The Autophagy Level Is Increased in the Synovial Tissues of Patients with Active Rheumatoid Arthritis and Is Correlated with Disease Severity

Li Zhu, Huaizhou Wang, Yu Wu, Zhengwen He, Yanghua Qin, Qian Shen, Li Zhu, Huaizhou Wang, Yu Wu, Zhengwen He, Yanghua Qin, Qian Shen

Abstract

Rheumatoid arthritis (RA) is a complex and not fully understood autoimmune disease associated with multijoint damage. The main effector cells, the synovial fibroblasts, are apoptosis resistant and hyperplastic which indicate that autophagy level is high in synovial tissue. Real-time PCR, immunocytochemistry, and western blotting were used in this paper to study the autophagy status of the synovial tissues obtained from RA and OA patients at the time of joint replacement surgery. We further evaluated the correlation between autophagy levels with RA activity-associated serum markers with SPSS. The results showed that the expression levels (both in mRNA and in protein level) of autophagy-related proteins (belcin1, Atg5, and LC3) in the synovial tissue of patients with active rheumatoid arthritis (n = 20) were significantly higher than those in OA patients (n = 16). We further showed that the LC3-II/β-actin relative gray value was strongly correlated with the serum levels of several RA activity-related markers: CRP, ESR, CCP, and RF. Our results indicate that evaluating the autophagy level of synovial biopsies might be a useful way to diagnose RA and to estimate the disease activity. Reducing the expression level of autophagy-related genes might become a new therapeutic target for active rheumatoid arthritis.

Conflict of interest statement

The authors declare that they have no competing interests.

Figures

Figure 1
Figure 1
The relative expression levels of beclin1, Atg5, and LC3 mRNA in synovial tissue. The levels of beclin1, Atg5, and LC3 mRNA expression in synovial tissue from RA (n = 20) and OA (n = 16) patients. ∗∗p < 0.01; the error bars indicate standard deviation.
Figure 2
Figure 2
Localization and expression level of beclin1, Atg5, and LC3 in RA synovial tissues. Immunohistochemical analyses of beclin1, Atg5, and LC3 localization in RA synovium. Synovial tissues from RA and OA patients were stained with anti-beclin1 antibodies (a and b), anti-Atg5 antibodies (c and d), anti-LC3 antibodies (e and f), H&E staining (g and h), or anti-rabbit IgG antibodies as a nonimmune control (i and j). Magnification 200x.
Figure 3
Figure 3
The autophagy-related proteins beclin1 and LC3-II show enhanced expression in RA and OA synovial tissues. Western blotting was used to determine the expression level of autophagy-related proteins beclin1 and LC3-II in RA and OA synovium. The expression of beclin1 and LC3-II was quantified, compared with the expression of actin.
Figure 4
Figure 4
Correlation between the LC3-II/β-actin relative gray value and disease activity parameters in RA patients. The correlation between the LC3-II/β-actin relative gray value and the serum CRP level (a), ESR level (b), serum CCP level (c), or serum RF level (d). n = 20; p < 0.05 is considered statistically significant.

