Effects of nutrition therapy on growth, inflammation and metabolism in immature infants: a study protocol of a double-blind randomized controlled trial (ImNuT)

Kristina Wendel, Helle Cecilie Viekilde Pfeiffer, Drude Merete Fugelseth, Eirik Nestaas, Magnus Domellöf, Bjorn Steen Skålhegg, Katja Benedikte Presto Elgstøen, Helge Rootwelt, Rolf Dagfinn Pettersen, Are Hugo Pripp, Tom Stiris, Sissel J Moltu, ImNuT Collaboration Group, Marlen Fossan Aas, Mona Kristiansen Beyer, Jens-Petter Berg, Marianne Bratlie, Atle Bjornerud, Maninder Singh Chawla, Siw Helen Westby Eger, Cathrine Nygaard Espeland, Oliver Geier, Gunnthorunn Gunnarsdottir, Christina Henriksen, Per Kristian Hol, Henrik Holmstrøm, Ivan Maximov, Tone Nordvik, Madelaine Eloranta Rossholt, Helene Caroline Dale Osterholt, Ingjerd Saeves, Elin Blakstad, Henriette Astrup, Helge Froisland, Lars Tveiten, Krzysztof Hochnowski, Terje Reidar Selberg, Henning Hoyte, Randi Borghild Stornes, Hanne Isdal, Thea Wauters Thyness, Petra Huppi, Alexandre Lapillonne, Kristina Wendel, Helle Cecilie Viekilde Pfeiffer, Drude Merete Fugelseth, Eirik Nestaas, Magnus Domellöf, Bjorn Steen Skålhegg, Katja Benedikte Presto Elgstøen, Helge Rootwelt, Rolf Dagfinn Pettersen, Are Hugo Pripp, Tom Stiris, Sissel J Moltu, ImNuT Collaboration Group, Marlen Fossan Aas, Mona Kristiansen Beyer, Jens-Petter Berg, Marianne Bratlie, Atle Bjornerud, Maninder Singh Chawla, Siw Helen Westby Eger, Cathrine Nygaard Espeland, Oliver Geier, Gunnthorunn Gunnarsdottir, Christina Henriksen, Per Kristian Hol, Henrik Holmstrøm, Ivan Maximov, Tone Nordvik, Madelaine Eloranta Rossholt, Helene Caroline Dale Osterholt, Ingjerd Saeves, Elin Blakstad, Henriette Astrup, Helge Froisland, Lars Tveiten, Krzysztof Hochnowski, Terje Reidar Selberg, Henning Hoyte, Randi Borghild Stornes, Hanne Isdal, Thea Wauters Thyness, Petra Huppi, Alexandre Lapillonne

Abstract

Background: Current nutritional management of infants born very preterm results in significant deficiency of the essential fatty acids (FAs) arachidonic acid (ARA) and docosahexaenoic acid (DHA). The impact of this deficit on brain maturation and inflammation mediated neonatal morbidities are unknown. The aim of this study is to determine whether early supply of ARA and DHA improves brain maturation and neonatal outcomes in infants born before 29 weeks of gestation.

Methods: Infants born at Oslo University Hospital are eligible to participate in this double-blind randomized controlled trial. Study participants are randomized to receive an enteral FA supplement of either 0.4 ml/kg MCT-oil™ (medium chain triglycerides) or 0.4 ml/kg Formulaid™ (100 mg/kg of ARA and 50 mg/kg of DHA). The FA supplement is given from the second day of life to 36 weeks' postmenstrual age (PMA). The primary outcome is brain maturation assessed by Magnetic Resonance Imaging (MRI) at term equivalent age. Secondary outcomes include quality of growth, incidence of neonatal morbidities, cardiovascular health and neuro-development. Target sample size is 120 infants (60 per group), this will provide 80% power to detect a 0.04 difference in mean diffusivity (MD, mm2/sec) in major white matter tracts on MRI.

Discussion: Supplementation of ARA and DHA has the potential to improve brain maturation and reduce inflammation related diseases. This study is expected to provide valuable information for future nutritional guidelines for preterm infants.

Trial registration: Clinicaltrials.gov ID: NCT03555019 . Registered 4 October 2018- Retrospectively registered.

