Radiosurgery for ventricular tachycardia: preclinical and clinical evidence and study design for a German multi-center multi-platform feasibility trial (RAVENTA)

Oliver Blanck, Daniel Buergy, Maren Vens, Lina Eidinger, Adrian Zaman, David Krug, Boris Rudic, Judit Boda-Heggemann, Frank A Giordano, Leif-Hendrik Boldt, Felix Mehrhof, Volker Budach, Achim Schweikard, Denise Olbrich, Inke R König, Frank-Andre Siebert, Reinhard Vonthein, Jürgen Dunst, Hendrik Bonnemeier, Oliver Blanck, Daniel Buergy, Maren Vens, Lina Eidinger, Adrian Zaman, David Krug, Boris Rudic, Judit Boda-Heggemann, Frank A Giordano, Leif-Hendrik Boldt, Felix Mehrhof, Volker Budach, Achim Schweikard, Denise Olbrich, Inke R König, Frank-Andre Siebert, Reinhard Vonthein, Jürgen Dunst, Hendrik Bonnemeier

Abstract

Background: Single-session high-dose stereotactic radiotherapy (radiosurgery) is a new treatment option for otherwise untreatable patients suffering from refractory ventricular tachycardia (VT). In the initial single-center case studies and feasibility trials, cardiac radiosurgery has led to significant reductions of VT burden with limited toxicities. However, the full safety profile remains largely unknown.

Methods/design: In this multi-center, multi-platform clinical feasibility trial which we plan is to assess the initial safety profile of radiosurgery for ventricular tachycardia (RAVENTA). High-precision image-guided single-session radiosurgery with 25 Gy will be delivered to the VT substrate determined by high-definition endocardial electrophysiological mapping. The primary endpoint is safety in terms of successful dose delivery without severe treatment-related side effects in the first 30 days after radiosurgery. Secondary endpoints are the assessment of VT burden, reduction of implantable cardioverter defibrillator (ICD) interventions [shock, anti-tachycardia pacing (ATP)], mid-term side effects and quality-of-life (QoL) in the first year after radiosurgery. The planned sample size is 20 patients with the goal of demonstrating safety and feasibility of cardiac radiosurgery in ≥ 70% of the patients. Quality assurance is provided by initial contouring and planning benchmark studies, joint multi-center treatment decisions, sequential patient safety evaluations, interim analyses, independent monitoring, and a dedicated data and safety monitoring board.

Discussion: RAVENTA will be the first study to provide the initial robust multi-center multi-platform prospective data on the therapeutic value of cardiac radiosurgery for ventricular tachycardia.

Trial registration number: NCT03867747 (clinicaltrials.gov). Registered March 8, 2019. The study was initiated on November 18th, 2019, and is currently recruiting patients.

Keywords: Cardiac arrhythmia; Clinical feasibility trial; Multi-center; Multi-platform; Radioablation; Radiosurgery; SBRT; Stereotactic body radiotherapy; Ventricular tachycardia.

Conflict of interest statement

OB reports to have been an employee of CyberHeart Inc. (Sunnyvale, CA, USA) from 2008 to 2010 during the initial preclinical studies for cardiac radiosurgery, though he reports no financial ties or obligations or conflict of interest to or with the company or its legal predecessor Varian Inc. (Sunnyvale, CA, USA). DB reports personal fees from Siemens AG, personal fees from NB Capital Research GmbH, personal fees from NB Capital ApS, personal fees from b.e. Imaging GmbH, outside the submitted work. DK has received honoraria from Merck Sharp & Dome, outside of the submitted work. BR received travel grants and personal fees from Boston Scientific Medizintechnik GmbH, outside of the submitted work. All other authors report no competing interests.

