Extracorporeal shock wave therapy in musculoskeletal disorders: a review

Pietro Romeo, Vito Lavanga, Davide Pagani, Valerio Sansone, Pietro Romeo, Vito Lavanga, Davide Pagani, Valerio Sansone

Abstract

Regenerative therapy is one of the most challenging and intriguing branches of modern medicine. Basic research has demonstrated the effectiveness of extracorporeal shockwaves (ESWT) in stimulating biological activities that involve intra-cell and cell-matrix interactions. These interactions are at the basis of the current clinical applications, and open the horizons to new applications in tissue regeneration. It is also feasible that shock waves could be used to treat various orthopaedic pathologies, removing the need for surgery. However, suitable translational studies need to be performed before ESWT can become a valid alternative to surgery.

© 2013 S. Karger AG, Basel.

References

    1. Ogden JA, Tóth-Kischkat A, Schultheiss R. Principles of shock wave therapy. Clin Orthop Relat Res. 2001;387:8–17.
    1. Gerdesmeyer L, Maier M, Haake M, et al. Physical technical principles of extracorporeal shockwave therapy (ESWT) Orthopäde. 2002;31:610–617.
    1. Speed CA. Extracorporeal shock wave therapy in management of chronic soft-tissue conditions. J Bone Joint Surg Br. 2004;86:165–171.
    1. Wang FS, Yang KD, Chen RF, et al. Extracorporeal shock wave promotes growth and differentiation of bone marrow stromal cells towards osteoprogenitors associated with induction of TGF- β1. J Bone Joint Surg Br. 2002;84:457–461.
    1. Mariotto S, Cavalieri E, Amelio E, et al. Extracorporeal shock waves: from lithotripsy to anti-inflammatory action by NO production. Nitric Oxide. 2005;12:89–96.
    1. Curtis A, Riehle M. Tissue engineering: the biophysical background. Phys Med Biol. 2001;46:R47–R65.
    1. Goodman M, Lumpkin E, Ricci A, et al. Molecules and mechanisms of mechanotransduction. J Neurosci. 2004;24:9220–9222.
    1. Rommel GB, Smith TH, Mullender MG, et al. Nitric oxide production by bone cells is fluid shear stress rate dependent. Biochem Biophys Res Commun. 2004;315:823–829.
    1. Burger EH, Klein Nulend J. Mechanotransduction in bone – role of the lacuno-canalicular network. FASEB J. 1999;13:S101–S112.
    1. Wang FS, Wang CJ, Chen SM, et al. Superoxide mediates shock wave induction of ERK-dependent osteogenic transcription factor (CBFA1) and mesenchymal cell differentiation toward osteoprogenitors. J Biochem Mol Biol. 2002;277:10931–10937.
    1. Wang FS, Wang CJ, Huang HJ. Ras induction of superoxide activates ERK-dependent angiogenic transcription factor HIF-1 alpha and VEGF-A expressions in shock wave-stimulated osteoblasts. J Biol Chem. 2004;279:10331–10337.
    1. Carcamo JJ, Aliaga AE, Clavijo E, et al. Raman study of the shockwave effect on collagens. Spectrochim Acta A Mol Biomol Spectrosc. 2012;86:360–365.
    1. Mittermayr R, Antonic V, Hartinger J, et al. Extracorporeal shock wave therapy (ESWT) for wound healing: technology, mechanisms, and clinical efficacy. Wound Repair Regen. 2012;20:456–465.
    1. Van der Worp H, Van den Akker S, Van Schie H, et al. ESWT for tendinopathy: technology and clinical implications. Knee Surg Sports Traumatol Arthrosc. 2012;21:1451–1458.
    1. Hofmann A, Ritz U, Hessmann MH, et al. Extracorporeal shock wave-mediated changes in proliferation, differentiation, and gene expression of human osteoblasts. J Trauma. 2008;65:1402–1410.
    1. Tamma R, dell'Endice S, Notarnicola A, et al. Extracorporeal shock waves stimulate osteoblast activities. Ultrasound Med Biol. 2009;35:93–100.
    1. Chen YJ, Kuo YR, Yang KD, et al. Activation of extracellular signal-regulated kinase (ERK) and p38 kinase in shock wave-promoted of bone formation segmental defect in rats. Bone. 2004;34:466–477.
    1. Muzio G, Vernè E, Canuto RA, et al. Shock waves inducing activity of human osteoblast-like cells in bioactive scaffolds. J Trauma. 2010;68:39–44.
    1. Evens DM, Ralston SH. Nitric oxide and bone. J Bone Miner Res. 1996;11:300–305.