Keywords: Arachidonic acid; Brain maturation; Docosahexaenoic acid; Inflammation; Nutrition; Preterm.

Conflict of interest statement

The investigational nutrition product, Formulaid™ was donated by DSM Nutritional Products. All authors declare that they have no competing interests.

Figures

Fig. 1
Fig. 1
Nutritional protocol
Fig. 2
Fig. 2
Summary of study assessments and procedures

References

    1. Blencowe H, Cousens S, Chou D, Oestergaard M, Say L, Moller A-B, et al. Born too soon: the global epidemiology of 15 million preterm births. Reprod Health. 2013;10 Suppl 1(Suppl 1):S2. doi: 10.1186/1742-4755-10-S1-S2.
    1. Embleton NE, Pang N, Cooke RJ. Postnatal malnutrition and growth retardation: an inevitable consequence of current recommendations in preterm infants? Pediatrics. 2001;107(2):270–273. doi: 10.1542/peds.107.2.270.
    1. Gilmore JH, Shi F, Woolson SL, Knickmeyer RC, Short SJ, Lin W, et al. Longitudinal development of cortical and subcortical gray matter from birth to 2 years. Cereb Cortex. 2012;22(11):2478–2485. doi: 10.1093/cercor/bhr327.
    1. Georgieff MK. Nutrition and the developing brain: nutrient priorities and measurement. Am J Clin Nutr. 2007;85(2):614s–620s.
    1. Koletzko B, Goulet O, Hunt J, Krohn K, Shamir R. 1. Guidelines on Paediatric Parenteral Nutrition of the European Society of Paediatric Gastroenterology, Hepatology and Nutrition (ESPGHAN) and the European Society for Clinical Nutrition and Metabolism (ESPEN), Supported by the European Society of Paediatric Research (ESPR) J Pediatr Gastroenterol Nutr. 2005;41 Suppl 2:S1–87. doi: 10.1097/01.mpg.0000181841.07090.f4.
    1. Agostoni C, Buonocore G, Carnielli VP, De Curtis M, Darmaun D, Decsi T, et al. Enteral nutrient supply for preterm infants: commentary from the European Society of Paediatric Gastroenterology, Hepatology and nutrition committee on nutrition. J Pediatr Gastroenterol Nutr. 2010;50(1):85–91. doi: 10.1097/MPG.0b013e3181adaee0.
    1. Mason DG, Puntis JW, McCormick K, Smith N. Parenteral nutrition for neonates and children: a mixed bag. Arch Dis Child. 2011;96(3):209–210. doi: 10.1136/adc.2010.188557.
    1. Lapillonne A, Kermorvant-Duchemin E. A systematic review of practice surveys on parenteral nutrition for preterm infants. J Nutr. 2013;143(12 Suppl):2061s–2065s. doi: 10.3945/jn.113.176982.
    1. Moltu SJ, Blakstad EW, Strommen K, Almaas AN, Nakstad B, Ronnestad A, et al. Enhanced feeding and diminished postnatal growth failure in very-low-birth-weight infants. J Pediatr Gastroenterol Nutr. 2014;58(3):344–351. doi: 10.1097/MPG.0000000000000220.
    1. Strommen K, Blakstad EW, Moltu SJ, Almaas AN, Westerberg AC, Amlien IK, et al. Enhanced nutrient supply to very low birth weight infants is associated with improved white matter maturation and head growth. Neonatology. 2015;107(1):68–75. doi: 10.1159/000368181.
    1. Moltu SJ, Strømmen K, Blakstad EW, Almaas AN, Westerberg AC, Brække K, et al. Enhanced feeding in very-low-birth-weight infants may cause electrolyte disturbances and septicemia – a randomized, controlled trial. Clin Nutr. 2013;32(2):207–212. doi: 10.1016/j.clnu.2012.09.004.
    1. Ichikawa G, Watabe Y, Suzumura H, Sairenchi T, Muto T, Arisaka O. Hypophosphatemia in small for gestational age extremely low birth weight infants receiving parenteral nutrition in the first week after birth. J Pediatr Endocrinol Metab. 2012;25(3–4):317–321.