Figures

Fig. 1
Fig. 1
Consolidated standards of reporting trials (CONSORT) diagram for the RAdiosurgery for VENtricular Tachycardia (RAVENTA) trial
Fig. 2
Fig. 2
High-resolution electroanatomical voltage mapping (left) showing a re-entry circuit of approx. 3.6 × 1.5 cm in the cardiac septum (red circle) and corresponding axial plane in the radiation treatment planning system (right) showing the target lesion in the septum (orange circle) and the planning target volume which included a 5 mm uncertainty margin (red circle)
Fig. 3
Fig. 3
Flowchart for the RAdiosurgery for VENtricular TAchycardia (RAVENTA) trial

References

    1. Shivkumar K. Catheter ablation of ventricular arrhythmias. N Engl J Med. 2019;380:1555–1564.
    1. Al-Khatib SM, Stevenson WG, Ackerman MJ, et al. 2017 AHA/ACC/HRS guideline for management of patients with ventricular arrhythmias and the prevention of sudden cardiac death: executive summary: a report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines and the Heart Rhythm Society. Heart Rhythm. 2018;15(10):e190–e252.
    1. Dukkipati SR, Koruth JS, Choudry S, et al. Catheter ablation of ventricular tachycardia in structural heart disease: indications, strategies, and outcomes—part II. J Am Coll Cardiol. 2017;70(23):2924–2941.
    1. Sapp JL, Wells GA, Parkash R, et al. Ventricular tachycardia ablation versus escalation of antiarrhythmic drugs. N Engl J Med. 2016;375(2):111–121.
    1. Tokuda M, Kojodjojo P, Tung S, et al. Acute failure of catheter ablation for ventricular tachycardia due to structural heart disease: causes and significance. J Am Heart Assoc. 2013;2(3):e000072.
    1. Santangeli P, Frankel DS, Tung R, et al. Early mortality after catheter ablation of ventricular tachycardia in patients with structural heart disease. J Am Coll Cardiol. 2017;69(17):2105–2115.
    1. Gianni C, Mohanty S, Trivedi C, et al. Alternative approaches for ablation of resistant ventricular tachycardia. Card Electrophysiol Clin. 2017;9(1):93–98.
    1. Rauschenberg R, Bruns J, Brütting J, et al. Impact of radiation, systemic therapy and treatment sequencing on survival of patients with melanoma brain metastases. Eur J Cancer. 2019;110:11–20.
    1. Wagner F, Gandalini M, Hakim A, et al. Radiosurgery of vestibular schwannoma: prognostic factors for hearing outcome using 3D-constructive interference in steady state (3D-CISS) Strahlenther Onkol. 2018;194(12):1132–1143.
    1. Koca S, Distel L, Lubgan D, et al. Time course of pain response and toxicity after whole-nerve-encompassing LINAC-based stereotactic radiosurgery for trigeminal neuralgia-a prospective observational study. Strahlenther Onkol. 2019;195(8):745–755.
    1. Timmerman RD, Paulus R, Pass HI, et al. Stereotactic body radiation therapy for operable early-stage lung cancer: findings from the NRG Oncology RTOG 0618 trial. JAMA Oncol. 2018;4(9):1263–1266.
    1. Gkika E, Bettinger D, Krafft L, et al. The role of albumin-bilirubin grade and inflammation-based index in patients with hepatocellular carcinoma treated with stereotactic body radiotherapy. Strahlenther Onkol. 2018;194(5):403–413.
    1. Widmark A, Gunnlaugsson A, Beckman L, et al. Ultra-hypofractionated versus conventionally fractionated radiotherapy for prostate cancer: 5-year outcomes of the HYPO-RT-PC randomised, non-inferiority, phase 3 trial. Lancet. 2019;394:385–395.
    1. Rieber J, Streblow J, Uhlmann L, et al. Stereotactic body radiotherapy (SBRT) for lung metastases—a pooled analysis of the German working group “stereotactic radiotherapy”. Lung Cancer. 2016;97:51–58.
    1. Andratschke N, Alheid H, Allgäuer M, et al. The SBRT database initiative of the German Society for Radiation Oncology (DEGRO): patterns of care and outcome analysis of stereotactic body radiotherapy (SBRT) for liver oligometastases in 474 patients with 623 metastases. BMC Cancer. 2018;18:283.
