Icosapent ethyl, a pure ethyl ester of eicosapentaenoic acid: effects on circulating markers of inflammation from the MARINE and ANCHOR studies

Harold E Bays, Christie M Ballantyne, Rene A Braeckman, William G Stirtan, Paresh N Soni, Harold E Bays, Christie M Ballantyne, Rene A Braeckman, William G Stirtan, Paresh N Soni

Abstract

Background: Icosapent ethyl (IPE) is a high-purity prescription form of eicosapentaenoic acid ethyl ester approved by the US Food and Drug Administration as an adjunct to diet to reduce triglyceride (TG) levels in adult patients with severe (≥500 mg/dL) hypertriglyceridemia. In addition to TG-lowering effects, IPE also reduces non-high-density lipoprotein cholesterol and apolipoprotein B levels without significantly increasing low-density lipoprotein cholesterol (LDL-C) in patients with very high TG levels ≥500 mg/dL (MARINE study) and in patients with well-controlled LDL-C and residually high TG levels 200-500 mg/dL (ANCHOR study). This analysis examined the effect of IPE on inflammatory markers in patients from MARINE and ANCHOR.

Methods: MARINE (N = 229) and ANCHOR (N = 702) were Phase III, double-blind studies that randomized hypertriglyceridemic patients to IPE 4 g/day, 2 g/day, or placebo. This analysis assessed the median placebo-adjusted percentage change from baseline in markers representing various stages of atherosclerotic inflammation such as intercellular adhesion molecule-1 (ICAM-1), oxidized low-density lipoprotein (Ox-LDL), lipoprotein-associated phospholipase A(2) (Lp-PLA(2)), interleukin-6 (IL-6), and high-sensitivity C-reactive protein (hsCRP).

Results: Compared to placebo, IPE 4 g/day significantly decreased Ox-LDL (13 %, p < 0.0001, ANCHOR), Lp-PLA(2) (14 %, p < 0.001, MARINE; 19 %, p < 0.0001, ANCHOR), and hsCRP levels (36 %, p < 0.01, MARINE; 22 %, p < 0.001, ANCHOR), but did not significantly change ICAM-1 and IL-6 levels. In the MARINE study, IPE 2 g/day did not significantly change ICAM-1, Ox-LDL, Lp-PLA(2), IL-6, or hsCRP levels. Also, compared to placebo in the ANCHOR study, IPE 2 g/day significantly decreased Lp-PLA(2) levels (8 %, p < 0.0001), but did not significantly change levels of other assessed inflammatory markers.

Conclusion: Compared to placebo, in hypertriglyceridemic patients, IPE 4 g/day significantly decreased Ox-LDL, Lp-PLA(2), and hsCRP levels.

Figures

Fig. 1
Fig. 1
Median placebo-adjusted percentage change from baseline to week 12 in levels of inflammatory markers (intent-to-treat population). Lp-PLA2 data for MARINE from Bays et al. [16], Lp-PLA2 and hsCRP data for ANCHOR from Ballantyne et al [17]. P values for Lp-PLA2 were adjusted for multiple comparisons. hsCRP high-sensitivity C-reactive protein, ICAM-1 intercellular adhesion molecule-1, IL-6 interleukin-6, IPE icosapent ethyl, Lp-PLA2 lipoprotein-associated phospholipase A2,NS not significant, Ox-LDL oxidized low-density lipoprotein. *p < 0.01; †p < 0.001; ‡p < 0.0001 vs. placebo
Fig. 2
Fig. 2
Median placebo-adjusted percentage change from baseline to week 12 in hsCRP levels for statin use subgroups (intent-to-treat population). a MARINE; b and c ANCHOR. IPE icosapent ethyl, Lower-efficacystatin regimens simvastatin 5–10 mg, medium-efficacy statin regimens rosuvastatin 5–10 mg, atorvastatin 10–20 mg, simvastatin 20–40 mg, simvastatin 10–20 mg + ezetimibe 5–10 mg, higher-efficacy statin regimens rosuvastatin 20–40 mg, atorvastatin 40–80 mg, simvastatin 80 mg, simvastatin 40–80 mg + ezetimibe 5–10 mg, NS not significant. *p < 0.05; †p < 0.01 vs. placebo

