Testosterone therapy and bone quality in men with diabetes and hypogonadism: Study design and protocol

Vittoria Russo, Georgia Colleluori, Rui Chen, Sanjay Mediwala, Clifford Qualls, Michael Liebschner, Dennis T Villareal, Reina Armamento-Villareal, Vittoria Russo, Georgia Colleluori, Rui Chen, Sanjay Mediwala, Clifford Qualls, Michael Liebschner, Dennis T Villareal, Reina Armamento-Villareal

Abstract

Context: Type 2 diabetes mellitus (T2D) is often accompanied by male hypogonadism and both conditions are associated with increased risk for fractures. Testosterone (T) has been shown to improve the bone health of hypogonadal men but has not been tested in patients who also have T2D in addition to low T. To date, there is no treatment that is specifically recommended for bone disease among patients with T2D. This study will evaluate the effect of T therapy on the bone health of male veterans with low T who also have T2D.

Methods: This is a randomized double-blind placebo-controlled trial of 166 male veterans 35-65 years old, with T2D and hypogonadism, randomized to either T gel 1.62% or placebo for 12 months. We will evaluate the effect of T therapy on the following primary outcomes:1) changes in bone strength as measured by microfinite elements analysis (μFEA) using high-resolution peripheral quantitative computer tomography, 2) changes in bone turnover markers, and 3) changes in circulating osteoblast progenitors (COP) and osteoclast precursors cells.

Discussion: We anticipate that T therapy will result in improvement in bone strength owing to improvement in bone remodeling through an increase in osteoblastic differentiation and proliferation in patients with hypogonadism and T2D.

Keywords: Bone microarchitecture; Hypogonadism; Testosterone; Type 2 diabetes mellitus.

© 2021 Published by Elsevier Inc.

