Effects of a balance-based exergaming intervention using the Kinect sensor on posture stability in individuals with Parkinson's disease: a single-blinded randomized controlled trial

Meng-Che Shih, Ray-Yau Wang, Shih-Jung Cheng, Yea-Ru Yang, Meng-Che Shih, Ray-Yau Wang, Shih-Jung Cheng, Yea-Ru Yang

Abstract

Background: The present study examined the effects of a balance-based exergaming intervention using the Kinect sensor on postural stability and balance in people with Parkinson's disease (PD).

Methods: We conducted a subject-blinded, randomized controlled study. Twenty people with PD (Hoehn and Yahr stages I through III) were recruited and randomly assigned to either a balance-based exergaming group (N = 10) or a balance training group (N = 10) for an 8-week balance training period. Postural stability was assessed using the limits of stability (LOS) and one-leg stance (OLS) tests. Balance was assessed using the Berg Balance Scale (BBS) and the timed up and go (TUG) test. Participants were assessed pre- and post-training.

Results: After training, participants in the balance-based exergaming group showed significant improvements in LOS performance, and in the eyes-closed condition of the OLS test. Both training programs led to improvements in BBS and TUG performance. Furthermore, balance-based exergaming training resulted in significantly better performance in directional control in the LOS test (78.9 ± 7.65 %) compared with conventional balance training (70.6 ± 9.37 %).

Conclusions: Balance-based exergaming training resulted in a greater improvement in postural stability compared with conventional balance training. Our results support the therapeutic use of exergaming aided by the Kinect sensor in people with PD.

Trial registration: ClinicalTrials.gov. NCT02671396.

Keywords: Balance training; Exergaming; Parkinson’s disease; Postural stability.

Figures

Fig. 1
Fig. 1
Screen shots of interaction with the exergaming program. Four exergaming programs, Reaching task 1 (a), Reaching task 2 (b), Obstacle avoidance (c) and Marching (d), were designed and used for training
Fig. 2
Fig. 2
Flowchart of the experimental design