References

    1. Libby P, Okamoto Y, Rocha VZ, et al. Inflammation in atherosclerosis: transition from theory to practice. Circ J. 2010;74(2):213–220. doi: 10.1253/circj.CJ-09-0706.
    1. Davidson MH, Ballantyne CM, Jacobson TA, et al. Clinical utility of inflammatory markers and advanced lipoprotein testing: advice from an expert panel of lipid specialists. J Clin Lipidol. 2011;5:338–367. doi: 10.1016/j.jacl.2011.07.005.
    1. Hwang SJ, Ballantyne CM, Sharrett AR, et al. Circulating adhesion molecules VCAM-1, ICAM-1, and E-selectin in carotid atherosclerosis and incident coronary heart disease cases: the Atherosclerosis Risk In Communities (ARIC) study. Circulation. 1997;96(12):4219–4225. doi: 10.1161/01.CIR.96.12.4219.
    1. Lawson C, Wolf S. ICAM-1 signaling in endothelial cells. Pharmacol Rep. 2009;61(1):22–32.
    1. Levitan I, Volkov S, Subbaiah PV. Oxidized LDL: diversity, patterns of recognition, and pathophysiology. Antioxid Redox Signal. 2010;13(1):39–75. doi: 10.1089/ars.2009.2733.
    1. Meisinger C, Baumert J, Khuseyinova N, et al. Plasma oxidized low-density lipoprotein, a strong predictor for acute coronary heart disease events in apparently healthy, middle-aged men from the general population. Circulation. 2005;112(5):651–657. doi: 10.1161/CIRCULATIONAHA.104.529297.
    1. Toth PP, McCullough PA, Wegner MS, et al. Lipoprotein-associated phospholipase A2: role in atherosclerosis and utility as a cardiovascular biomarker. Expert Rev Cardiovasc Ther. 2010;8(3):425–438. doi: 10.1586/erc.10.18.
    1. Corson MA, Jones PH, Davidson MH. Review of the evidence for the clinical utility of lipoprotein-associated phospholipase A2 as a cardiovascular risk marker. Am J Cardiol. 2008;101(12A):41F–50F. doi: 10.1016/j.amjcard.2008.04.018.
    1. Schuett H, Luchtefeld M, Grothusen C, et al. How much is too much? Interleukin-6 and its signalling in atherosclerosis. Thromb Haemost. 2009;102(2):215–222.
    1. Nystrom T. C-reactive protein: a marker or a player? Clin Sci (Lond) 2007;113(2):79–81.
    1. Bays HE. Adiposopathy is “sick fat” a cardiovascular disease? J Am Coll Cardiol. 2011;57(25):2461–2473. doi: 10.1016/j.jacc.2011.02.038.
    1. Ballantyne CM, Hoogeveen RC, Bang H, et al. Lipoprotein-associated phospholipase A2, high-sensitivity C-reactive protein, and risk for incident coronary heart disease in middle-aged men and women in the Atherosclerosis Risk in Communities (ARIC) study. Circulation. 2004;109(7):837–842. doi: 10.1161/01.CIR.0000116763.91992.F1.
    1. Ballantyne CM, Hoogeveen RC, Bang H, et al. Lipoprotein-associated phospholipase A2, high-sensitivity C-reactive protein, and risk for incident ischemic stroke in middle-aged men and women in the Atherosclerosis Risk in Communities (ARIC) study. Arch Intern Med. 2005;165(21):2479–2484. doi: 10.1001/archinte.165.21.2479.
    1. Bays HE. Safety considerations with omega-3 fatty acid therapy. Am J Cardiol. 2007;99(6A):35C–43C. doi: 10.1016/j.amjcard.2006.11.020.
    1. Bays H. Fish oils in the treatment of dyslipidemia and cardiovascular disease. In: Kwiterovich PO, editor. The Johns Hopkins textbook of dyslipidemia. Philadelphia: Lippincott Williams & Wolters Kluwer; 2010. pp. 245–257.
    1. Bays HE, Ballantyne CM, Kastelein JJ, et al. Eicosapentaenoic acid ethyl ester (AMR101) therapy in patients with very high triglyceride levels (from the Multi-center, plAcebo-controlled, Randomized, double-blINd, 12-week study with an open-label Extension [MARINE] trial) Am J Cardiol. 2011;108(5):682–690. doi: 10.1016/j.amjcard.2011.04.015.
    1. Ballantyne CM, Bays HE, Kastelein JJ, et al. A phase 3, multicenter, placebo-controlled, randomized, double-blind, 12-week study to evaluate the effect of two doses of AMR101 on fasting serum triglycerides and other lipid parameters in statin-treated patients with persistent high triglycerides (≥200 and <500 mg/dL): the ANCHOR study. Am J Cardiol. 2012;110(7):984–992. doi: 10.1016/j.amjcard.2012.05.031.
    1. Ridker PM, Rifai N, Clearfield M, et al. Measurement of C-reactive protein for the targeting of statin therapy in the primary prevention of acute coronary events. N Engl J Med. 2001;344(26):1959–1965. doi: 10.1056/NEJM200106283442601.
    1. Ridker PM, Danielson E, Fonseca FA, et al. Rosuvastatin to prevent vascular events in men and women with elevated C-reactive protein. N Engl J Med. 2008;359(21):2195–2207. doi: 10.1056/NEJMoa0807646.
