Surviving Sepsis Campaign: international guidelines for management of severe sepsis and septic shock, 2012

R P Dellinger, Mitchell M Levy, Andrew Rhodes, Djillali Annane, Herwig Gerlach, Steven M Opal, Jonathan E Sevransky, Charles L Sprung, Ivor S Douglas, Roman Jaeschke, Tiffany M Osborn, Mark E Nunnally, Sean R Townsend, Konrad Reinhart, Ruth M Kleinpell, Derek C Angus, Clifford S Deutschman, Flavia R Machado, Gordon D Rubenfeld, Steven Webb, Richard J Beale, Jean-Louis Vincent, Rui Moreno, Surviving Sepsis Campaign Guidelines Committee including The Pediatric Subgroup, R Phillip Dellinger, Rui Moreno, Leanne Aitken, Hussain Al Rahma, Derek C Angus, Dijillali Annane, Richard J Beale, Gordon R Bernard, Paolo Biban, Julian F Bion, Thierry Calandra, Joseph A Carcillo, Terry P Clemmer, Clifford S Deutschman, J V Divatia, Ivor S Douglas, Bin Du, Seitaro Fujishima, Satoshi Gando, Herwig Gerlach, Caryl Goodyear-Bruch, Gordon Guyatt, Jan A Hazelzet, Hiroyuki Hirasawa, Steven M Hollenberg, Judith Jacobi, Roman Jaeschke, Ian Jenkins, Edgar Jimenez, Alan E Jones, Robert M Kacmarek, Winfried Kern, Ruth M Kleinpell, Shin Ok Koh, Joji Kotani, Mitchell Levy, Flavia Machado, John Marini, John C Marshall, Henry Masur, Sangeeta Mehta, John Muscedere, Lena M Napolitano, Mark E Nunnally, Steven M Opal, Tiffany M Osborn, Margaret M Parker, Joseph E Parrrillo, Haibo Qiu, Adrienne G Randolph, Konrad Reinhart, Jordi Rello, Ederlon Resende, Andrew Rhodes, Emanuel P Rivers, Gordon D Rubenfeld, Christa A Schorr, Jonathan E Sevransky, Khalid Shukri, Eliezer Silva, Mark D Soth, Charles L Sprung, Ann E Thompson, Sean R Townsend, Jeffery S Vender, Jean-Louis Vincent, Steve A Webb, Tobias Welte, Janice L Zimmerman, Jan A Hazelzet, Adrienne G Randolph, Margaret M Parker, Ann E Thompson, Paolo Biban, Alan Duncan, Cristina Mangia, Niranjan Kissoon, Joseph A Carcillo, R P Dellinger, Mitchell M Levy, Andrew Rhodes, Djillali Annane, Herwig Gerlach, Steven M Opal, Jonathan E Sevransky, Charles L Sprung, Ivor S Douglas, Roman Jaeschke, Tiffany M Osborn, Mark E Nunnally, Sean R Townsend, Konrad Reinhart, Ruth M Kleinpell, Derek C Angus, Clifford S Deutschman, Flavia R Machado, Gordon D Rubenfeld, Steven Webb, Richard J Beale, Jean-Louis Vincent, Rui Moreno, Surviving Sepsis Campaign Guidelines Committee including The Pediatric Subgroup, R Phillip Dellinger, Rui Moreno, Leanne Aitken, Hussain Al Rahma, Derek C Angus, Dijillali Annane, Richard J Beale, Gordon R Bernard, Paolo Biban, Julian F Bion, Thierry Calandra, Joseph A Carcillo, Terry P Clemmer, Clifford S Deutschman, J V Divatia, Ivor S Douglas, Bin Du, Seitaro Fujishima, Satoshi Gando, Herwig Gerlach, Caryl Goodyear-Bruch, Gordon Guyatt, Jan A Hazelzet, Hiroyuki Hirasawa, Steven M Hollenberg, Judith Jacobi, Roman Jaeschke, Ian Jenkins, Edgar Jimenez, Alan E Jones, Robert M Kacmarek, Winfried Kern, Ruth M Kleinpell, Shin Ok Koh, Joji Kotani, Mitchell Levy, Flavia Machado, John Marini, John C Marshall, Henry Masur, Sangeeta Mehta, John Muscedere, Lena M Napolitano, Mark E Nunnally, Steven M Opal, Tiffany M Osborn, Margaret M Parker, Joseph E Parrrillo, Haibo Qiu, Adrienne G Randolph, Konrad Reinhart, Jordi Rello, Ederlon Resende, Andrew Rhodes, Emanuel P Rivers, Gordon D Rubenfeld, Christa A Schorr, Jonathan E Sevransky, Khalid Shukri, Eliezer Silva, Mark D Soth, Charles L Sprung, Ann E Thompson, Sean R Townsend, Jeffery S Vender, Jean-Louis Vincent, Steve A Webb, Tobias Welte, Janice L Zimmerman, Jan A Hazelzet, Adrienne G Randolph, Margaret M Parker, Ann E Thompson, Paolo Biban, Alan Duncan, Cristina Mangia, Niranjan Kissoon, Joseph A Carcillo

Abstract

Objective: To provide an update to the "Surviving Sepsis Campaign Guidelines for Management of Severe Sepsis and Septic Shock," last published in 2008.