    1. Mizumoto H, Mikami M, Oda H, Hata D. Refeeding syndrome in a small-for-dates micro-preemie receiving early parenteral nutrition. Pediatr Int. 2012;54(5):715–717. doi: 10.1111/j.1442-200X.2012.03590.x.
    1. Bonsante F, Iacobelli S, Latorre G, Rigo J, De Felice C, Robillard PY, et al. Initial amino acid intake influences phosphorus and calcium homeostasis in preterm infants--it is time to change the composition of the early parenteral nutrition. PLoS One. 2013;8(8):e72880. doi: 10.1371/journal.pone.0072880.
    1. Cormack BE, Jiang Y, Harding JE, Crowther CA, Bloomfield FH. Neonatal Refeeding Syndrome and Clinical Outcome in Extremely Low Birthweight Babies. JPEN J Parenter Enteral Nutr. 2020;1-14. 10.1002/jpen.1934.
    1. Mihatsch WA, Braegger C, Bronsky J, Cai W, Campoy C, Carnielli V, et al. ESPGHAN/ESPEN/ESPR/CSPEN guidelines on pediatric parenteral nutrition. Clin Nutr. 2018;37(6 Pt B):2303–2305. doi: 10.1016/j.clnu.2018.05.029.
    1. Jochum F, Moltu SJ, Senterre T, Nomayo A, Goulet O, Iacobelli S. ESPGHAN/ESPEN/ESPR/CSPEN guidelines on pediatric parenteral nutrition: Fluid and electrolytes. Clin Nutr. 2018;37(6 Pt B):2344–2353. doi: 10.1016/j.clnu.2018.06.948.
    1. Lapillonne A, Jensen CL. Reevaluation of the DHA requirement for the premature infant. Prostaglandins Leukot Essent Fatty Acids. 2009;81(2–3):143–150. doi: 10.1016/j.plefa.2009.05.014.
    1. Lapillonne A, Groh-Wargo S, Gonzalez CH, Uauy R. Lipid needs of preterm infants: updated recommendations. J Pediatr. 2013;162(3 Suppl):S37–S47. doi: 10.1016/j.jpeds.2012.11.052.
    1. Hadley KB, Ryan AS, Forsyth S, Gautier S, Salem N., Jr The essentiality of Arachidonic acid in infant development. Nutrients. 2016;8(4):216. doi: 10.3390/nu8040216.
    1. Innis SM. Essential fatty acid transfer and fetal development. Placenta. 2005;26 Suppl A:S70–S75. doi: 10.1016/j.placenta.2005.01.005.
    1. Zhang P, Lavoie PM, Lacaze-Masmonteil T, Rhainds M, Marc I. Omega-3 long-chain polyunsaturated fatty acids for extremely preterm infants: a systematic review. Pediatrics. 2014;134(1):120–134. doi: 10.1542/peds.2014-0459.
    1. Lapillonne A. Enteral and parenteral lipid requirements of preterm infants. World Rev Nutr Diet. 2014;110:82–98. doi: 10.1159/000358460.
    1. Drevon CA. Marine oils and their effects. Nutr Rev. 1992;50(4 ( Pt 2)):38–45.
    1. Paananen R, Husa AK, Vuolteenaho R, Herva R, Kaukola T, Hallman M. Blood cytokines during the perinatal period in very preterm infants: relationship of inflammatory response and bronchopulmonary dysplasia. J Pediatr. 2009;154(1):39–43. doi: 10.1016/j.jpeds.2008.07.012.
    1. Strunk T, Inder T, Wang X, Burgner D, Mallard C, Levy O. Infection-induced inflammation and cerebral injury in preterm infants. Lancet Infect Dis. 2014;14(8):751–762. doi: 10.1016/S1473-3099(14)70710-8.
    1. Marchant EA, Kan B, Sharma AA, van Zanten A, Kollmann TR, Brant R, et al. Attenuated innate immune defenses in very premature neonates during the neonatal period. Pediatr Res. 2015;78(5):492–497. doi: 10.1038/pr.2015.132.
    1. Neu J, Pammi M. Necrotizing enterocolitis: the intestinal microbiome, metabolome and inflammatory mediators. Semin Fetal Neonatal Med. 2018;23(6):400–405. doi: 10.1016/j.siny.2018.08.001.
