Functional brain changes using electroencephalography after a 24-week multidomain intervention program to prevent dementia

Hee Kyung Park, Seong Hye Choi, SeonMyeong Kim, Ukeob Park, Seung Wan Kang, Jee Hyang Jeong, So Young Moon, Chang Hyung Hong, Hong-Sun Song, Buong-O Chun, Sun Min Lee, Muncheong Choi, Kyung Won Park, Byeong C Kim, Soo Hyun Cho, Hae Ri Na, Yoo Kyoung Park, Hee Kyung Park, Seong Hye Choi, SeonMyeong Kim, Ukeob Park, Seung Wan Kang, Jee Hyang Jeong, So Young Moon, Chang Hyung Hong, Hong-Sun Song, Buong-O Chun, Sun Min Lee, Muncheong Choi, Kyung Won Park, Byeong C Kim, Soo Hyun Cho, Hae Ri Na, Yoo Kyoung Park

Abstract

Quantitative electroencephalography (QEEG) has proven useful in predicting the response to various treatments, but, until now, no study has investigated changes in functional connectivity using QEEG following a lifestyle intervention program. We aimed to investigate neurophysiological changes in QEEG after a 24-week multidomain lifestyle intervention program in the SoUth Korean study to PrEvent cognitive impaiRment and protect BRAIN health through lifestyle intervention in at-risk elderly people (SUPERBRAIN). Participants without dementia and with at least one modifiable dementia risk factor, aged 60-79 years, were randomly assigned to the facility-based multidomain intervention (FMI) (n = 51), the home-based multidomain intervention (HMI) (n = 51), and the control group (n = 50). The analysis of this study included data from 44, 49, and 34 participants who underwent EEG at baseline and at the end of the study in the FMI, HMI, and control groups, respectively. The spectrum power and power ratio of EEG were calculated. Source cortical current density and functional connectivity were estimated by standardized low-resolution brain electromagnetic tomography. Participants who received the intervention showed increases in the power of the beta1 and beta3 bands and in the imaginary part of coherence of the alpha1 band compared to the control group. Decreases in the characteristic path lengths of the alpha1 band in the right supramarginal gyrus and right rostral middle frontal cortex were observed in those who received the intervention. This study showed positive biological changes, including increased functional connectivity and higher global efficiency in QEEG after a multidomain lifestyle intervention.

Clinical trial registration: [https://ichgcp.net/clinical-trials-registry/NCT03980392] identifier [NCT03980392].

Keywords: biomarkers; cognitive impairment; dementia; multidomain intervention; quantitative electroencephalography.

Conflict of interest statement

Author SYM receives a research grant from Hyundai Pharmaceutical Co. Ltd. Author CHH receives research support from Eisai Korea Inc. Author JHJ receives research grants from Chong Kun Dang Pharmaceutical Corp., Jeil Pharmaceutical Co. Ltd., and Kuhnil Pharmaceutical Co. Ltd., and consults for PeopleBio Co. Ltd. Authors SYM, CHH, JHJ, YKP, HRN, and SHChoi are shareholders of Rowan Inc. Author HRN consults for Hyundai Pharmaceutical Co. Ltd. Author SHChoi consults for Hyundai Pharmaceutical Co. Ltd., and PeopleBio Co. Ltd. Authors SK, UP, and SWK received a salary from iMediSync Inc. The remaining authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Copyright © 2022 Park, Choi, Kim, Park, Kang, Jeong, Moon, Hong, Song, Chun, Lee, Choi, Park, Kim, Cho, Na and Park.

Figures

FIGURE 1
FIGURE 1
Diagram depicting the exploratory EEG substudy in the SUPERBRAIN trial. FMI, facility-based multidomain intervention; HMI, home-based multidomain intervention; EEG, electroencephalography.
FIGURE 2
FIGURE 2
Comparison of band power changes between all intervention and control groups. (A) Difference between post-intervention and pre-intervention in the control group (G1) showed an increase in the absolute power of the alpha1 band in the frontal, central, and temporal regions than in all intervention groups (G2). (B) An increase in the relative power of the beta1 band in the occipital region (p = 0.041) after the intervention was observed in all intervention groups (G2) compared with the control group (G1). (C) An increase in the absolute power of the beta3 band in the right parietal region (p = 0.022) after the intervention was observed in all intervention groups (G2) compared with the control group (G1).
FIGURE 3
FIGURE 3
Comparison of changes in the imaginary part of coherence (iCoh) of the alpha1 band. Regions with significant differences in the iCoh changes between two groups are shown in the figures. Red lines represent a significant increase in the iCoh of the alpha1 band in the intervention group (G2) than in the control group (G1). Blue lines represent a significant increase in the iCoh of the alpha1 band in the control group (G1) than in the intervention group (G2). (A) Comparison of the control group (G1) with all intervention groups (G2), including facility-based multidomain intervention (FMI) and home-based multidomain intervention (HMI) groups. (B) Comparison of the FMI group (G2) with the control group (G1). (C) Comparison of the HMI group (G2) with the control group (G1).