Design: A consensus committee of 68 international experts representing 30 international organizations was convened. Nominal groups were assembled at key international meetings (for those committee members attending the conference). A formal conflict of interest policy was developed at the onset of the process and enforced throughout. The entire guidelines process was conducted independent of any industry funding. A stand-alone meeting was held for all subgroup heads, co- and vice-chairs, and selected individuals. Teleconferences and electronic-based discussion among subgroups and among the entire committee served as an integral part of the development.

Methods: The authors were advised to follow the principles of the Grading of Recommendations Assessment, Development and Evaluation (GRADE) system to guide assessment of quality of evidence from high (A) to very low (D) and to determine the strength of recommendations as strong (1) or weak (2). The potential drawbacks of making strong recommendations in the presence of low-quality evidence were emphasized. Recommendations were classified into three groups: (1) those directly targeting severe sepsis; (2) those targeting general care of the critically ill patient and considered high priority in severe sepsis; and (3) pediatric considerations.

Results: Key recommendations and suggestions, listed by category, include: early quantitative resuscitation of the septic patient during the first 6 h after recognition (1C); blood cultures before antibiotic therapy (1C); imaging studies performed promptly to confirm a potential source of infection (UG); administration of broad-spectrum antimicrobials therapy within 1 h of the recognition of septic shock (1B) and severe sepsis without septic shock (1C) as the goal of therapy; reassessment of antimicrobial therapy daily for de-escalation, when appropriate (1B); infection source control with attention to the balance of risks and benefits of the chosen method within 12 h of diagnosis (1C); initial fluid resuscitation with crystalloid (1B) and consideration of the addition of albumin in patients who continue to require substantial amounts of crystalloid to maintain adequate mean arterial pressure (2C) and the avoidance of hetastarch formulations (1B); initial fluid challenge in patients with sepsis-induced tissue hypoperfusion and suspicion of hypovolemia to achieve a minimum of 30 mL/kg of crystalloids (more rapid administration and greater amounts of fluid may be needed in some patients (1C); fluid challenge technique continued as long as hemodynamic improvement is based on either dynamic or static variables (UG); norepinephrine as the first-choice vasopressor to maintain mean arterial pressure ≥65 mmHg (1B); epinephrine when an additional agent is needed to maintain adequate blood pressure (2B); vasopressin (0.03 U/min) can be added to norepinephrine to either raise mean arterial pressure to target or to decrease norepinephrine dose but should not be used as the initial vasopressor (UG); dopamine is not recommended except in highly selected circumstances (2C); dobutamine infusion administered or added to vasopressor in the presence of (a) myocardial dysfunction as suggested by elevated cardiac filling pressures and low cardiac output, or (b) ongoing signs of hypoperfusion despite achieving adequate intravascular volume and adequate mean arterial pressure (1C); avoiding use of intravenous hydrocortisone in adult septic shock patients if adequate fluid resuscitation and vasopressor therapy are able to restore hemodynamic stability (2C); hemoglobin target of 7-9 g/dL in the absence of tissue hypoperfusion, ischemic coronary artery disease, or acute hemorrhage (1B); low tidal volume (1A) and limitation of inspiratory plateau pressure (1B) for acute respiratory distress syndrome (ARDS); application of at least a minimal amount of positive end-expiratory pressure (PEEP) in ARDS (1B); higher rather than lower level of PEEP for patients with sepsis-induced moderate or severe ARDS (2C); recruitment maneuvers in sepsis patients with severe refractory hypoxemia due to ARDS (2C); prone positioning in sepsis-induced ARDS patients with a PaO (2)/FiO (2) ratio of ≤100 mm Hg in facilities that have experience with such practices (2C); head-of-bed elevation in mechanically ventilated patients unless contraindicated (1B); a conservative fluid strategy for patients with established ARDS who do not have evidence of tissue hypoperfusion (1C); protocols for weaning and sedation (1A); minimizing use of either intermittent bolus sedation or continuous infusion sedation targeting specific titration endpoints (1B); avoidance of neuromuscular blockers if possible in the septic patient without ARDS (1C); a short course of neuromuscular blocker (no longer than 48 h) for patients with early ARDS and a PaO (2)/FI O (2) <150 mm Hg (2C); a protocolized approach to blood glucose management commencing insulin dosing when two consecutive blood glucose levels are >180 mg/dL, targeting an upper blood glucose ≤180 mg/dL (1A); equivalency of continuous veno-venous hemofiltration or intermittent hemodialysis (2B); prophylaxis for deep vein thrombosis (1B); use of stress ulcer prophylaxis to prevent upper gastrointestinal bleeding in patients with bleeding risk factors (1B); oral or enteral (if necessary) feedings, as tolerated, rather than either complete fasting or provision of only intravenous glucose within the first 48 h after a diagnosis of severe sepsis/septic shock (2C); and addressing goals of care, including treatment plans and end-of-life planning (as appropriate) (1B), as early as feasible, but within 72 h of intensive care unit admission (2C). Recommendations specific to pediatric severe sepsis include: therapy with face mask oxygen, high flow nasal cannula oxygen, or nasopharyngeal continuous PEEP in the presence of respiratory distress and hypoxemia (2C), use of physical examination therapeutic endpoints such as capillary refill (2C); for septic shock associated with hypovolemia, the use of crystalloids or albumin to deliver a bolus of 20 mL/kg of crystalloids (or albumin equivalent) over 5-10 min (2C); more common use of inotropes and vasodilators for low cardiac output septic shock associated with elevated systemic vascular resistance (2C); and use of hydrocortisone only in children with suspected or proven "absolute"' adrenal insufficiency (2C).