References

    1. Corona G., Monami M., Rastrelli G., Aversa A., Sforza A., Lenzi A., Forti G., Mannucci E., Maggi M. Type 2 diabetes mellitus and testosterone: a meta-analysis study. Int. J. Androl. 2011;34(6 Pt 1):528–540.
    1. Ding E.L., Song Y., Malik V.S., Liu S. Sex differences of endogenous sex hormones and risk of type 2 diabetes: a systematic review and meta-analysis. J. Am. Med. Assoc.: JAMA, J. Am. Med. Assoc. 2006;295(11):1288–1299.
    1. Dhindsa S., Ghanim H., Batra M., Kuhadiya N.D., Abuaysheh S., Sandhu S., Green K., Makdissi A., Hejna J., Chaudhuri A., Punyanitya M., Dandona P. Insulin resistance and inflammation in hypogonadotropic hypogonadism and their reduction after testosterone replacement in men with type 2 diabetes. Diabetes Care. 2016;39(1):82–91. doi: 10.2337/dc15-1518. Epub 2015/12/02, PubMed PMID: 26622051; PMCID: PMC4686848.
    1. Stellato R.K., Feldman H.A., Hamdy O., Horton E.S., McKinlay J.B. Testosterone, sex hormone-binding globulin, and the development of type 2 diabetes in middle-aged men: prospective results from the Massachusetts male aging study. Diabetes Care. 2000;23(4):490–494.
    1. Chandel A., Dhindsa S., Topiwala S., Chaudhuri A., Dandona P. Testosterone concentration in young patients with diabetes. Diabetes Care. 2008;31(10):2013–2017.
    1. Tan R.S., Pu S.J. Impact of obesity on hypogonadism in the andropause. Int. J. Androl. 2002;25(4):195–201.
    1. Jackson J.A., Riggs M.W., Spiekerman A.M. Testosterone deficiency as a risk factor for hip fractures in men: a case-control study. Am. J. Med. Sci. 1992;304(1):4–8.
    1. Snyder P.J., Peachey H., Hannoush P., Berlin J.A., Loh L., Holmes J.H., Dlewati A., Staley J., Santanna J., Kapoor S.C., Attie M.F., Haddad J.G., Jr., Strom B.L. Effect of testosterone treatment on bone mineral density in men over 65 years of age. JClinEndocrinolMetab. 1999;84(6):1966–1972.
    1. Katznelson L., Finkelstein J.S., Schoenfeld D.A., Rosenthal D.I., Anderson E.J., Klibanski A. Increase in bone density and lean body mass during testosterone administration in men with acquired hypogonadism. JClinEndocrinolMetab. 1996;81(12):4358–4365.
    1. Wang C., Swerdloff R.S., Iranmanesh A., Dobs A., Snyder P.J., Cunningham G., Matsumoto A.M., Weber T., Berman N. Effects of transdermal testosterone gel on bone turnover markers and bone mineral density in hypogonadal men. ClinEndocrinol(Oxf). 2001;54(6):739–750.
    1. Kurra S., Fink D.A., Siris E.S. Osteoporosis-associated fracture and diabetes. EndocrinolMetab ClinNorth Am. 2014;43(1):233–243.
    1. Verhaeghe J., van H.E., Visser W.J., Suiker A.M., Thomasset M., Einhorn T.A., Faierman E., Bouillon R. Bone and mineral metabolism in BB rats with long-term diabetes. Decreased bone turnover and osteoporosis. Diabetes. 1990;39(4):477–482.
    1. Starup-Linde J., Eriksen S.A., Lykkeboe S., Handberg A., Vestergaard P. Biochemical markers of bone turnover in diabetes patients--a meta-analysis, and a methodological study on the effects of glucose on bone markers. Osteoporos. Int. 2014;25(6):1697–1708.
    1. Manavalan J.S., Cremers S., Dempster D.W., Zhou H., Dworakowski E., Kode A., Kousteni S., Rubin M.R. Circulating osteogenic precursor cells in type 2 diabetes mellitus. JClinEndocrinolMetab. 2012;97(9):3240–3250.
    1. Ghanim H., Dhindsa S., Green K., Abuaysheh S., Batra M., Makdissi A., Chaudhuri A., Dandona P. Increase in osteocalcin following testosterone therapy in men with type 2 diabetes and subnormal free testosterone. J Endocr Soc. 2019;3(8):1617–1630. doi: 10.1210/js.2018-00426. Epub 2019/08/14, PubMed PMID: 31403089; PMCID: PMC6682410.
    1. Kasperk C.H., Wergedal J.E., Farley J.R., Linkhart T.A., Turner R.T., Baylink D.J. Androgens directly stimulate proliferation of bone cells in vitro. Endocrinology. 1989;124(3):1576–1578.
    1. Bhasin S., Cunningham G.R., Hayes F.J., Matsumoto A.M., Snyder P.J., Swerdloff R.S., Montori V.M. Testosterone therapy in men with androgen deficiency syndromes: an Endocrine Society clinical practice guideline. JClinEndocrinolMetab. 2010;95(6):2536–2559.
    1. Kapoor D., Aldred H., Clark S., Channer K.S., Jones T.H. Clinical and biochemical assessment of hypogonadism in men with type 2 diabetes: correlations with bioavailable testosterone and visceral adiposity. Diabetes Care. 2007;30(4):911–917. doi: 10.2337/dc06-1426. Epub 2007/03/30, PubMed PMID: 17392552.
    1. Viljakainen H., Ivaska K.K., Paldanius P., Lipsanen-Nyman M., Saukkonen T., Pietilainen K.H., Andersson S., Laitinen K., Makitie O. Suppressed bone turnover in obesity: a link to energy metabolism? A case-control study. J. Clin. Endocrinol. Metab. 2014;99(6):2155–2163. doi: 10.1210/jc.2013-3097. Epub 2014/03/13, PubMed PMID: 24606073.