References

    1. Adler G., Brassen S., Chwalek K., Dieter B., Teufel M. (2004). Prediction of treatment response to rivastigmine in Alzheimer’s dementia. J. Neurol. Neurosurg. Psychiatry 75 292–294.
    1. Adler G., Brassen S., Jajcevic A. (2003). EEG coherence in Alzheimer’s dementia. J. Neural Transm. 110 1051–1058. 10.1007/s00702-003-0024-8
    1. Andrieu S., Guyonnet S., Coley N., Cantet C., Bonnefoy M., Bordes S., et al. (2017). Effect of long-term omega 3 polyunsaturated fatty acid supplementation with or without multidomain intervention on cognitive function in elderly adults with memory complaints (MAPT): A randomised, placebo-controlled trial. Lancet Neurol. 16 377–389. 10.1016/S1474-4422(17)30040-6
    1. Babiloni C., Carducci F., Lizio R., Vecchio F., Baglieri A., Bernardini S., et al. (2013). Resting state cortical electroencephalographic rhythms are related to gray matter volume in subjects with mild cognitive impairment and Alzheimer’s disease. Hum. Brain Mapp. 34 1427–1446. 10.1002/hbm.22005
    1. Babiloni C., Del Percio C., Boccardi M., Lizio R., Lopez S., Carducci F., et al. (2015). Occipital sources of resting-state alpha rhythms are related to local gray matter density in subjects with amnesic mild cognitive impairment and Alzheimer’s disease. Neurobiol. Aging 36 556–570. 10.1016/j.neurobiolaging.2014.09.011
    1. Babiloni C., Frisoni G., Steriade M., Bresciani L., Binetti G., Del Percio C., et al. (2006). Frontal white matter volume and delta EEG sources negatively correlate in awake subjects with mild cognitive impairment and Alzheimer’s disease. Clin. Neurophysiol. 117 1113–1129. 10.1016/j.clinph.2006.01.020
    1. Babiloni C., Frisoni G. B., Pievani M., Vecchio F., Lizio R., Buttiglione M., et al. (2009). Hippocampal volume and cortical sources of EEG alpha rhythms in mild cognitive impairment and Alzheimer disease. Neuroimage 44 123–135. 10.1016/j.neuroimage.2008.08.005
    1. Bastos A. M., Vezoli J., Bosman C. A., Schoffelen J., Oostenveld R., Dowdall J. R., et al. (2015). Visual areas exert feedforward and feedback influences through distinct frequency channels. Neuron 85 390–401. 10.1016/j.neuron.2014.12.018
    1. Benjamini Y., Hochberg Y. (1995). Controlling the false discovery rate: A practical and powerful approach to multiple testing. J. R. Stat. Soc. Ser. B Methodol. 57 289–300. 10.1111/j.2517-6161.1995.tb02031.x
    1. Brier M. R., Thomas J. B., Ances B. M. (2014). Network dysfunction in Alzheimer’s disease: Refining the disconnection hypothesis. Brain Connect. 4 299–311. 10.1089/brain.2014.0236
    1. Brunovsky M., Matousek M., Edman A., Cervena K., Krajca V. (2003). Objective assessment of the degree of dementia by means of EEG. Neuropsychobiology 48 19–26. 10.1159/000071824
    1. Bullmore E., Sporns O. (2009). Complex brain networks: Graph theoretical analysis of structural and functional systems. Nat. Rev. Neurosci. 10 186–198.
    1. Chen A. C., Feng W., Zhao H., Yin Y., Wang P. (2008). EEG default mode network in the human brain: Spectral regional field powers. Neuroimage 41 561–574. 10.1016/j.neuroimage.2007.12.064
    1. Chin J., Park J., Yang S. J., Yeom J., Ahn Y., Baek M. J., et al. (2018). Re-standardization of the Korean-instrumental activities of daily living (K-IADL): Clinical usefulness for various neurodegenerative diseases. Dement. Neurocogn. Disord. 17 11–22. 10.12779/dnd.2018.17.1.11
    1. Duffy F. H., Mcanulty G. B., Albert M. S. (1996). Effects of age upon interhemispheric EEG coherence in normal adults. Neurobiol. Aging 17 587–599. 10.1016/0197-4580(96)00007-3