    1. Palma DA, Olson RA, Harrow S, et al. Stereotactic ablative radiation therapy for the comprehensive treatment of oligometastatic tumors (SABR-COMET): results of a randomized trial. Int J Radiat Oncol Biol Phys. 2018;102(S3):S3–S4.
    1. Pankratov M, Benetti F, Vivian J (2003) Method for non-invasive heart treatment. US Patent US6889695B2
    1. Sharma A, Wong D, Weidlich G, et al. Noninvasive stereotactic radiosurgery (CyberHeart) for creation of ablation lesions in the atrium. Heart Rhythm. 2010;7:802–810.
    1. Loo BW, Jr, Soltys SG, Wang L, et al. Stereotactic ablative radiotherapy for the treatment of refractory cardiac ventricular arrhythmia. Circ Arrhythm Electrophysiol. 2015;8(3):748–750.
    1. Monroy E, Azpiri J, De La Pena C, et al. Late gadolinium enhancement cardiac magnetic resonance imaging post-robotic radiosurgical pulmonary vein isolation (RRPVI): first case in the world. Cureus. 2016;8(8):e738.
    1. Menezes KM, Wang H, Hada M, et al. Radiation matters of the heart: a mini review. Front Cardiovasc Med. 2018;5:83.
    1. Robinson CG, Samson PP, Moore KMS, et al. Phase I/II trial of electrophysiology-guided noninvasive cardiac radioablation for ventricular tachycardia. Circulation. 2019;139(3):313–321.
    1. Knutson NC, Samson P, Hugo G, et al. Radiotherapy workflow and dosimetric analysis from a phase I/II trial of noninvasive cardiac radioablation for ventricular tachycardia. Int J Radiat Oncol Biol Phys. 2019;104(5):1114–1123.
    1. Cuculich PS, Schill MR, Kashani R, et al. Noninvasive cardiac radiation for ablation of ventricular tachycardia. N Engl J Med. 2017;377(24):2325–2336.
    1. Neuwirth R, Cvek J, Knybel L, et al. Stereotactic radiosurgery for ablation of ventricular tachycardia. Europace. 2019;21:1088–1095.
    1. Cvek J, Neuwirth R, Knybel L, et al. Cardiac radiosurgery for malignant ventricular tachycardia. Cureus. 2014;6(7):e190.
    1. Jumeau R, Ozsahin M, Schwitter J, et al. Rescue procedure for an electrical storm using robotic non-invasive cardiac radio-ablation. Radiother Oncol. 2018;128(2):189–191.
    1. Haskova J, Peichl P, Pirk J, et al. Stereotactic radiosurgery as a treatment for recurrent ventricular tachycardia associated with cardiac fibroma. Heart Rhythm Case Rep. 2018;5(1):44–47.
    1. Zeng LJ, Huang LH, Tan H, et al. Stereotactic body radiation therapy for refractory ventricular tachycardia secondary to cardiac lipoma: a case report. Pacing Clin Electrophysiol. 2019;42:1276–1279.
    1. Scholz EP, Seidensaal K, Naumann P, et al. Risen from the dead: cardiac stereotactic ablative radiotherapy as last rescue in a patient with refractory ventricular fibrillation storm. Heart Rhythm Case Rep. 2019;5(6):329–332.
    1. Krug D, Blanck O, Demming T, et al. Stereotactic body radiotherapy for ventricular tachycardia (cardiac radiosurgery): first-in-patient treatment in Germany. Strahlenther Onkol. 2020;196(1):23–30.
    1. Maguire PJ, Gardner E, Jack AB, et al. Cardiac radiosurgery (CyberHeart) for treatment of arrhythmia: physiologic and histopathologic correlation in the porcine model. Cureus. 2011;3(8):e32.
    1. Gardner EA, Sumanaweera TS, Blanck O, et al. In vivo dose measurement using TLDs and MOSFET dosimeters for cardiac radiosurgery. J Appl Clin Med Phys. 2012;13(3):3745.
    1. Blanck O, Bode F, Gebhard M, et al. Dose-escalation study for cardiac radiosurgery in a porcine model. Int J Radiat Oncol Biol Phys. 2014;89(3):590–598.
    1. Lehmann HI, Richter D, Prokesch H, et al. Atrioventricular node ablation in Langendorff-perfused porcine hearts using carbon ion particle therapy: methods and an in vivo feasibility investigation for catheter-free ablation of cardiac arrhythmias. Circ Arrhythm Electrophysiol. 2015;8(2):429–438.