    1. Kim ES, Kim EK, Choi CW, Kim HS, Kim BI, Choi JH, et al. Intrauterine inflammation as a risk factor for persistent ductus arteriosus patency after cyclooxygenase inhibition in extremely low birth weight infants. J Pediatr. 2010;157(5):745–750. doi: 10.1016/j.jpeds.2010.05.020.
    1. Wanten GJ, Calder PC. Immune modulation by parenteral lipid emulsions. Am J Clin Nutr. 2007;85(5):1171–1184. doi: 10.1093/ajcn/85.5.1171.
    1. Serhan CN, Chiang N, Van Dyke TE. Resolving inflammation: dual anti-inflammatory and pro-resolution lipid mediators. Nat Rev Immunol. 2008;8(5):349–361. doi: 10.1038/nri2294.
    1. Waitzberg DL, Torrinhas RS. Fish oil lipid emulsions and immune response: what clinicians need to know. Nutr Clin Pract. 2009;24(4):487–499. doi: 10.1177/0884533609339071.
    1. Dammann O, Brinkhaus MJ, Bartels DB, Dordelmann M, Dressler F, Kerk J, et al. Immaturity, perinatal inflammation, and retinopathy of prematurity: a multi-hit hypothesis. Early Hum Dev. 2009;85(5):325–329. doi: 10.1016/j.earlhumdev.2008.12.010.
    1. Dammann O, Leviton A. Inflammation, brain damage and visual dysfunction in preterm infants. Semin Fetal Neonatal Med. 2006;11(5):363–368. doi: 10.1016/j.siny.2006.02.003.
    1. Vincent JL, Opal SM, Marshall JC, Tracey KJ. Sepsis definitions: time for change. Lancet. 2013;381(9868):774–775. doi: 10.1016/S0140-6736(12)61815-7.
    1. Wang H, Ward MF, Sama AE. Targeting HMGB1 in the treatment of sepsis. Expert Opin Ther Targets. 2014;18(3):257–268. doi: 10.1517/14728222.2014.863876.
    1. Aghai ZH, Saslow JG, Meniru C, Porter C, Eydelman R, Bhat V, et al. High-mobility group box-1 protein in tracheal aspirates from premature infants: relationship with bronchopulmonary dysplasia and steroid therapy. J Perinatol. 2010;30(9):610–615. doi: 10.1038/jp.2010.16.
    1. Poindexter BB, Martin CR. Impact of nutrition on Bronchopulmonary dysplasia. Clin Perinatol. 2015;42(4):797–806. doi: 10.1016/j.clp.2015.08.007.
    1. Rozance PJ, Seedorf GJ, Brown A, Roe G, O'Meara MC, Gien J, et al. Intrauterine growth restriction decreases pulmonary alveolar and vessel growth and causes pulmonary artery endothelial cell dysfunction in vitro in fetal sheep. Am J Physiol Lung Cell Mol Physiol. 2011;301(6):L860–L871. doi: 10.1152/ajplung.00197.2011.
    1. Harris WS, Baack ML. Beyond building better brains: bridging the docosahexaenoic acid (DHA) gap of prematurity. J Perinatol. 2015;35(1):1–7. doi: 10.1038/jp.2014.195.
    1. Martin CR, Dasilva DA, Cluette-Brown JE, Dimonda C, Hamill A, Bhutta AQ, et al. Decreased postnatal docosahexaenoic and arachidonic acid blood levels in premature infants are associated with neonatal morbidities. J Pediatr. 2011;159(5):743–749. doi: 10.1016/j.jpeds.2011.04.039.
    1. Manley BJ, Makrides M, Collins CT, McPhee AJ, Gibson RA, Ryan P, et al. High-dose docosahexaenoic acid supplementation of preterm infants: respiratory and allergy outcomes. Pediatrics. 2011;128(1):e71–e77. doi: 10.1542/peds.2010-2405.
    1. Skouroliakou M, Konstantinou D, Agakidis C, Delikou N, Koutri K, Antoniadi M, et al. Cholestasis, bronchopulmonary dysplasia, and lipid profile in preterm infants receiving MCT/omega-3-PUFA-containing or soybean-based lipid emulsions. Nutr Clin Pract. 2012;27(6):817–824. doi: 10.1177/0884533612454547.
