Development of a test battery to enhance safe return to sports after anterior cruciate ligament reconstruction

Alli Gokeler, Wouter Welling, Stefano Zaffagnini, Romain Seil, Darin Padua, Alli Gokeler, Wouter Welling, Stefano Zaffagnini, Romain Seil, Darin Padua

Abstract

Purpose: There is a lack of consensus regarding the appropriate criteria for releasing patients to return to sports (RTS) after anterior cruciate ligament reconstruction (ACLR). A test battery was developed to support decision-making.

Methods: Twenty-eight patients (22 males and 6 females) with a mean age of 25.4 ± 8.2 years participated and were 6.5 ± 1.0 months post-ACLR. All patients followed the same rehabilitation protocol. The test battery used consisted of the following: isokinetic test, 3 hop tests and the jump-landing task assessed with the LESS. The isokinetic tests and single-leg hop tests were expressed as a LSI (involved limb/uninvolved limb × 100 %). In addition, patients filled out the IKDC and ACL-Return to Sport after Injury (ACL-RSI) scale. RTS criteria to pass were defined as a LSI > 90 % on isokinetic and hop tests, LESS < 5, ACL-RSI > 56 and a IKDC within 15th percentile of healthy subjects.

Results: Two out of 28 patients passed all criteria of the test protocol. The pass criterion for the LESS < 5 was reached by 67.9 % of all patients. For the hop tests, 78.5 % of patients passed LSI > 90 % for SLH, 85.7 % for TLH and 50 % for the SH. For the isokinetic test, 39.3 % of patients passed criteria for LSI peak torque quadriceps at 60°/s, 46.4 % at 180°/s and 42.9 at 300°/s. In total, 35.7 % of the patients passed criterion for the peak torque at 60°/s normalized to BW (>3.0 Nm) for the involved limb. The H/Q ratio at 300°/s > 55 % for females was achieved by 4 out of 6 female patients, and the >62.5 % criterion for males was achieved by 75 %. At 6 months post-ACLR, 85.7 % of the patients passed the IKDC score and 75 % the ACL-RSI score >56 criteria.

Conclusion: The evidence emerging from this study suggests that the majority of patients who are 6 months after ACLR require additional rehabilitation to pass RTS criteria. The RTS battery described in this study may serve as a framework for future studies to implement multivariate models in order to optimize the decision-making regarding RTS after ACLR with the aim to reduce incidence of second ACL injuries.

Level of evidence: III.

Keywords: Anterior cruciate ligament reconstruction; Hop tests; Injury risk; Questionnaires; Return to sports; Second injury; Strength.

Figures

Fig. 1
Fig. 1
Results of the Landing error scoring system (LESS) presented as frequency distribution histogram. Mean and standard deviation (SD) of LESS and success rate (percentage of patients with a LESS 5 or lower) are also presented
Fig. 2
Fig. 2
LSI peak for the side hop presented as frequency distribution histogram. Mean and standard deviation (SD) of LSI and success rate (percentage of patients with an LSI of 90 % or higher) are also presented
Fig. 3
Fig. 3
LSI peak torque quadriceps at 60°/s presented as frequency distribution histogram. Mean and standard deviation (SD) of LSI and success rate (percentage of patients with an LSI of 90 % or higher) are also presented