    1. Wang CJ, Yang KD, Ko JY, et al. The effects of shockwave on bone healing and systemic concentrations of nitric oxide (NO), TGF-β1, VEGF and BMP-2 in long bone non-unions. Nitric Oxide. 2009;20:298–303.
    1. Alvarez RG, Cincere B, Channappa C, et al. Extracorporeal shock wave treatment of non-or delayed union of proximal metatarsal fractures. Foot Ankle Int. 2011;32:746–754.
    1. Furia JP, Juliano PJ, Wade AM, et al. Shock wave therapy compared with intramedullar screw fixation of proximal fifth metatarsal for nonunion metaphyseal-diaphyseal fractures. J Bone Joint Surg Am. 2010;92:846–853.
    1. Elster EA, Stojadinovic A, Forsberg J, et al. Extracorporeal shock wave therapy for nonunion of the tibia. J Orthop Trauma. 2010;24:133–141.
    1. Stojadinovic A, Kyle Potter B, Eberhardt J, et al. Development of a prognostic naive bayesian classifier for successful treatment of non-unions. J Bone Joint Surg Am. 2011;93:187–194.
    1. Cacchio A, Giordano L, Colafarina O, et al. Extracorporeal shock-wave therapy compared with surgery for hypertrophic long-bone nonunions. J Bone Joint Surg Am. 2009;91:2589–2597.
    1. Bi Y, Ehirchiou D, Kilts TM, et al. Identification of tendon stem/progenitor cells and the role of the extracellular matrix in their niche. Nat Med. 2007;13:1219–1227.
    1. Rompe JD, Kirpratrick CJ, Kullmr K, et al. Dose-related effects of shock waves on rabbit tendo Achilles, a sonographic and histological study. J Bone Joint Surg Br. 1998;80:546–552.
    1. Wang CJ, Yang KD, Wang FS, et al. Shock wave therapy indices neovascularization at the tendon-bone junction: a study in rabbits. J Orthop Res. 2003;21:984–989.
    1. Chao YH, Tsuang YH, Sun JS, et al. Effects of shock tenocyte waves on proliferation and extracellular matrix metabolism. Ultrasound Med Biol. 2008;34:841–852.
    1. Vetrano M, D'Alessandro F, Torrisi MR, et al. Extracorporeal shock wave therapy promotes cell proliferation and collagen synthesis of primary cultured human tenocytes. Knee Surg Sports Traumatol Arthrosc. 2011;19:2159–2168.
    1. Bokhari AR, Murrel GAC. The role of nitric oxide in tendon healing. J Shoulder Elbow Surg. 2012;21:238–244.
    1. Devrim E, Erten S, Erguder Image B, Namuslu M, Turgay M, Durak I. Malonildialdehyde and nitric oxide levels in erythrocytes from patients with systemic sclerosis. Med Princ Pract. 2008;17:349–350.
    1. Han SH, Lee JW, Guyton GP, et al. Effect of extracorporeal shock wave therapy on cultured tenocytes. Foot Ankle Int. 2009;30:93–98.
    1. Leone L, Vetrano M, Ranieri D, et al. Extracorporeal shock wave treatment (ESWT) improves in vitro functional activities of ruptured human tendon-derived tenocytes. PLoS One. 2012;7:e49759.
    1. Thomson EC, Crawford F, Murray GD. The effectiveness of extra corporeal shock wave therapy for plantar heel pain: a systematic review and meta-analysis. BMC Musculoskelet Disord. 2005;6:19.
    1. Lee SY, Cheng B, Grimmer-Somers K. The midterm effectiveness of extracorporeal shockwave therapy in the management of chronic calcific shoulder tendinitis. J Shoulder Elbow Surg. 2011;20:845–854.
    1. Galasso O, Amelio E, Riccelli DA, et al. Short-term outcomes of extracorporeal shock wave therapy for the treatment of chronic non-calcific tendinopathy of the supraspinatus: a double-blind, randomized, placebo-controlled trial. BMC Musculoskelet Disord. 2012;13:86.
    1. Zwerver J, Hartgens F, Verhagen E, et al. No effect of extracorporeal shockwave therapy on patellar tendinopathy in jumping athletes during the competitive season: a randomized clinical trial. Am J Sports Med. 2011;39:1191–1199.
    1. Manganotti P, Amelio E. Long-term effect of shock wave therapy on upper limb hypertonia in patients affected by stroke. Stroke. 2005;36:1967–1971.
    1. Amelio E, Manganotti P. Effect of shock wave stimulation on hypertonic plantar flexor muscles in patients with cerebral palsy: a placebo-controlled study. J Rehabil Med. 2010;42:339–343.