    1. Collins CT, Makrides M, McPhee AJ, Sullivan TR, Davis PG, Thio M, et al. Docosahexaenoic acid and Bronchopulmonary dysplasia in preterm infants. N Engl J Med. 2017;376(13):1245–1255. doi: 10.1056/NEJMoa1611942.
    1. Bernhard W, Raith M, Koch V, Maas C, Abele H, Poets CF, et al. Developmental changes in polyunsaturated fetal plasma phospholipids and feto-maternal plasma phospholipid ratios and their association with bronchopulmonary dysplasia. Eur J Nutr. 2016;55(7):2265–2274. doi: 10.1007/s00394-015-1036-5.
    1. Stillwell W, Wassall SR. Docosahexaenoic acid: membrane properties of a unique fatty acid. Chem Phys Lipids. 2003;126(1):1–27. doi: 10.1016/S0009-3084(03)00101-4.
    1. Drenckpohl D, McConnell C, Gaffney S, Niehaus M, Macwan KS. Randomized trial of very low birth weight infants receiving higher rates of infusion of intravenous fat emulsions during the first week of life. Pediatrics. 2008;122(4):743–751. doi: 10.1542/peds.2007-2282.
    1. VanderVeen DK, Martin CR, Mehendale R, Allred EN, Dammann O, Leviton A. Early nutrition and weight gain in preterm newborns and the risk of retinopathy of prematurity. PLoS One. 2013;8(5):e64325. doi: 10.1371/journal.pone.0064325.
    1. Beken S, Dilli D, Fettah ND, Kabatas EU, Zenciroglu A, Okumus N. The influence of fish-oil lipid emulsions on retinopathy of prematurity in very low birth weight infants: a randomized controlled trial. Early Hum Dev. 2014;90(1):27–31. doi: 10.1016/j.earlhumdev.2013.11.002.
    1. Pawlik D, Lauterbach R, Walczak M, Hurkala J, Sherman MP. Fish-oil fat emulsion supplementation reduces the risk of retinopathy in very low birth weight infants: a prospective, randomized study. JPEN J Parenter Enteral Nutr. 2014;38(6):711–716. doi: 10.1177/0148607113499373.
    1. Najm S, Lofqvist C, Hellgren G, Engstrom E, Lundgren P, Hard AL, et al. Effects of a lipid emulsion containing fish oil on polyunsaturated fatty acid profiles, growth and morbidities in extremely premature infants: a randomized controlled trial. Clinical nutrition ESPEN. 2017;20:17–23. doi: 10.1016/j.clnesp.2017.04.004.
    1. Bernabe-Garcia M, Villegas-Silva R, Villavicencio-Torres A, Calder PC, Rodriguez-Cruz M, Maldonado-Hernandez J, et al. Enteral Docosahexaenoic acid and retinopathy of prematurity: a randomized clinical trial. JPEN J Parenter Enteral Nutr. 2019;43(7):874–882. doi: 10.1002/jpen.1497.
    1. Dyet LE, Kennea N, Counsell SJ, Maalouf EF, Ajayi-Obe M, Duggan PJ, et al. Natural history of brain lesions in extremely preterm infants studied with serial magnetic resonance imaging from birth and neurodevelopmental assessment. Pediatrics. 2006;118(2):536–548. doi: 10.1542/peds.2005-1866.
    1. Back SA. White matter injury in the preterm infant: pathology and mechanisms. Acta Neuropathol. 2017;134(3):331–349. doi: 10.1007/s00401-017-1718-6.
    1. Verney C, Pogledic I, Biran V, Adle-Biassette H, Fallet-Bianco C, Gressens P. Microglial reaction in axonal crossroads is a hallmark of noncystic periventricular white matter injury in very preterm infants. J Neuropathol Exp Neurol. 2012;71(3):251–264. doi: 10.1097/NEN.0b013e3182496429.
    1. Khwaja O, Volpe JJ. Pathogenesis of cerebral white matter injury of prematurity. Arch Dis Child Fetal Neonatal Ed. 2008;93(2):F153–F161. doi: 10.1136/adc.2006.108837.