References

    1. Abrams GD, Harris JD, Gupta AK, McCormick FM, Bush-Joseph CA, Verma NN, Cole BJ, Bach BR. Functional performance testing after anterior cruciate ligament reconstruction: a systematic review. Orthop J Sports Med. 2014;2(1):1–10. doi: 10.1177/2325967113518305.
    1. Anderson AF, Irrgang JJ, Kocher MS, Mann BJ, Harrast JJ. The International knee documentation committee subjective knee evaluation form: normative data. Am J Sports Med. 2006;34(1):128–135. doi: 10.1177/0363546505280214.
    1. Ardern CL, Bizzini M, Bahr R. It is time for consensus on return to play after injury: five key questions. Br J Sports Med. 2016;50(9):506–508. doi: 10.1136/bjsports-2015-095475.
    1. Ardern CL, Taylor NF, Feller JA, Whitehead TS, Webster KE. Psychological responses matter in returning to preinjury level of sport after anterior cruciate ligament reconstruction surgery. Am J Sports Med. 2013;41(7):1549–1558. doi: 10.1177/0363546513489284.
    1. Ardern CL, Webster KE, Taylor NF, Feller JA. Return to the preinjury level of competitive sport after anterior cruciate ligament reconstruction surgery: two-thirds of patients have not returned by 12 months after surgery. Am J Sports Med. 2011;39(3):538–543. doi: 10.1177/0363546510384798.
    1. Barber-Westin SD, Noyes FR. Factors used to determine return to unrestricted sports activities after anterior cruciate ligament reconstruction. Arthroscopy. 2011;27(12):1697–1705. doi: 10.1016/j.arthro.2011.09.009.
    1. Barber-Westin SD, Noyes FR. Objective criteria for return to athletics after anterior cruciate ligament reconstruction and subsequent reinjury rates: a systematic review. Phys Sportsmed. 2011;39(3):100–110. doi: 10.3810/psm.2011.09.1926.
    1. Bell DR, Smith MD, Pennuto AP, Stiffler MR, Olson ME. Jump-landing mechanics after anterior cruciate ligament reconstruction: a landing error scoring system study. J Athl Train. 2014;49(4):435–441. doi: 10.4085/1062-6050-49.3.21.
    1. Bizzini M, Hancock D, Impellizzeri F. Suggestions from the field for return to sports participation following anterior cruciate ligament reconstruction: soccer. J Orthop Sports Phys Ther. 2012;42(4):304–312. doi: 10.2519/jospt.2012.4005.
    1. Cunningham JB, McCrum-Gardner E. Power, effect and sample size using GPower: practical issues for researchers and members of research ethics committees. Evid Midwifery. 2007;5(4):132–136.
    1. Czuppon S, Racette BA, Klein SE, Harris-Hayes M. Variables associated with return to sport following anterior cruciate ligament reconstruction: a systematic review. Br J Sports Med. 2014;48(5):356–364. doi: 10.1136/bjsports-2012-091786.
    1. Daniel DM, Stone ML, Dobson BE, Fithian DC, Rossman DJ, Kaufman KR. Fate of the ACL-injured patient. A prospective outcome study. Am J Sports Med. 1994;22(5):632–644. doi: 10.1177/036354659402200511.
    1. Goerger BM, Marshall SW, Beutler AI, Blackburn JT, Wilckens JH, Padua DA. Anterior cruciate ligament injury alters preinjury lower extremity biomechanics in the injured and uninjured leg: the JUMP-ACL study. Br J Sports Med. 2014;49(3):188–195. doi: 10.1136/bjsports-2013-092982.
    1. Gokeler A, Bisschop M, Myer GD, Benjaminse A, Dijkstra PU, van Keeken HG, van Raay JJ, Burgerhof JG, Otten E. Immersive virtual reality improves movement patterns in patients after ACL reconstruction: implications for enhanced criteria-based return-to-sport rehabilitation. Knee Surg Sports Traumatol Arthrosc. 2014