References

    1. Morris ME. Movement disorders in people with Parkinson disease: a model for physical therapy. Phys Ther. 2000;80:578–97.
    1. Bloem BR, Grimbergen YA, Cramer M, Willemsen M, Zwinderman AH. Prospective assessment of falls in Parkinson’s disease. J Neurol. 2001;248:950–8. doi: 10.1007/s004150170047.
    1. Wood BH, Bilclough JA, Bowron A, Walker RW. Incidence and prediction of falls in Parkinson’s disease: a prospective multidisciplinary study. J Neurol Neurosurg Psychiatry. 2002;72:721–5. doi: 10.1136/jnnp.72.6.721.
    1. Smith BA, Jacobs JV, Horak FB. Effects of amplitude cueing on postural responses and preparatory cortical activity of people with Parkinson disease. J Neurol Phys Ther. 2014;38:207–15. doi: 10.1097/NPT.0000000000000058.
    1. Lee BC, Thrasher TA, Fisher SP, Layne CS. The effects of different sensory augmentation on weight-shifting balance exercises in Parkinson’s disease and healthy elderly people: a proof-of-concept study. J Neuroeng Rehabil. 2015;12:75. doi: 10.1186/s12984-015-0064-y.
    1. Konczak J, Corcos DM, Horak F, Poizner H, Shapiro M, Tuite P, et al. Proprioception and motor control in Parkinson’s disease. J Mot Behav. 2009;41:543–52. doi: 10.3200/35-09-002.
    1. Nieuwboer A, Rochester L, Müncks L, Swinnen SP. Motor learning in Parkinson’s disease: limitations and potential for rehabilitation. Parkinsonism Relat Disord. 2009;15:S53–8. doi: 10.1016/S1353-8020(09)70781-3.
    1. Henderson A, Korner-Bitensky N, Levin M. Virtual reality in stroke rehabilitation: a systematic review of its effectiveness for upper limb motor recovery. Top Stroke Rehabil. 2007;14:52–61. doi: 10.1310/tsr1402-52.
    1. Dobkin BH. Training and exercise to drive poststroke recovery. Nat Clin Pract Neurol. 2008;4:76–85. doi: 10.1038/ncpneuro0709.
    1. Langhorne P, Coupar F, Pollock A. Motor recovery after stroke: a systematic review. Lancet Neurol. 2009;8:741–54. doi: 10.1016/S1474-4422(09)70150-4.
    1. Butler DP, Willett K. Wii-habilitation: is there a role in trauma? Injury. 2010;41:883–5. doi: 10.1016/j.injury.2010.03.024.
    1. Adamovich SV, Fluet GG, Tunik E, Merians AS. Sensorimotor training in virtual reality: a review. Neuro Rehabilitation. 2009;25:29–44.
    1. Kakei S, Hoffman DS, Strick PL. Sensorimotor transformations in cortical motor areas. Neurosci Res. 2003;46:1–10. doi: 10.1016/S0168-0102(03)00031-2.
    1. Donath L, Rössler R, Faude O. Effects of virtual reality training (exergaming) compared to alternative exercise training and passive control on standing balance and functional mobility in healthy community-dwelling seniors: a meta-analytical review. Sports Med. 2016. Feb 17. [Epub aheadof print] after 2016.
    1. Esculier JF, Vaudrin J, Bériault P, Gagnon K, Tremblay LE. Home-based balance training programme using Wii Fit with balance board for Parkinsons’s disease: a pilot study. J Rehabil Med. 2012;44:144–50. doi: 10.2340/16501977-0922.
    1. Pompeu JE, Mendes FA, Silva KG, Lobo AM, Oliveira Tde P, Zomignani AP, et al. Effect of Nintendo Wii-based motor and cognitive training on activities of daily living in patients with Parkinson’s disease: a randomised clinical trial. Physiotherapy. 2012;98:196–204. doi: 10.1016/j.physio.2012.06.004.
    1. Lange B, Chang CY, Suma E, Newman B, Rizzo AS, Bolas M. Development and evaluation of low cost game-based balance rehabilitation tool using the Microsoft Kinect sensor. Conf Proc IEEE Eng Med Biol Soc. 2011;2011:1831–4.
    1. Clark RA, Pua YH, Fortin K, Ritchie C, Webster KE, Denehy L, et al. Validity of the Microsoft Kinect for assessment of postural control. Gait Posture. 2012;36:372–7. doi: 10.1016/j.gaitpost.2012.03.033.
    1. Clark RA, Pua YH, Oliveira CC, Bower KJ, Thilarajah S, McGaw R, et al. Reliability and concurrent validity of the Microsoft Xbox One Kinect for assessment of standing balance and postural control. Gait Posture. 2015;42:210–3. doi: 10.1016/j.gaitpost.2015.03.005.
    1. Hughes AJ, Daniel SE, Kilford L, Lees AJ. Accuracy of clinical diagnosis of idiopathic Parkinson’s disease: a clinico-pathological study of 100 cases. J Neurol Neurosurg Psychiatry. 1992;55:181–4. doi: 10.1136/jnnp.55.3.181.
    1. Jessop RT, Horowicz C, Dibble LE. Motor learning and Parkinson disease: refinement of movement velocity and endpoint excursion in a limits of stability balance task. Neurorehabil Neural Repair. 2006;20:459–67. doi: 10.1177/1545968306287107.
    1. Pickerill ML, Harter RA. Validity and reliability of limits-of-stability testing: a comparison of 2 postural stability evaluation devices. J Athl Train. 2011;46:600–6.
    1. Kara B, Genc A, Colakoglu BD, Cakmur R. The effect of supervised exercises on static and dynamic balance in Parkinson’s disease patients. NeuroRehabilitation. 2012;30:351–7.