    1. Heep A, Behrendt D, Nitsch P, Fimmers R, Bartmann P, Dembinski J. Increased serum levels of interleukin 6 are associated with severe intraventricular haemorrhage in extremely premature infants. Arch Dis Child Fetal Neonatal Ed. 2003;88(6):F501–F504. doi: 10.1136/fn.88.6.F501.
    1. Kidokoro H, Neil JJ, Inder TE. New MR imaging assessment tool to define brain abnormalities in very preterm infants at term. AJNR Am J Neuroradiol. 2013;34(11):2208–2214. doi: 10.3174/ajnr.A3521.
    1. Zamora R, Grishin A, Wong C, Boyle P, Wang J, Hackam D, et al. High-mobility group box 1 protein is an inflammatory mediator in necrotizing enterocolitis: protective effect of the macrophage deactivator semapimod. Am J Physiol Gastrointest Liver Physiol. 2005;289(4):G643–G652. doi: 10.1152/ajpgi.00067.2005.
    1. Barker DJ, Hales CN, Fall CH, Osmond C, Phipps K, Clark PM. Type 2 (non-insulin-dependent) diabetes mellitus, hypertension and hyperlipidaemia (syndrome X): relation to reduced fetal growth. Diabetologia. 1993;36(1):62–67. doi: 10.1007/BF00399095.
    1. Mercuro G, Bassareo PP, Flore G, Fanos V, Dentamaro I, Scicchitano P, et al. Prematurity and low weight at birth as new conditions predisposing to an increased cardiovascular risk. Eur J Prev Cardiol. 2013;20(2):357–367. doi: 10.1177/2047487312437058.
    1. Gunthel M, Barnett P, Christoffels VM. Development, proliferation, and growth of the mammalian heart. Mol Ther. 2018;26(7):1599–1609. doi: 10.1016/j.ymthe.2018.05.022.
    1. Iruretagoyena JI, Gonzalez-Tendero A, Garcia-Canadilla P, Amat-Roldan I, Torre I, Nadal A, et al. Cardiac dysfunction is associated with altered sarcomere ultrastructure in intrauterine growth restriction. Am J Obstet Gynecol. 2014;210(6):550. doi: 10.1016/j.ajog.2014.01.023.
    1. Morrison JL, Botting KJ, Dyer JL, Williams SJ, Thornburg KL, McMillen IC. Restriction of placental function alters heart development in the sheep fetus. Am J Physiol Regul Integr Comp Physiol. 2007;293(1):R306–R313. doi: 10.1152/ajpregu.00798.2006.
    1. Schulz KF, Altman DG, Moher D. CONSORT 2010 statement: updated guidelines for reporting parallel group randomised trials. BMJ. 2010;340:c332. doi: 10.1136/bmj.c332.
    1. Schneider J, Kober T, Bickle Graz M, Meuli R, Hüppi PS, Hagmann P, et al. Evolution of T1 relaxation, ADC, and fractional anisotropy during early brain maturation: a serial imaging study on preterm infants. AJNR Am J Neuroradiol. 2016;37(1):155–162. doi: 10.3174/ajnr.A4510.
    1. Link D, Braginsky MB, Joskowicz L, Ben Sira L, Harel S, Many A, et al. Automatic measurement of fetal brain development from magnetic resonance imaging: new reference data. Fetal Diagn Ther. 2018;43(2):113–122. doi: 10.1159/000475548.
    1. Higgins RD, Jobe AH, Koso-Thomas M, Bancalari E, Viscardi RM, Hartert TV, et al. Bronchopulmonary dysplasia: executive summary of a workshop. J Pediatr. 2018;197:300–308. doi: 10.1016/j.jpeds.2018.01.043.
    1. Bashinsky AL. Retinopathy of prematurity. N C Med J. 2017;78(2):124–128.
    1. Mϋller MJ, Paul T, Seeliger S. Necrotizing enterocolitis in premature infants and newborns. J Neonatal Perinatal Med. 2016;9(3):233–242. doi: 10.3233/NPM-16915130.
    1. Valdez Sandoval P, Hernández Rosales P, Quiñones Hernández DG, Chavana Naranjo EA, García NV. Intraventricular hemorrhage and posthemorrhagic hydrocephalus in preterm infants: diagnosis, classification, and treatment options. Childs Nerv Syst. 2019;35(6):917–927. doi: 10.1007/s00381-019-04127-x.