    1. Imai K. Computed tomography-based finite element analysis to assess fracture risk and osteoporosis treatment. World J. Exp. Med. 2015;5(3):182–187.
    1. Carpenter R.D. Finite element analysis of the hip and spine based on quantitative computed tomography. Curr. Osteoporos. Rep. 2013;11(2):156–162.
    1. Bouxsein M.L., Melton L.J., III, Riggs B.L., Muller J., Atkinson E.J., Oberg A.L., Robb R.A., Camp J.J., Rouleau P.A., McCollough C.H., Khosla S. Age- and sex-specific differences in the factor of risk for vertebral fracture: a population-based study using QCT. J. Bone Miner. Res. 2006;21(9):1475–1482.
    1. Crawford R.P., Cann C.E., Keaveny T.M. Finite element models predict in vitro vertebral body compressive strength better than quantitative computed tomography. Bone. 2003;33(4):744–750.
    1. Keyak J.H. Improved prediction of proximal femoral fracture load using nonlinear finite element models. Med. Eng. Phys. 2001;23(3):165–173.
    1. Kopperdahl D.L., Aspelund T., Hoffmann P.F., Sigurdsson S., Siggeirsdottir K., Harris T.B., Gudnason V., Keaveny T.M. Assessment of incident spine and hip fractures in women and men using finite element analysis of CT scans. J. Bone Miner. Res. 2014;29(3):570–580.
    1. Orwoll E.S., Marshall L.M., Nielson C.M., Cummings S.R., Lapidus J., Cauley J.A., Ensrud K., Lane N., Hoffmann P.R., Kopperdahl D.L., Keaveny T.M. Finite element analysis of the proximal femur and hip fracture risk in older men. J. Bone Miner. Res. 2009;24(3):475–483.
    1. Cheung A.M., Adachi J.D., Hanley D.A., Kendler D.L., Davison K.S., Josse R., Brown J.P., Ste-Marie L.G., Kremer R., Erlandson M.C., Dian L., Burghardt A.J., Boyd S.K. High-resolution peripheral quantitative computed tomography for the assessment of bone strength and structure: a review by the Canadian Bone Strength Working Group. Curr. Osteoporos. Rep. 2013;11(2):136–146.
    1. Engelke K. Assessment of bone quality and strength with new technologies. Curr. Opin. Endocrinol. Diabetes Obes. 2012;19(6):474–482.
    1. Colleluori G., Chen R.T.C., Vigevano F., Qualls C., Mediwala S., Villareal D., Armamento-Villareal R. Aromatase inhibitors and weight loss improves the hormonal profile of obese hypogonadal men without causing major side effects. Front. Endocrinol. 2020 doi: 10.3389/fendo.2020.00277.
    1. Vilayphiou N., Boutroy S., Szulc P., Van R.B., Munoz F., Delmas P.D., Chapurlat R. Finite element analysis performed on radius and tibia HR-pQCT images and fragility fractures at all sites in men. J. Bone Miner. Res. 2011;26(5):965–973.
    1. Boutroy S., Bouxsein M.L., Munoz F., Delmas P.D. In vivo assessment of trabecular bone microarchitecture by high-resolution peripheral quantitative computed tomography. JClinEndocrinolMetab. 2005;90(12):6508–6515.
    1. Burghardt A.J., Issever A.S., Schwartz A.V., Davis K.A., Masharani U., Majumdar S., Link T.M. High-resolution peripheral quantitative computed tomographic imaging of cortical and trabecular bone microarchitecture in patients with type 2 diabetes mellitus. JClinEndocrinolMetab. 2010;95(11):5045–5055.
    1. Eghbali-Fatourechi G.Z., Lamsam J., Fraser D., Nagel D., Riggs B.L., Khosla S. Circulating osteoblast-lineage cells in humans. N. Engl. J. Med. 2005;352(19):1959–1966.
    1. Rubin M.R., Manavalan J.S., Dempster D.W., Shah J., Cremers S., Kousteni S., Zhou H., McMahon D.J., Kode A., Sliney J., Shane E., Silverberg S.J., Bilezikian J.P. Parathyroid hormone stimulates circulating osteogenic cells in hypoparathyroidism. JClinEndocrinolMetab. 2011;96(1):176–186.
    1. Cohen A., Kousteni S., Bisikirska B., Shah J.G., Manavalan J.S., Recker R.R., Lappe J., Dempster D.W., Zhou H., McMahon D.J., Bucovsky M., Kamanda-Kosseh M., Stubby J., Shane E. IGF-1 receptor expression on circulating osteoblast progenitor cells predicts tissue-based bone formation rate and response to teriparatide in premenopausal women with idiopathic osteoporosis. J. Bone Miner. Res. 2017;32(6):1267–1273.
    1. Gossiel F., Hoyle C., McCloskey E.V., Naylor K.E., Walsh J., Peel N., Eastell R. The effect of bisphosphonate treatment on osteoclast precursor cells in postmenopausal osteoporosis: the TRIO study. Bone. 2016;92:94–99. doi: 10.1016/j.bone.2016.08.010. Epub 2016/08/19, PubMed PMID: 27535783.