    1. Gokeler A, Eppinga P, Dijkstra PU, Welling W, Padua DA, Otten E, Benjaminse A. Effect of fatigue on landing performance assessed with the landing error scoring system (LESS) in patients after ACL reconstruction. A pilot study. Int J Sports Phys Ther. 2014;9(3):302–311.
    1. Grindem H, Snyder-Mackler L, Moksnes H, Engebretsen L, Risberg MA. Simple decision rules can reduce reinjury risk by 84% after ACL reconstruction: the Delaware-Oslo ACL cohort study. Br J Sports Med. 2016
    1. Gustavsson A, Neeter C, Thomee P, Gravare Silbernagel K, Augustsson J, Thomee R, Karlsson J. A test battery for evaluating hop performance in patients with an ACL injury and patients who have undergone ACL reconstruction. Knee Surg Sports Traumatol Arthrosc. 2006;14(8):778–788. doi: 10.1007/s00167-006-0045-6.
    1. Hewett TE, Myer GD, Zazulak BT. Hamstrings to quadriceps peak torque ratios diverge between sexes with increasing isokinetic angular velocity. J Sci Med Sport. 2008;11(5):452–459. doi: 10.1016/j.jsams.2007.04.009.
    1. Hildebrandt C, Muller L, Zisch B, Huber R, Fink C, Raschner C. Functional assessments for decision-making regarding return to sports following ACL reconstruction. Part I: development of a new test battery. Knee Surg Sports Traumatol Arthrosc. 2015;23(5):1273–1281. doi: 10.1007/s00167-015-3529-4.
    1. Irrgang JJ, Anderson AF, Boland AL, Harner CD, Kurosaka M, Neyret P, Richmond JC, Shelborne KD. Development and validation of the international knee documentation committee subjective knee form. Am J Sports Med. 2001;29(5):600–613.
    1. Irrgang JJ, Anderson AF, Boland AL, Harner CD, Neyret P, Richmond JC, Shelbourne KD, International Knee Documentation Committee Responsiveness of the International Knee Documentation Committee Subjective Knee Form. Am J Sports Med. 2006;34(10):1567–1573. doi: 10.1177/0363546506288855.
    1. Kockum B, Heijne AI. Hop performance and leg muscle power in athletes: reliability of a test battery. Phys Ther Sport. 2015;16(3):222–227. doi: 10.1016/j.ptsp.2014.09.002.
    1. Kuenze C, Hertel J, Saliba S, Diduch DR, Weltman A, Hart JM. Clinical thresholds for quadriceps assessment after anterior cruciate ligament reconstruction. J Sport Rehab. 2015;24(1):36–46. doi: 10.1123/jsr.2013-0110.
    1. Kuenze CM, Foot N, Saliba SA, Hart JM. Drop-landing performance and knee-extension strength after anterior cruciate ligament reconstruction. J Athl Train. 2015;50(6):596–602. doi: 10.4085/1062-6050-50.2.11.
    1. Larsen JB, Farup J, Lind M, Dalgas U. Muscle strength and functional performance is markedly impaired at the recommended time point for sport return after anterior cruciate ligament reconstruction in recreational athletes. Hum Mov Sci. 2015;39:73–87. doi: 10.1016/j.humov.2014.10.008.
    1. Logerstedt D, Di Stasi S, Grindem H, Lynch A, Eitzen I, Engebretsen L, Risberg MA, Axe MJ, Snyder-Mackler L. Self-reported knee function can identify athletes who fail return-to-activity criteria up to 1 year after anterior cruciate ligament reconstruction: a Delaware-Oslo ACL cohort study. J Orthop Sports Phys Ther. 2014;44(12):914–923. doi: 10.2519/jospt.2014.4852.
    1. Lynch AD, Logerstedt DS, Grindem H, Eitzen I, Hicks GE, Axe MJ, Engebretsen L, Risberg MA, Snyder-Mackler L. Consensus criteria for defining ‘successful outcome’ after ACL injury and reconstruction: a Delaware-Oslo ACL cohort investigation. Br J Sports Med. 2015;49(5):335–342. doi: 10.1136/bjsports-2013-092299.
    1. Marx RG, Jones EC, Angel M, Wickiewicz TL, Warren RF. Beliefs and attitudes of members of the American Academy of Orthopaedic Surgeons regarding the treatment of anterior cruciate ligament injury. Arthroscopy. 2003;19(7):762–770. doi: 10.1016/S0749-8063(03)00398-0.