    1. Engels M., Stam C. J., van der Flier W. M., Scheltens P., de Waal H., et al. (2015). Declining functional connectivity and changing hub locations in Alzheimer’s disease: An EEG study. BMC Neurol. 15:145. 10.1186/s12883-015-0400-7
    1. Frantzidis C. A., Vivas A. B., Tsolaki A., Klados M. A., Tsolaki M., Bamidis P. D. (2014). Functional disorganization of small-world brain networks in mild Alzheimer’s disease and amnestic mild cognitive impairment: An EEG study using relative wavelet entropy (RWE). Front. Aging Neurosci. 6:224. 10.3389/fnagi.2014.00224
    1. Gandelman-Marton R., Aichenbaum S., Dobronevsky E., Khaigrekht M., Rabey J. M. (2017). Quantitative EEG after brain stimulation and cognitive training in Alzheimer disease. J. Clin. Neurophysiol. 34 49–54. 10.1097/WNP.0000000000000301
    1. Garn H., Waser M., Deistler M., Schmidt R., Dal-Bianco P., Ransmayr G., et al. (2014). Quantitative EEG in Alzheimer’s disease: Cognitive state, resting state and association with disease severity. Int. J. Psychophysiol. 93 390–397. 10.1016/j.ijpsycho.2014.06.003
    1. Gianotti L. R., Künig G., Faber P. L., Lehmann D., Pascual-Marqui R. D., Kochi K., et al. (2008). Rivastigmine effects on EEG spectra and three-dimensional LORETA functional imaging in Alzheimer’s disease. Psychopharmacology 198 323–332. 10.1007/s00213-008-1111-1
    1. Han S., Pyun J., Yeo S., Kang D. W., Jeong H. T., Kang S. W., et al. (2021). Differences between memory encoding and retrieval failure in mild cognitive impairment: Results from quantitative electroencephalography and magnetic resonance volumetry. Alzheimers Res. Ther. 13:3. 10.1186/s13195-020-00739-7
    1. Hassan M., Dufor O., Merlet I., Berrou C., Wendling F. (2014). EEG source connectivity analysis: From dense array recordings to brain networks. PLoS One 9:e105041. 10.1371/journal.pone.0105041
    1. Hogan M. J., Swanwick G. R., Kaiser J., Rowan M., Lawlor B. (2003). Memory-related EEG power and coherence reductions in mild Alzheimer’s disease. Int. J. Psychophysiol. 49 147–163. 10.1016/s0167-8760(03)00118-1
    1. Huang P., Fang R., Li B., Chen S. (2016). Exercise-related changes of networks in aging and mild cognitive impairment brain. Front. Aging Neurosci. 8:47. 10.3389/fnagi.2016.00047
    1. Jelic V., Blomberg M., Dierks T., Basun H., Shigeta M., Julin P., et al. (1998). EEG slowing and cerebrospinal fluid tau levels in patients with cognitive decline. Neuroreport 9 157–160.
    1. Jeong J. (2004). EEG dynamics in patients with Alzheimer’s disease. Clin. Neurophysiol. 115 1490–1505.
    1. Kikuchi M., Wada Y., Koshino Y., Nanbu Y., Hashimoto T. (2000). Effect of normal aging upon interhemispheric EEG coherence: Analysis during rest and photic stimulation. Clin. Electroencephalogr. 31 170–174. 10.1177/155005940003100404
    1. Kogan E. A., Korczyn A. D., Virchovsky R. G., Klimovizky S. S., Treves T. A., Neufeld M. Y. (2001). EEG changes during long-term treatment with donepezil in Alzheimer’s disease patients. J. Neural Transm. 108 1167–1173. 10.1007/s007020170006
    1. Lejko N., Larabi D. I., Herrmann C. S., Aleman A., Ćurčić-Blake B. (2020). Alpha power and functional connectivity in cognitive decline: A systematic review and meta-analysis. J. Alzheimers Dis. 78 1047–1088. 10.3233/JAD-200962
    1. Liu J., Li M., Pan Y., Lan W., Zheng R., Wu F., et al. (2017). Complex brain network analysis and its applications to brain disorders: A survey. Complexity 2017:8362741. 10.1155/2017/8362741