    1. Randall C., Bridges D., Guerri R., Nogues X., Puig L., Torres E., Mellibovsky L., Hoffseth K., Stalbaum T., Srikanth A., Weaver J.C., Rosen S., Barnard H., Brimer D., Proctor A., Candy J., Saldana C., Chandrasekar S., Lescun T., Nielson C.M., Orwoll E., Herthel D., Kopeikin H., Yang H.T., Farr J.N., McCready L., Khosla S., Diez-Perez A., Hansma P.K. Applications of a new handheld reference point indentation instrument measuring bone material strength. JMedDevice. 2013;7(4):410051–410056.
    1. Bridges D., Randall C., Hansma P.K. A new device for performing reference point indentation without a reference probe. Rev. Sci. Instrum. 2012;83(4) 044301.
    1. Diez-Perez A., Guerri R., Nogues X., Caceres E., Pena M.J., Mellibovsky L., Randall C., Bridges D., Weaver J.C., Proctor A., Brimer D., Koester K.J., Ritchie R.O., Hansma P.K. Microindentation for in vivo measurement of bone tissue mechanical properties in humans. J. Bone Miner. Res. 2010;25(8):1877–1885.
    1. Diez-Perez A., Bouxsein M.L., Eriksen E.F., Khosla S., Nyman J.S., Papapoulos S., Tang S.Y. Technical note: recommendations for a standard procedure to assess cortical bone at the tissue-level in vivo using impact microindentation. BoneKEy Rep. 2016;5:181–185.
    1. Emoto M., Nishizawa Y., Maekawa K., Hiura Y., Kanda H., Kawagishi T., Shoji T., Okuno Y., Morii H. Homeostasis model assessment as a clinical index of insulin resistance in type 2 diabetic patients treated with sulfonylureas. Diabetes Care. 1999;22(5):818–822.
    1. Snyder P.J., Kopperdahl D.L., Stephens Shields A.J., Ellenberg S.S., Cauley J.A., Ensrud K.E., Lewis C.E., Barrett-Connor E., Schwartz A.V., Lee D.C., Bhasin S., Cunningham G.R., Gill T.M., Matsumoto A.M., Swerdloff R.S., Basaria S., Diem S.J., Wang C., Hou X., Cifelli D., Dougar D., Zeldow B., Bauer D.C., Keaveny T.M. Effect of testosterone treatment on volumetric bone density and strength in older men with low testosterone: a controlled clinical trial. JAMA InternMed. 2017;177(4):471–479.
    1. Benito M., Vasilic B., Wehrli F.W., Bunker B., Wald M., Gomberg B., Wright A.C., Zemel B., Cucchiara A., Snyder P.J. Effect of testosterone replacement on trabecular architecture in hypogonadal men. J. Bone Miner. Res. 2005;20(10):1785–1791.
    1. Aguirre L.E., Colleluori G., Robbins D., Dorin R., Shah V.O., Chen R., Jan I.Z., Qualls C., Villareal D.T., Armamento-Villareal R. Bone and body composition response to testosterone therapy vary according to polymorphisms in the CYP19A1 gene. Endocrine. 2019;65(3):692–706. doi: 10.1007/s12020-019-02008-6. Epub 2019/07/22, PubMed PMID: 31325085.
    1. Charlson M., Szatrowski T.P., Peterson J., Gold J. Validation of a combined comorbidity index. J. Clin. Epidemiol. 1994;47(11):1245–1251. doi: 10.1016/0895-4356(94)90129-5. Epub 1994/11/01, PubMed PMID: 7722560.
    1. Colleluori G., Aguirre L., Dorin R., Robbins D., Blevins D., Barnouin Y., Chen R., Qualls C., Villareal D.T., Armamento-Villareal R. Hypogonadal men with type 2 diabetes mellitus have smaller bone size and lower bone turnover. Bone. 2017;99:14–19. doi: 10.1016/j.bone.2017.03.039. Epub 2017/03/23, PubMed PMID: 28323146.
    1. Farr J.N., Drake M.T., Amin S., Melton L.J., III, McCready L.K., Khosla S. In vivo assessment of bone quality in postmenopausal women with type 2 diabetes. J. Bone Miner. Res. 2014;29(4):787–795.
    1. Bonds D.E., Larson J.C., Schwartz A.V., Strotmeyer E.S., Robbins J., Rodriguez B.L., Johnson K.C., Margolis K.L. Risk of fracture in women with type 2 diabetes: the women's health initiative observational study. JClinEndocrinolMetab. 2006;91(9):3404–3410.
    1. Bassil N., Alkaade S., Morley J.E. The benefits and risks of testosterone replacement therapy: a review. TherClinRisk Manag. 2009;5(3):427–448.
    1. Dhindsa S., Bhatia V., Dhindsa G., Chaudhuri A., Gollapudi G.M., Dandona P. The effects of hypogonadism on body composition and bone mineral density in type 2 diabetic patients. Diabetes Care. 2007;30(7):1860–1861.
    1. Shane E., Burr D., Abrahamsen B., Adler R.A., Brown T.D., Cheung A.M., Cosman F., Curtis J.R., Dell R., Dempster D.W., Ebeling P.R., Einhorn T.A., Genant H.K., Geusens P., Klaushofer K., Lane J.M., McKiernan F., McKinney R., Ng A., Nieves J., O'Keefe R., Papapoulos S., Howe T.S., van der Meulen M.C., Weinstein R.S., Whyte M.P. Atypical subtrochanteric and diaphyseal femoral fractures: second report of a task force of the American Society for Bone and Mineral Research. J. Bone Miner. Res. 2014;29(1):1–23.
    1. Armamento-Villareal R., Napoli N., Panwar V., Novack D. Suppressed bone turnover during alendronate therapy for high-turnover osteoporosis. N. Engl. J. Med. 2006;355(19):2048–2050.

Source: PubMed

3
Předplatit