    1. Bode F, Blanck O, Gebhard M, et al. Pulmonary vein isolation by radiosurgery: implications for non-invasive treatment of atrial fibrillation. Europace. 2015;17(12):1868–1874.
    1. Zei PC, Wong D, Gardner E, et al. Safety and efficacy of stereotactic radioablation targeting pulmonary vein tissues in an experimental model. Heart Rhythm. 2018;15(9):1420–1427.
    1. Hohmann S, Deisher AJ, Suzuki A, et al. Left ventricular function after noninvasive cardiac ablation using proton beam therapy in a porcine model. Heart Rhythm. 2019;16:1710–1719.
    1. Rapp F, Simoniello P, Wiedemann J, et al. Biological cardiac tissue effects of high-energy heavy ions—investigation for myocardial ablation. Sci Rep. 2019;9(1):5000.
    1. Ernst F, Bruder R, Schlaefer A, et al. Forecasting pulsatory motion for non-invasive cardiac radiosurgery: an analysis of algorithms from respiratory motion prediction. Int J Comput Assist Radiol Surg. 2011;6(1):93–101.
    1. Ipsen S, Blanck O, Oborn B, et al. Radiotherapy beyond cancer: target localization in real-time MRI and treatment planning for cardiac radiosurgery. Med Phys. 2014;41(12):120702.
    1. Constantinescu A, Lehmann HI, Packer DL, et al. Treatment planning studies in patient data with scanned carbon ion beams for catheter-free ablation of atrial fibrillation. J Cardiovasc Electrophysiol. 2016;27(3):335–344.
    1. Wang L, Fahimian B, Soltys SG, et al. Stereotactic arrhythmia radioablation (STAR) of ventricular tachycardia: a treatment planning study. Cureus. 2016;8(7):e694.
    1. Xia P, Kotecha R, Sharma N, et al. A treatment planning study of stereotactic body radiotherapy for atrial fibrillation. Cureus. 2016;8(7):e678.
    1. Blanck O, Ipsen S, Chan MK, et al. Treatment planning considerations for robotic guided cardiac radiosurgery for atrial fibrillation. Cureus. 2016;8(7):e705.
    1. Gardner EA, Weidlich GA. Analysis of dose distribution in the heart for radiosurgical ablation of atrial fibrillation. Cureus. 2016;8(7):e703.
    1. Bahig H, de Guise J, Vu T, et al. Analysis of pulmonary vein antrums motion with cardiac contraction using dual-source computed tomography. Cureus. 2016;8(7):e712.
    1. Ipsen S, Blanck O, Lowther NJ, et al. Towards real-time MRI-guided 3D localization of deforming targets for non-invasive cardiac radiosurgery. Phys Med Biol. 2016;61(22):7848–7863.
    1. Lowther N, Ipsen S, Marsh S, et al. Investigation of the XCAT phantom as a validation tool in cardiac MRI tracking algorithms. Phys Med. 2018;45:44–51.
    1. John RM, Shinohara ET, Price M, et al. Radiotherapy for ablation of ventricular tachycardia: assessing collateral dosing. Comput Biol Med. 2018;102:376–380.
    1. Lydiard S, Caillet V, Ipsen S, et al. Investigating multi-leaf collimator tracking in stereotactic arrhythmic radioablation (STAR) treatments for atrial fibrillation. Phys Med Biol. 2018;63(19):195008.
    1. Weidlich GA, Hacker F, Bellezza D, et al. Ventricular tachycardia: a treatment comparison study of the cyberknife with conventional linear accelerators. Cureus. 2018;10(10):e3445.
    1. Teo BK, Dieterich S, Blanck O, et al. Effect of cardiac motion on the cyberknife synchrony tracking system for radiosurgical cardiac ablation. Med Phys. 2009;36(6):2653.
    1. Sullivan RM, Mazur A. Stereotactic robotic radiosurgery (CyberHeart): a cyber revolution in cardiac ablation? Heart Rhythm. 2010;7(6):811–812.
    1. Bert C, Engenhart-Cabillic R, Durante M. Particle therapy for noncancer diseases. Med Phys. 2012;39(4):1716–1727.
    1. Bhatt N, Turakhia M, Fogarty TJ. Cost-effectiveness of cardiac radiosurgery for atrial fibrillation: implications for reducing health care morbidity, utilization, and costs. Cureus. 2016;8(8):e720.