    1. Li F, Harmer P, Fitzgerald K, Eckstrom E, Stock R, Galver J, et al. Tai chi and postural stability in patients with Parkinson’s disease. N Engl J Med. 2012;366:511–9. doi: 10.1056/NEJMoa1107911.
    1. Liston RA, Brouwer BJ. Reliability and validity of measures obtained from stroke patients using the Balance Master. Arch Phys Med Rehabil. 1996;77:425–30. doi: 10.1016/S0003-9993(96)90028-3.
    1. Newstead AH, Hinman MR, Tomberlin JA. Reliability of the Berg Balance Scale and balance master limits of stability tests for individuals with brain injury. J Neurol Phys Ther. 2005;29:18–23. doi: 10.1097/.
    1. Chien CW, Hu MH, Tang PF, Sheu CF, Hsieh CL. A comparison of psychometric properties of the smart balance master system and the postural assessment scale for stroke in people who have had mild stroke. Arch Phys Med Rehabil. 2007;88:374–80. doi: 10.1016/j.apmr.2006.11.019.
    1. Jacobs JV, Horak FB, Tran VK, Nutt JG. Multiple balance tests improve the assessment of postural stability in subjects with Parkinson’s disease. J Neurol Neurosurg Psychiatry. 2006;77:322–6. doi: 10.1136/jnnp.2005.068742.
    1. Schilling BK, Karlage RE, LeDoux MS, Pfeiffer RF, Weiss LW, Falvo MJ. Impaired leg extensor strength in individuals with Parkinson disease and relatedness to functional mobility. Parkinsonism Relat Disord. 2009;15:776–80. doi: 10.1016/j.parkreldis.2009.06.002.
    1. Mak MK, Pang MY. Parkinsonian single fallers versus recurrent fallers: different fall characteristics and clinical features. J Neurol. 2010;257:1543–51. doi: 10.1007/s00415-010-5573-9.
    1. Springer BA, Marin R, Cyhan T, Roberts H, Gill NW. Normative values for the unipedal stance test with eyes open and closed. J Geriatr Phys Ther. 2007;30:8–15. doi: 10.1519/00139143-200704000-00003.
    1. da Silva RA, Bilodeau M, Parreira RB, Teixeira DC, Amorim CF. Age-related differences in time-limit performance and force platform-based balance measures during one-leg stance. J Electromyogr Kinesiol. 2013;23:634–9. doi: 10.1016/j.jelekin.2013.01.008.
    1. Qutubuddin AA, Pegg PO, Cifu DX, Brown R, McNamee S, Carne W. Validating the Berg Balance Scale for patients with Parkinson’s disease: a key to rehabilitation evaluation. Arch Phys Med Rehabil. 2005;86:789–92. doi: 10.1016/j.apmr.2004.11.005.
    1. Steffen T, Seney M. Test-retest reliability and minimal detectable change on balance and ambulation tests, the 36-item short-form health survey, and the unified Parkinson disease rating scale in people with parkinsonism. Phys Ther. 2008;88:733–46. doi: 10.2522/ptj.20070214.
    1. Schlenstedt C, Brombacher S, Hartwigsen G, Weisser B, Möller B, Deuschl G. Comparing the Fullerton Advanced Balance Scale with the Mini-BESTest and Berg Balance Scale to assess postural control in patients with Parkinson disease. Arch Phys Med Rehabil. 2015;96:218–25. doi: 10.1016/j.apmr.2014.09.002.
    1. Morris S, Morris ME, Iansek R. Reliability of measurements obtained with the Timed “Up & Go” test in people with Parkinson disease. Phys Ther. 2001;81:810–8.
    1. Verheyden G, Kampshoff CS, Burnett ME, Cashell J, Martinelli L, Nicholas A, et al. Psychometric properties of 3 functional mobility tests for people with Parkinson disease. Phys Ther. 2014;94:230–9. doi: 10.2522/ptj.20130141.
    1. Klamroth S, Steib S, Devan S, Pfeifer K. Effects of exercise therapy on postural instability in Parkinson disease: a meta-analysis. J Neurol Phys Ther. 2016;40:3–14. doi: 10.1097/NPT.0000000000000117.
    1. Chang YJ, Chen SF, Huang JD. A Kinect-based system for physical rehabilitation: a pilot study for young adults with motor disabilities. Res Dev Disabil. 2011;32:2566–70. doi: 10.1016/j.ridd.2011.07.002.
    1. Sin H, Lee G. Additional virtual reality training using Xbox Kinect in stroke survivors with hemiplegia. Am J Phys Med Rehabil. 2013;92:871–80. doi: 10.1097/PHM.0b013e3182a38e40.
    1. Dimitrova D, Horak FB, Nutt JG. Postural muscle responses to multidirectional translations in patients with Parkinson’s disease. J Neurophysiol. 2004;91:489–501. doi: 10.1152/jn.00094.2003.
    1. Huang SL, Hsieh CL, Wu RM, Tai CH, Lin CH, Lu WS. Minimal detectable change of the timed “up & go” test and the dynamic gait index in people with Parkinson disease. Phys Ther. 2011;91:114–21. doi: 10.2522/ptj.20090126.
    1. King LA, Horak FB. Delaying mobility disability in people with Parkinson disease using a sensorimotor agility exercise program. Phys Ther. 2009;89:384–93. doi: 10.2522/ptj.20080214.
    1. Conradsson D, Löfgren N, Ståhle A, Hagströmer M, Franzén E. A novel conceptual framework for balance training in Parkinson’s disease-study protocol for a randomised controlled trial. BMC Neurol. 2012;12:111. doi: 10.1186/1471-2377-12-111.

Source: PubMed

3
Předplatit