    1. Munro AG, Herrington LC. Between-session reliability of four hop tests and the agility T-test. J Strength Cond Res. 2011;25(5):1470–1477. doi: 10.1519/JSC.0b013e3181d83335.
    1. Myer GD, Ford KR, Barber Foss KD, Liu C, Nick TG, Hewett TE. The relationship of hamstrings and quadriceps strength to anterior cruciate ligament injury in female athletes. Clin J Sport Med. 2009;19(1):3–8. doi: 10.1097/JSM.0b013e318190bddb.
    1. Noyes FR, Barber SD, Mangine RE. Abnormal lower limb symmetry determined by function hop tests after anterior cruciate ligament rupture. Am J Sports Med. 1991;19(5):513–518. doi: 10.1177/036354659101900518.
    1. Padua DA, DiStefano LJ, Beutler AI, de la Motte SJ, DiStefano MJ, Marshall SW. The landing error scoring system as a screening tool for an anterior cruciate ligament injury-prevention program in elite-youth soccer athletes. J Athl Train. 2015;50(6):589–595. doi: 10.4085/1062-6050-50.1.10.
    1. Padua DA, Marshall SW, Boling MC, Thigpen CA, Garrett WE, Jr, Beutler AI. The Landing Error Scoring System (LESS) is a valid and reliable clinical assessment tool of jump-landing biomechanics: the JUMP-ACL study. Am J Sports Med. 2009;37(10):1996–2002. doi: 10.1177/0363546509343200.
    1. Paterno MV, Rauh MJ, Schmitt LC, Ford KR, Hewett TE. Incidence of contralateral and ipsilateral anterior cruciate ligament (ACL) injury after primary ACL reconstruction and return to sport. Clin J Sport Med. 2012;22(2):116–121. doi: 10.1097/JSM.0b013e318246ef9e.
    1. Shrier I. Strategic assessment of risk and risk tolerance (StARRT) framework for return-to-play decision-making. Br J Sports Med. 2015;49(20):1311–1315. doi: 10.1136/bjsports-2014-094569.
    1. Thomee R, Kaplan Y, Kvist J, Myklebust G, Risberg MA, Theisen D, Tsepis E, Werner S, Wondrasch B, Witvrouw E. Muscle strength and hop performance criteria prior to return to sports after ACL reconstruction. Knee Surg Sports Traumatol Arthrosc. 2011;19(11):1798–1805. doi: 10.1007/s00167-011-1669-8.
    1. Thomee R, Neeter C, Gustavsson A, Thomee P, Augustsson J, Eriksson B, Karlsson J. Variability in leg muscle power and hop performance after anterior cruciate ligament reconstruction. Knee Surg Sports Traumatol Arthrosc. 2012;20(6):1143–1151. doi: 10.1007/s00167-012-1912-y.
    1. Tiffreau V, Ledoux I, Eymard B, Thevenon A, Hogrel JY. Isokinetic muscle testing for weak patients suffering from neuromuscular disorders: a reliability study. Neuromuscul Disord. 2007;17(7):524–531. doi: 10.1016/j.nmd.2007.03.014.
    1. Undheim MB, Cosgrave C, King E, Strike S, Marshall B, Falvey E, Franklyn-Miller A. Isokinetic muscle strength and readiness to return to sport following anterior cruciate ligament reconstruction: is there an association? A systematic review and a protocol recommendation. Br J Sports Med. 2015;49(20):1305–1310. doi: 10.1136/bjsports-2014-093962.
    1. Wiggins AJ, Grandhi RK, Schneider DK, Stanfield D, Webster KE, Myer GD. Risk of secondary injury in younger athletes after anterior cruciate ligament reconstruction: a systematic review and meta-analysis. Am J Sports Med. 2016;44(7):1861–1876. doi: 10.1177/0363546515621554.
    1. Wilk KE. Anterior cruciate ligament injury prevention and rehabilitation: let’s get it right. J Orthop Sports Phys Ther. 2015;45(10):729–730. doi: 10.2519/jospt.2015.0109.
    1. Willigenburg NWM, McNally P, Hewett TE. Quadriceps and hamstrings strength in athletes. In: Kaeding CCB, Borchers JR, editors. Hamstring and quadriceps injuries in athletes. New York: Springer; 2014. p. 151.

Source: PubMed

3
Předplatit