References

    1. Boissier M.-C., Semerano L., Challal S., Saidenberg-Kermanac'h N., Falgarone G. Rheumatoid arthritis: from autoimmunity to synovitis and joint destruction. Journal of Autoimmunity. 2012;39(3):222–228. doi: 10.1016/j.jaut.2012.05.021.
    1. Kondo Y., Kanzawa T., Sawaya R., Kondo S. The role of autophagy in cancer development and response to therapy. Nature Reviews Cancer. 2005;5(9):726–734. doi: 10.1038/nrc1692.
    1. Levine B., Kroemer G. Autophagy in the pathogenesis of disease. Cell. 2008;132(1):27–42. doi: 10.1016/j.cell.2007.12.018.
    1. Ravikumar B., Sarkar S., Davies J. E., et al. Regulation of mammalian autophagy in physiology and pathophysiology. Physiological Reviews. 2010;90(4):1383–1435. doi: 10.1152/physrev.00030.2009.
    1. Zhan Z., Li Q., Wu P., et al. Autophagy-mediated HMGB1 release antagonizes apoptosis of gastric cancer cells induced by vincristine via transcriptional regulation of Mcl-1. Autophagy. 2012;8(1):109–121. doi: 10.4161/auto.8.1.18319.
    1. Kirkin V., McEwan D. G., Novak I., Dikic I. A role for ubiquitin in selective autophagy. Molecular Cell. 2009;34(3):259–269. doi: 10.1016/j.molcel.2009.04.026.
    1. Kraft L. J., Kenworthy A. K. Imaging protein complex formation in the autophagy pathway: analysis of the interaction of LC3 and Atg4BC74A in live cells using Förster resonance energy transfer and fluorescence recovery after photobleaching. Journal of Biomedical Optics. 2012;17(1) doi: 10.1117/1.jbo.17.1.011008.011008
    1. Kroemer G., Jäättelä M. Lysosomes and autophagy in cell death control. Nature Reviews Cancer. 2005;5(11):886–897. doi: 10.1038/nrc1738.
    1. Rabinowitz J. D., White E. Autophagy and metabolism. Science. 2010;330(6009):1344–1348. doi: 10.1126/science.1193497.
    1. Sperandio S., De Belle I., Bredesen D. E. An alternative, nonapoptotic form of programmed cell death. Proceedings of the National Academy of Sciences of the United States of America. 2000;97(26):14376–14381. doi: 10.1073/pnas.97.26.14376.
    1. Connor A. M., Mahomed N., Gandhi R., Keystone E. C., Berger S. A. TNFα modulates protein degradation pathways in rheumatoid arthritis synovial fibroblasts. Arthritis Research and Therapy. 2012;14(2, article no. R62) doi: 10.1186/ar3778.
    1. Kato M., Ospelt C., Gay R. E., Gay S., Klein K. Dual role of autophagy in stress-induced cell death in rheumatoid arthritis synovial fibroblasts. Arthritis & Rheumatology. 2014;66(1):40–48. doi: 10.1002/art.38190.
    1. Shin Y.-J., Han S.-H., Kim D.-S., et al. Autophagy induction and CHOP under-expression promotes survival of fibroblasts from rheumatoid arthritis patients under endoplasmic reticulum stress. Arthritis Research & Therapy. 2010;12(1, article R19) doi: 10.1186/ar2921.
    1. Lin N.-Y., Beyer C., Gießl A., et al. Autophagy regulates TNFα-mediated joint destruction in experimental arthritis. Annals of the Rheumatic Diseases. 2013;72(5):761–768. doi: 10.1136/annrheumdis-2012-201671.
    1. Yang Z., Fujii H., Mohan S. V., Goronzy J. J., Weyand C. M. Phosphofructokinase deficiency impairs atp generation, autophagy, and redox balance in rheumatoid arthritis T cells. Journal of Experimental Medicine. 2013;210(10):2119–2134. doi: 10.1084/jem.20130252.
    1. Arnett F. C., Edworthy S. M., Bloch D. A., et al. The american rheumatism association 1987 revised criteria for the classification of rheumatoid arthritis. Arthritis & Rheumatism. 1988;31(3):315–324. doi: 10.1002/art.1780310302.
    1. Scharl A., Vierbuchen M., Conradt B., Moll W., Würz H., Bolte A. Immunohistochemical detection of progesterone receptor in formalin-fixed and paraffin-embedded breast cancer tissue using a monoclonal antibody. Archives of Gynecology and Obstetrics. 1990;247(2):63–71. doi: 10.1007/BF02390663.
    1. Neumann E., Lefèvre S., Zimmermann B., Gay S., Müller-Ladner U. Rheumatoid arthritis progression mediated by activated synovial fibroblasts. Trends in Molecular Medicine. 2010;16(10):458–468. doi: 10.1016/j.molmed.2010.07.004.