    1. Gano D. White matter injury in premature newborns. Neonatal Netw. 2016;35(2):73–77. doi: 10.1891/0730-0832.35.2.73.
    1. Dong Y, Speer CP. Late-onset neonatal sepsis: recent developments. Arch Dis Child Fetal Neonatal Ed. 2015;100(3):F257–F263. doi: 10.1136/archdischild-2014-306213.
    1. Posod A, Müller S, Komazec IO, Dejaco D, Peglow UP, Griesmaier E, et al. Former very preterm infants show alterations in plasma amino acid profiles at a preschool age. Pediatr Res. 2017;81(5):787–794. doi: 10.1038/pr.2017.24.
    1. Zhao T, Mishra V, Jeon T, Ouyang M, Peng Q, Chalak L, et al. Structural network maturation of the preterm human brain. Neuroimage. 2019;185:699–710. doi: 10.1016/j.neuroimage.2018.06.047.
    1. Norman M, Hallberg B, Abrahamsson T, Bjorklund LJ, Domellof M, Farooqi A, et al. Association between year of birth and 1-year survival among extremely preterm infants in Sweden during 2004-2007 and 2014-2016. JAMA. 2019;321(12):1188–1199. doi: 10.1001/jama.2019.2021.
    1. Moster D, Lie RT, Markestad T. Long-term medical and social consequences of preterm birth. N Engl J Med. 2008;359(3):262–273. doi: 10.1056/NEJMoa0706475.
    1. Ancel PY, Goffinet F, Kuhn P, Langer B, Matis J, Hernandorena X, et al. Survival and morbidity of preterm children born at 22 through 34 weeks' gestation in France in 2011: results of the EPIPAGE-2 cohort study. JAMA Pediatr. 2015;169(3):230–238. doi: 10.1001/jamapediatrics.2014.3351.
    1. Thompson DK, Kelly CE, Chen J, Beare R, Alexander B, Seal ML, et al. Early life predictors of brain development at term-equivalent age in infants born across the gestational age spectrum. Neuroimage. 2019;185:813–824. doi: 10.1016/j.neuroimage.2018.04.031.
    1. Fleischman AR. Ethical issues in neonatal research involving human subjects. Semin Perinatol. 2016;40(4):247–253. doi: 10.1053/j.semperi.2015.12.014.
    1. Modi N, Vohra J, Preston J, Elliott C, Van't Hoff W, Coad J, et al. Guidance on clinical research involving infants, children and young people: an update for researchers and research ethics committees. Arch Dis Child. 2014;99(10):887–891. doi: 10.1136/archdischild-2014-306444.
    1. Diekema DS. Ethical issues in research involving infants. Semin Perinatol. 2009;33(6):364–371. doi: 10.1053/j.semperi.2009.07.003.
    1. Stefanescu BM, Gillam-Krakauer M, Stefanescu AR, Markham M, Kosinski JL. Very low birth weight infant care: adherence to a new nutrition protocol improves growth outcomes and reduces infectious risk. Early Hum Dev. 2016;94:25–30. doi: 10.1016/j.earlhumdev.2016.01.011.
    1. Butler TJ, Szekely LJ, Grow JL. A standardized nutrition approach for very low birth weight neonates improves outcomes, reduces cost and is not associated with increased rates of necrotizing enterocolitis, sepsis or mortality. J Perinatol. 2013;33(11):851–857. doi: 10.1038/jp.2013.66.
    1. Buckle JL, Dwyer SC, Jackson M. Qualitative bereavement research: incongruity between the perspectives of participants and research ethics boards. Int J Soc Res Methodol. 2010;13(2):111–125. doi: 10.1080/13645570902767918.
    1. Nordheim T, Rustoen T, Iversen PO, Nakstad B. Quality of life in parents of preterm infants in a randomized nutritional intervention trial. Food Nutr Res. 2016;60:32162. doi: 10.3402/fnr.v60.32162.

Source: PubMed

3
Předplatit