    1. Garrido-Sanchez L, Garcia-Fuentes E, Rojo-Martinez G, et al. Inverse relation between levels of anti-oxidized-LDL antibodies and eicosapentanoic acid (EPA) Br J Nutr. 2008;100(3):585–589. doi: 10.1017/S0007114508921723.
    1. Mesa MD, Buckley R, Minihane AM, et al. Effects of oils rich in eicosapentaenoic and docosahexaenoic acids on the oxidizability and thrombogenicity of low-density lipoprotein. Atherosclerosis. 2004;175(2):333–343. doi: 10.1016/j.atherosclerosis.2004.04.004.
    1. Watanabe E, Sobue Y, Sano K, et al. Eicosapentaenoic acid for the prevention of recurrent atrial fibrillation. Ann Noninvasive Electrocardiol. 2011;16(4):373–378. doi: 10.1111/j.1542-474X.2011.00465.x.
    1. Mori TA, Woodman RJ, Burke V, et al. Effect of eicosapentaenoic acid and docosahexaenoic acid on oxidative stress and inflammatory markers in treated-hypertensive type 2 diabetic subjects. Free Radic Biol Med. 2003;35(7):772–781. doi: 10.1016/S0891-5849(03)00407-6.
    1. Satoh N, Shimatsu A, Kotani K, et al. Highly purified eicosapentaenoic acid reduces cardio-ankle vascular index in association with decreased serum amyloid A-LDL in metabolic syndrome. Hypertens Res. 2009;32(11):1004–1008. doi: 10.1038/hr.2009.145.
    1. Satoh N, Shimatsu A, Kotani K, et al. Purified eicosapentaenoic acid reduces small dense LDL, remnant lipoprotein particles, and C-reactive protein in metabolic syndrome. Diabetes Care. 2007;30(1):144–146. doi: 10.2337/dc06-1179.
    1. Kelley DS, Siegel D, Fedor DM, et al. DHA supplementation decreases serum C-reactive protein and other markers of inflammation in hypertriglyceridemic men. J Nutr. 2009;139(3):495–501. doi: 10.3945/jn.108.100354.
    1. Micallef MA, Munro IA, Garg ML. An inverse relationship between plasma n-3 fatty acids and C-reactive protein in healthy individuals. Eur J Clin Nutr. 2009;63(9):1154–1156. doi: 10.1038/ejcn.2009.20.
    1. Bloomer RJ, Larson DE, Fisher-Wellman KH, et al. Effect of eicosapentaenoic and docosahexaenoic acid on resting and exercise-induced inflammatory and oxidative stress biomarkers: a randomized, placebo controlled, cross-over study. Lipids Health Dis. 2009;8:36. doi: 10.1186/1476-511X-8-36.
    1. Chan DC, Watts GF, Barrett PH, et al. Effect of atorvastatin and fish oil on plasma high-sensitivity C-reactive protein concentrations in individuals with visceral obesity. Clin Chem. 2002;48(6 Pt 1):877–883.
    1. Skulas-Ray AC, Kris-Etherton PM, Harris WS, et al. Dose-response effects of omega-3 fatty acids on triglycerides, inflammation, and endothelial function in healthy persons with moderate hypertriglyceridemia. Am J Clin Nutr. 2011;93(2):243–252. doi: 10.3945/ajcn.110.003871.
    1. Pedersen MW, Koenig W, Christensen JH, et al. The effect of marine n-3 fatty acids in different doses on plasma concentrations of Lp-PLA2 in healthy adults. Eur J Nutr. 2009;48(1):1–5. doi: 10.1007/s00394-008-0758-z.
    1. Nelson TL, Hokanson JE, Hickey MS. Omega-3 fatty acids and lipoprotein associated phospholipase A(2) in healthy older adult males and females. Eur J Nutr. 2011;50(3):185–193. doi: 10.1007/s00394-010-0126-7.
    1. Davidson MH, Maki KC, Bays H, et al. Effects of prescription omega-3 ethyl esters on lipoprotein particle concentrations, apolipoproteins AI and CIII, and lipoprotein-associated phospholipase A2 mass in statin-treated subjects with hypertriglyceridemia. J Clin Lipidol. 2009;3(5):332–340. doi: 10.1016/j.jacl.2009.08.001.
    1. Glass CK, Witztum JL. Atherosclerosis: the road ahead. Cell. 2001;104(4):503–516. doi: 10.1016/S0092-8674(01)00238-0.
    1. Bays HE, Tighe AP, Sadovsky R, et al. Prescription omega-3 fatty acids and their lipid effects: physiologic mechanisms of action and clinical implications. Expert Rev Cardiovasc Ther. 2008;6(3):391–409. doi: 10.1586/14779072.6.3.391.
    1. Bays H. Rationale for prescription omega-3-acid ethyl ester therapy for hypertriglyceridemia: a primer for clinicians. Drugs Today (Barc) 2008;44(3):205–246. doi: 10.1358/dot.2008.44.3.1166387.
    1. Yokoyama M, Origasa H, Matsuzaki M, et al. Effects of eicosapentaenoic acid on major coronary events in hypercholesterolaemic patients (JELIS): a randomised open-label, blinded endpoint analysis. Lancet. 2007;369(9567):1090–1098. doi: 10.1016/S0140-6736(07)60527-3.
    1. Itakura H, Yokoyama M, Matsuzaki M, et al. Relationships between plasma fatty acid composition and coronary artery disease. J Atheroscler Thromb. 2011;18(2):99–107. doi: 10.5551/jat.5876.

Source: PubMed

3
Předplatit