    1. Kenmoku T, Nobuyasu O, Ohtori S, et al. Degeneration and recovery of the neuromuscular junction after application of extracorporeal shock wave therapy. J Orthop Res. 2012;30:1660–1665.
    1. Vidala X, Morral A, Costab L, et al. Radial extracorporeal shock wave therapy (rESWT) in the treatment of spasticity in cerebral palsy: a randomized, placebo-controlled clinical trial. NeuroRehabilitation. 2011;29:413–419.
    1. Schaden W, Thiele R, Kölpl C, et al. Shock wave therapy for acute and chronic soft tissue wounds: a feasibility study. J Surg Res. 2007;143:1–12.
    1. Steinberg J, Stojiadinovic A, Elster E, et al. Is the role for ESWT in wound care? Podiatry Today. 2006;19:62–68.
    1. Arnó A, García O, Hernán I, et al. Extracorporeal shock waves, a new non-surgical method to treat severe burns. Burns. 2010;36:844–849.
    1. Sansone V, D'Agostino MC, Bonora C, et al. Early angiogenic response to shock waves in a three- dimensional model of human microvascular endothelial cell culture (HMEC-1) J Biol Regul Homeost Agents. 2012;26:29–37.
    1. Stojadinovic A, Elster AE, Khairul A, et al. Angiogenic response to extracorporeal shock wave treatment in murine skin isografts. Angiogenesis. 2008;11:369–380.
    1. Mittermayr R, Hartinger J, Antonic V, et al. Extracorporeal shock wave therapy (ESWT) minimizes ischemic tissue necrosis irrespective of application time and promotes tissue revascularization by stimulating angiogenesis. Ann Surg. 2011;253:1024–1032.
    1. Dumfarth J, Zimpfer D, Vögele-Kadletz M, et al. Prophylactic low-energy shock wave therapy improves wound healing after vein harvesting for coronary artery bypass graft surgery: a prospective, randomized trial. Ann Thorac Surg. 2008;86:1909–1913.
    1. Saggini R, Figus A, Troccola A, et al. Extracorporeal shock wave therapy for management of chronic ulcers in the lower extremities. Ultrasound Med Biol. 2008;34:1261–1271.
    1. Wang CJ, Wu RW, Yang YJ. Treatment of diabetic foot ulcers: a comparative study of extracorporeal shockwave therapy and hyperbaric oxygen therapy. Diabetes Res Clin Pract. 2011;92:187–193.
    1. Wang CJ, Wang FS, Huang CC, et al. Treatment for osteonecrosis of the femoral head: comparison of extracorporeal shock waves with core decompression and bone-grafting. J Bone Joint Surg Am. 2005;87:2380–2387.
    1. Wang CJ, Wang FS, Ko JY, et al. Extracorporeal shockwave therapy shows regeneration in hip necrosis. Rheumatology. 2008;47:542–546.
    1. Wang FS, Yang KD, Kuo YR, et al. Temporal and spatial expression of bone morphogenetic proteins in extracorporeal shock wave-promoted healing of segmental defect. Bone. 2003;32:387–396.
    1. Van Der Jagt OP, Van Der Linden JC, Shaden W, et al. Unfocused extracorporeal shock wave therapy as potential treatment for osteoporosis. J Orthop Res. 2009;27:1528–1533.
    1. D'Agostino C, Romeo P, Sansone V, et al. Effectiveness of ESWT in the treatment of Kienböck's disease. Ultrasound Med Biol. 2011;37:1452–1456.
    1. Nurzynska D, Di Meglio F, Castaldo C, et al. Shock waves activate in vitro cultured progenitors and precursors of cardiac cell lineages from the human heart. Ultrasound Med Biol. 2008;34:334–342.
    1. Nishida T, Shimokawa H, Oi K, et al. Extracorporeal cardiac shock wave therapy markedly ameliorates ischaemia-induced myocardial dysfunction in pigs in vivo. Circulation. 2004;110:3055–3061.
    1. Zimpfer D, Seyedhossein A, Holfeld J, et al. Direct epicardial shock wave therapy improves ventricular function and induces angiogenesis in ischemic heart failure. J Thorac Cardiovasc Surg. 2009;137:963–970.
    1. Zuozienė G, Laucevičius A, Leibowitz D. Extracorporeal shockwave myocardial revascularization improves clinical symptoms and left ventricular function in patients with refractory angina. Coron Artery Dis. 2012;23:62–67.
    1. Sathishkumar S, Meka A, Dawson D, et al. Extracorporeal shock wave therapy induces alveolar bone regeneration. J Dent Res. 2008;87:687–691.
    1. Novak KF, Govindaswami M, Ebersole JL, et al. Effects of low-energy shock waves on oral bacteria. J Dent Res. 2008;87:928–931.

Source: PubMed

3
Předplatit