    1. Zei PC, Soltys S. Ablative radiotherapy as a noninvasive alternative to catheter ablation for cardiac arrhythmias. Curr Cardiol Rep. 2017;19(9):79.
    1. Kim EJ, Davogustto G, Stevenson WG, et al. Non-invasive cardiac radiation for ablation of ventricular tachycardia: a new therapeutic paradigm in electrophysiology. Arrhythm Electrophysiol Rev. 2018;7(1):8–10.
    1. Graeff C, Bert C. Noninvasive cardiac arrhythmia ablation with particle beams. Med Phys. 2018;45(11):e1024–e1035.
    1. Refaat MM, Zakka P, Youssef B, et al. Noninvasive cardioablation. Card Electrophysiol Clin. 2019;11(3):481–485.
    1. Ector J, De Buck S, Loeckx D, et al. Changes in left atrial anatomy due to respiration: impact on three-dimensional image integration during atrial fibrillation ablation. J Cardiovasc Electrophysiol. 2008;19(8):828–834.
    1. Keall PJ, Mageras GS, Balter JM, et al. The management of respiratory motion in radiation oncology report of AAPM Task Group 76. Med Phys. 2006;33(10):3874–3900.
    1. Ipsen S, Bruder R, O'Brien R, Keall PJ, Schweikard A, Poulsen PR. Online 4D ultrasound guidance for real-time motion compensation by MLC tracking. Med Phys. 2016;43(10):5695.
    1. Boda-Heggemann J, Knopf AC, Simeonova-Chergou A, et al. Deep inspiration breath hold-based radiation therapy: a clinical review. Int J Radiat Oncol Biol Phys. 2016;94(3):478–492.
    1. Sihono DS, Vogel L, Weiß C, et al. A 4D ultrasound real-time tracking system for external beam radiotherapy of upper abdominal lesions under breath-hold. Strahlenther Onkol. 2017;193(3):213–220.
    1. Moustakis C, Blanck O, Ebrahimi Tazehmahalleh F, et al. Planning benchmark study for SBRT of early stage NSCLC: results of the DEGRO Working Group Stereotactic Radiotherapy. Strahlenther Onkol. 2017;193(10):780–790.
    1. Moustakis C, Chan MKH, Kim J, et al. Treatment planning for spinal radiosurgery: a competitive multiplatform benchmark challenge. Strahlenther Onkol. 2018;194(9):843–854.
    1. Boda-Heggemann J, Jahnke A, Chan MKH, et al. In-vivo treatment accuracy analysis of active motion-compensated liver SBRT through registration of plan dose to post-therapeutic MRI-morphologic alterations. Radiother Oncol. 2019;134:158–165.
    1. Seuntjens J, Lartigau EF, Cora S, et al. ICRU report 91. Prescribing, recording, and reporting of stereotactic treatments with small photon beams. J ICRU. 2014;14(2):1–160.
    1. Wilke L, Andratschke N, Blanck O, et al. ICRU report 91 on prescribing, recording, and reporting of stereotactic treatments with small photon beams: statement from the DEGRO/DGMP working group stereotactic radiotherapy and radiosurgery. Strahlenther Onkol. 2019;195(3):193–198.
    1. Grimm J, LaCouture T, Croce R, et al. Dose tolerance limits and dose volume histogram evaluation for stereotactic body radiotherapy. J Appl Clin Med Phys. 2011;12(2):3368.
    1. Gauter-Fleckenstein B, Israel CW, Dorenkamp M, et al. DEGRO/DGK guideline for radiotherapy in patients with cardiac implantable electronic devices. Strahlenther Onkol. 2015;191(5):393–404.
    1. Steger F, Hautmann MG, Süß C, et al. Radiotherapy of patients with cardiac implantable electronic devices according to the DEGRO/DGK guideline-is the risk of relevant errors overestimated? Strahlenther Onkol. 2019;195:1086–1093.
    1. Fowler JF, Welsh JS, Howard SP. Loss of biological effect in prolonged fraction delivery. Int J Radiat Oncol Biol Phys. 2004;59(1):242–249.
    1. Di Biase L, Burkhardt JD, Lakkireddy D, et al. Ablation of stable VTs versus substrate ablation in ischemic cardiomyopathy: the VISTA randomized multicenter trial. J Am Coll Cardiol. 2015;66(25):2872–2882.

Source: PubMed

3
Předplatit