    1. Locatelli T., Cursi M., Liberati D., Franceschi M., Comi G. (1998). EEG coherence in Alzheimer’s disease. Electroencephalogr. Clin. Neurophysiol. 106 229–237. 10.1016/S0013-4694(97)00129-6
    1. Moon S. Y., Hong C. H., Jeong J. H., Park Y. K., Na H. R., Song H., et al. (2021). Facility-based and home-based multidomain interventions including cognitive training, exercise, diet, vascular risk management, and motivation for older adults: A randomized controlled feasibility trial. Aging 13:15898. 10.18632/aging.203213
    1. Musaeus C. S., Nielsen M. S., Østerbye N. N., Høgh P. (2018). Decreased parietal beta power as a sign of disease progression in patients with mild cognitive impairment. J. Alzheimers Dis. 65 475–487. 10.3233/JAD-180384
    1. Ngandu T., Lehtisalo J., Solomon A., Levälahti E., Ahtiluoto S., Antikainen R., et al. (2015). A 2 year multidomain intervention of diet, exercise, cognitive training, and vascular risk monitoring versus control to prevent cognitive decline in at-risk elderly people (FINGER): A randomised controlled trial. Lancet 385 2255–2263. 10.1016/S0140-6736(15)60461-5
    1. Nolte G., Bai O., Wheaton L., Mari Z., Vorbach S., Hallett M. (2004). Identifying true brain interaction from EEG data using the imaginary part of coherency. Clin. Neurophysiol. 115 2292–2307. 10.1016/j.clinph.2004.04.029
    1. Park H. K., Jeong J. H., Moon S. Y., Park Y. K., Hong C. H., Na H. R., et al. (2020). South Korean study to prevent cognitive impairment and protect brain health through lifestyle intervention in at-risk elderly people: Protocol of a multicenter, randomized controlled feasibility trial. J. Clin. Neurol. 16 292–303. 10.3988/jcn.2020.16.2.292
    1. Roh J. H., Park M. H., Ko D., Park K., Lee D., Han C., et al. (2011). Region and frequency specific changes of spectral power in Alzheimer’s disease and mild cognitive impairment. Clin. Neurophysiol. 122 2169–2176. 10.1016/j.clinph.2011.03.023
    1. Rubinov M., Sporns O. (2010). Complex network measures of brain connectivity: Uses and interpretations. Neuroimage 52 1059–1069. 10.1016/j.neuroimage.2009.10.003
    1. Smailovic U., Jelic V. (2019). Neurophysiological markers of Alzheimer’s disease: Quantitative EEG approach. Neurol. Ther. 8 37–55. 10.1007/s40120-019-00169-0
    1. Smailovic U., Koenig T., Kåreholt I., Andersson T., Kramberger M. G., Winblad B., et al. (2018). Quantitative EEG power and synchronization correlate with Alzheimer’s disease CSF biomarkers. Neurobiol. Aging 63 88–95. 10.1016/j.neurobiolaging.2017.11.005
    1. Stam C. J., Jones B. F., Nolte G., Breakspear M., Scheltens P. (2007). Small-world networks and functional connectivity in Alzheimer’s disease. Cereb. Cortex 17 92–99. 10.1093/cercor/bhj127
    1. Stephen R., Liu Y., Ngandu T., Antikainen R., Hulkkonen J., Koikkalainen J., et al. (2019). Brain volumes and cortical thickness on MRI in the Finnish geriatric intervention study to prevent cognitive impairment and disability (FINGER). Alzheimers Res. Ther. 11:53.
    1. van Buuren S., Groothuis-Oudshoorn K. (2011). mice: Multivariate imputation by chained equations in R. J. Stat. Softw. 45 1–67.
    1. Xia M., Wang J., He Y. (2013). BrainNet Viewer: A network visualization tool for human brain connectomics. PLoS One 8:e68910. 10.1371/journal.pone.0068910
    1. Zeng K., Wang Y., Ouyang G., Bian Z., Wang L., Li X. (2015). Complex network analysis of resting state EEG in amnestic mild cognitive impairment patients with type 2 diabetes. Front. Comput. Neurosci. 9:133. 10.3389/fncom.2015.00133

Source: PubMed

3
Předplatit