PD) mutations database: review of the “old” and update of the new mutations. Blood Cells Mol Dis. 2012;48:154–165. doi: 10.1016/j.bcmd.2012.01.001.
    1. Howes RE, Battle KE, Satyagraha AW, Baird JK, Hay SI. G6PD deficiency: global distribution, genetic variants and primaquine therapy. Adv Parasitol. 2013;81:133–201. doi: 10.1016/B978-0-12-407826-0.00004-7.
    1. Beutler E. G6PD: population genetics and clinical manifestations. Blood Rev. 1996;10:45–52. doi: 10.1016/S0268-960X(96)90019-3.
    1. Lyon MF. Gene action in the X-chromosome of the mouse (Mus musculus L.) Nature. 1961;190:372–373. doi: 10.1038/190372a0.
    1. Chu CS, Bancone G, Moore KA, Win HH, Thitipanawan N, Po C, et al. Haemolysis in G6PD heterozygous females treated with primaquine for Plasmodium vivax Malaria: a nested cohort in a trial of radical curative regimens. PLoS Med. 2017;14:e1002224. doi: 10.1371/journal.pmed.1002224.
    1. Luzzatto L, Arese P. Favism and glucose-6-phosphate dehydrogenase deficiency. N Engl J Med. 2018;378:60–71. doi: 10.1056/NEJMra1708111.
    1. Ashley EA, Recht J, White NJ. Primaquine: the risks and the benefits. Malar J. 2014;13:418. doi: 10.1186/1475-2875-13-418.
    1. Luzzatto L, Seneca E. G6PD deficiency: a classic example of pharmacogenetics with on-going clinical implications. Br J Haematol. 2014;164:469–480. doi: 10.1111/bjh.12665.
    1. Price RN, Tjitra E, Guerra CA, Yeung S, White NJ, Anstey NM. Vivax malaria: neglected and not benign. Am J Trop Med Hyg. 2007;77:79–87.
    1. White NJ, Qiao LG, Qi G, Luzzatto L. Rationale for recommending a lower dose of primaquine as a Plasmodium falciparum gametocytocide in populations where G6PD deficiency is common. Malar J. 2012;11:418. doi: 10.1186/1475-2875-11-418.
    1. Howes RE, Piel FB, Patil AP, Nyangiri OA, Gething PW, Dewi M, et al. G6PD deficiency prevalence and estimates of affected populations in malaria endemic countries: a geostatistical model-based map. PLoS Med. 2012;9:e1001339. doi: 10.1371/journal.pmed.1001339.
    1. Khim N, Benedet C, Kim S, Kheng S, Siv S, Leang R, et al. G6PD deficiency in Plasmodium falciparum and Plasmodium vivax malaria-infected Cambodian patients. Malar J. 2013;12:171. doi: 10.1186/1475-2875-12-171.
    1. Matsuoka H, Nguon C, Kanbe T, Jalloh A, Sato H, Yoshida S, et al. Glucose-6-phosphate dehydrogenase (G6PD) mutations in Cambodia: G6PD Viangchan (871G> A) is the most common variant in the Cambodian population. J Hum Genet. 2005;50:468–472. doi: 10.1007/s10038-005-0279-z.
    1. Kitchakarn S, Lek D, Thol S, Hok C, Saejeng A, Huy R, et al. Implementation of G6PD testing and primaquine for P. vivax radical cure: operational perspectives from Thailand and Cambodia. WHO South East Asia. J Public Health. 2017;6:60–68.
    1. Recht J, Ashley EA, White NJ. Use of primaquine and glucose-6-phosphate dehydrogenase deficiency testing: divergent policies and practices in malaria endemic countries. PLoS Negl Trop Dis. 2018;12:e0006230. doi: 10.1371/journal.pntd.0006230.
    1. Adu-Gyasi D, Asante KP, Newton S, Dosoo D, Amoako S, Adjei G, et al. Evaluation of the diagnostic accuracy of CareStart G6PD deficiency rapid diagnostic test (RDT) in a malaria endemic area in Ghana, Africa. PLoS ONE. 2015;10:e0125796. doi: 10.1371/journal.pone.0125796.
    1. Roca-Feltrer A, Khim N, Kim S, Chy S, Canier L, Kerleguer A, et al. Field trial evaluation of the performances of point-of-care tests for screening G6PD deficiency in Cambodia. PLoS ONE. 2014;9:e116143. doi: 10.1371/journal.pone.0116143.