    1. Perlman H., Liu H., Georganas C., et al. Differential expression pattern of the antiapoptotic proteins, Bcl-2 and FLIP, in experimental arthritis. Arthritis and Rheumatism. 2001;44(12):2899–2908. doi: 10.1002/1529-0131(200112)44:12<2899::aid-art478>;2-x.
    1. Bai S., Liu H., Chen K.-H., et al. NF-κB-regulated expression of cellular FLIP protects rheumatoid arthritis synovial fibroblasts from tumor necrosis factor α-mediated apoptosis. Arthritis and Rheumatism. 2004;50(12):3844–3855. doi: 10.1002/art.20680.
    1. Drynda A., Quax P. H. A., Neumann M., et al. Gene transfer of tissue inhibitor of metalloproteinases-3 reverses the inhibitory effects of TNF-α on Fas-induced apoptosis in rheumatoid arthritis synovial fibroblasts. The Journal of Immunology. 2005;174(10):6524–6531. doi: 10.4049/jimmunol.174.10.6524.
    1. Meinecke I., Cinski A., Baier A., et al. Modification of nuclear PML protein by SUMO-1 regulates Fas-induced apoptosis in rheumatoid arthritis synovial fibroblasts. Proceedings of the National Academy of Sciences of the United States of America. 2007;104(12):5073–5078. doi: 10.1073/pnas.0608773104.
    1. Korb A., Pavenstädt H., Pap T. Cell death in rheumatoid arthritis. Apoptosis. 2009;14(4):447–454. doi: 10.1007/s10495-009-0317-y.
    1. Wachsmann D., Sibilia J. Survival in the rheumatoid synovium. Joint Bone Spine. 2011;78(5):435–437. doi: 10.1016/j.jbspin.2011.05.026.
    1. Levine B., Mizushima N., Virgin H. W. Autophagy in immunity and inflammation. Nature. 2011;469(7330):323–335. doi: 10.1038/nature09782.
    1. Lotz M. K., Caramés B. Autophagy and cartilage homeostasis mechanisms in joint health, aging and OA. Nature Reviews Rheumatology. 2011;7(10):579–587. doi: 10.1038/nrrheum.2011.109.
    1. Xu K., Xu P., Yao J.-F., Zhang Y.-G., Hou W.-K., Lu S.-M. Reduced apoptosis correlates with enhanced autophagy in synovial tissues of rheumatoid arthritis. Inflammation Research. 2013;62(2):229–237. doi: 10.1007/s00011-012-0572-1.
    1. Qin Y., Chen Y., Wang W., et al. HMGB1-LPS complex promotes transformation of osteoarthritis synovial fibroblasts to a rheumatoid arthritis synovial fibroblast-like phenotype. Cell Death and Disease. 2014;5(2) doi: 10.1038/cddis.2014.48.e1077
    1. Aletaha D., Neogi T., Silman A. J., et al. 2010 Rheumatoid arthritis classification criteria: an American College of Rheumatology/European League Against Rheumatism collaborative initiative. Annals of the Rheumatic Diseases. 2010;69(9):1580–1588. doi: 10.1136/ard.2010.138461.
    1. Bas S., Perneger T. V., Seitz M., Tiercy J.-M., Roux-Lombard P., Guerne P. A. Diagnostic tests for rheumatoid arthritis: comparison of anti-cyclic citrullinated peptide antibodies, anti-keratin antibodies and IgM rheumatoid factors. Rheumatology. 2002;41(7):809–814. doi: 10.1093/rheumatology/41.7.809.
    1. Bizzaro N., Mazzanti G., Tonutti E., Villalta D., Tozzoli R. Diagnostic accuracy of the anti-citrulline antibody assay for rheumatoid arthritis. Clinical Chemistry. 2001;47(6):1089–1093.
    1. Goldbach-Mansky R., Lee J., McCoy A., et al. Rheumatoid arthritis associated autoantibodies in patients with synovitis of recent onset. Arthritis Research. 2000;2(3):236–243. doi: 10.1186/ar93.
    1. Ménard H. A., Lapointe E., Rochdi M. D., Zhou Z. J. Insights into rheumatoid arthritis derived from the Sa immune system. Arthritis Research. 2000;2(6):429–432. doi: 10.1186/ar122.
    1. Schellekens G. A., Visser H., De Jong B. A. W., et al. The diagnostic properties of rheumatoid arthritis antibodies recognizing a cyclic citrullinated peptide. Arthritis & Rheumatology. 2000;43(1):155–163. doi: 10.1002/1529-0131(200001)43:1<155::AID-ANR20>;2-3.
    1. Bresnihan B. Are synovial biopsies of diagnostic value? Arthritis Research & Therapy. 2003;5(6):271–278. doi: 10.1186/ar1003.

Source: PubMed

3
Předplatit