    1. von Fricken ME, Weppelmann TA, Eaton WT, Masse R, Beau de Rochars MV, Okech BA. Performance of the CareStart glucose-6-phosphate dehydrogenase (G6PD) rapid diagnostic test in Gressier, Haiti. Am J Trop Med Hyg. 2014;91:77–80. doi: 10.4269/ajtmh.14-0100.
    1. Bancone G, Gornsawun G, Chu CS, Porn P, Pal S, Bansil P, et al. Validation of the quantitative point-of-care CareStart biosensor for assessment of G6PD activity in venous blood. PLoS ONE. 2018;13:e0196716. doi: 10.1371/journal.pone.0196716.
    1. White NJ, Imwong M. Relapse. Adv Parasitol. 2012;80:113–150. doi: 10.1016/B978-0-12-397900-1.00002-5.
    1. WHO . Strategy for malaria elimination in the Greater Mekong Subregion 2015–30. Geneva: World Health Organization; 2015.
    1. WHO . Eliminating Malaria in the Greater Mekong Subregion: united to end a deadly disease. Geneva: World Health Organization; 2016.
    1. LaRue N, Kahn M, Murray M, Leader BT, Bansil P, McGray S, et al. Comparison of quantitative and qualitative tests for glucose-6-phosphate dehydrogenase deficiency. Am J Trop Med Hyg. 2014;91:854–861. doi: 10.4269/ajtmh.14-0194.
    1. Domingo GJ, Satyagraha AW, Anvikar A, Baird K, Bancone G, Bansil P, et al. G6PD testing in support of treatment and elimination of malaria: recommendations for evaluation of G6PD tests. Malar J. 2013;12:391. doi: 10.1186/1475-2875-12-391.
    1. Ley B, Luter N, Espino FE, Devine A, Kalnoky M, Lubell Y, et al. The challenges of introducing routine G6PD testing into radical cure: a workshop report. Malar J. 2015;14:377. doi: 10.1186/s12936-015-0896-8.
    1. Beutler E, Blume KG, Kaplan JC, Lohr GW, Ramot B, Valentine WN. International Committee for Standardization in Haematology: recommended screening test for glucose-6-phosphate dehydrogenase (G-6-PD) deficiency. Br J Haematol. 1979;43:465–467. doi: 10.1111/j.1365-2141.1979.tb03774.x.
    1. Espino FE, Bibit JA, Sornillo JB, Tan A, von Seidlein L, Ley B. Comparison of three screening test kits for G6PD enzyme deficiency: implications for its use in the radical cure of vivax malaria in remote and resource-poor areas in the Philippines. PLoS ONE. 2016;11:e0148172. doi: 10.1371/journal.pone.0148172.
    1. Banoo S, Bell D, Bossuyt P, Herring A, Mabey D, Poole F, et al. Evaluation of diagnostic tests for infectious diseases: general principles. Nat Rev Microbiol. 2006;4:S20–S32. doi: 10.1038/nrmicro1570.
    1. Cantor SB, Kattan MW. Determining the area under the ROC curve for a binary diagnostic test. Med Decis Making. 2000;20:468–470. doi: 10.1177/0272989X0002000410.
    1. Hanley JA, McNeil BJ. A method of comparing the areas under receiver operating characteristic curves derived from the same cases. Radiology. 1983;148:839–843. doi: 10.1148/radiology.148.3.6878708.
    1. Padilla CD, Therrell BL., Jr Working Group of the Asia Pacific Society for Human Genetics on Consolidating Newborn Screening Efforts in the Asia Pacific Region. Consolidating newborn screening efforts in the Asia Pacific region: networking and shared education. J Community Genet. 2012;3:35–45. doi: 10.1007/s12687-011-0076-7.
    1. Satyagraha AW, Sadhewa A, Elvira R, Elyazar I, Feriandika D, Antonjaya U, et al. Assessment of point-of-care diagnostics for G6PD deficiency in malaria endemic rural Eastern Indonesia. PLoS Negl Trop Dis. 2016;10:e0004457. doi: 10.1371/journal.pntd.0004457.
    1. Bancone G, Chu CS, Chowwiwat N, Somsakchaicharoen R, Wilaisrisak P, Charunwatthana P, et al. Suitability of capillary blood for quantitative assessment of G6PD activity and performances of G6PD point-of-care tests. Am J Trop Med Hyg. 2015;92:818–824. doi: 10.4269/ajtmh.14-0696.
    1. Ebstie YA, Abay SM, Tadesse WT, Ejigu DA. Tafenoquine and its potential in the treatment and relapse prevention of Plasmodium vivax malaria: the evidence to date. Drug Des Devel Ther. 2016;10:2387–2399. doi: 10.2147/DDDT.S61443.

Source: PubMed

3
Předplatit