Conclusions: Strong agreement existed among a large cohort of international experts regarding many level 1 recommendations for the best care of patients with severe sepsis. Although a significant number of aspects of care have relatively weak support, evidence-based recommendations regarding the acute management of sepsis and septic shock are the foundation of improved outcomes for this important group of critically ill patients.

Figures

Fig. 1
Fig. 1
Surviving sepsis campaign care bundles
Fig. 2
Fig. 2
Algorithm for time sensitive, goal-directed stepwise management of hemodynamic support in infants and children. Reproduced from [510]

References

    1. Angus DC, Linde-Zwirble WT, Lidicker J, et al. Epidemiology of severe sepsis in the United States: analysis of incidence, outcome, and associated costs of care. Crit Care Med. 2001;29:1303–1310. doi: 10.1097/00003246-200107000-00002.
    1. Dellinger RP. Cardiovascular management of septic shock. Crit Care Med. 2003;31:946–955. doi: 10.1097/01.CCM.0000057403.73299.A6.
    1. Martin GS, Mannino DM, Eaton S, et al. The epidemiology of sepsis in the United States from 1979 through 2000. N Engl J Med. 2003;348:1546–1554. doi: 10.1056/NEJMoa022139.
    1. Linde-Zwirble WT, Angus DC. Severe sepsis epidemiology: sampling, selection, and society. Crit Care. 2004;8:222–226. doi: 10.1186/cc2917.
    1. Dombrovskiy VY, Martin AA, Sunderram J, et al. Rapid increase in hospitalization and mortality rates for severe sepsis in the United States: a trend analysis from 1993 to 2003. Crit Care Med. 2007;35:1414–1415. doi: 10.1097/01.CCM.0000262946.68003.21.
    1. Levy MM, Fink MP, Marshall JC, et al. 2001 SCCM/ESICM/ACCP/ATS/SIS international sepsis definitions conference. Crit Care Med. 2003;31:1250–1256. doi: 10.1097/01.CCM.0000050454.01978.3B.
    1. Dellinger RP, Levy MM, Carlet JM, et al. International guidelines for management of severe sepsis and septic shock. Crit Care Med. 2008;36:296–327. doi: 10.1097/01.CCM.0000298158.12101.41.
    1. Dellinger RP, Carlet JM, Masur H, et al. Surviving sepsis campaign guidelines for management of severe sepsis and septic shock. Crit Care Med. 2004;32:858–873.
    1. Guyatt GH, Oxman AD, Vist GE, et al. GRADE: an emerging consensus on rating quality of evidence and strength of recommendations. BMJ. 2008;336:924–926. doi: 10.1136/.
    1. Guyatt GH, Oxman AD, Kunz R, et al. What is “quality of evidence” and why is it important to clinicians? BMJ. 2008;336:995–998. doi: 10.1136/.
    1. Guyatt GH, Oxman AD, Kunz R, et al. Going from evidence to recommendations. BMJ. 2008;336:1049–1051. doi: 10.1136/.
    1. Brożek J, Oxman AD, Schünemann HJ (2012) GRADEpro (computer program) version 3.2 for windows.
    1. Rivers E, Nguyen B, Havstad S, et al. Early goal-directed therapy in the treatment of severe sepsis and septic shock. N Engl J Med. 2001;345:1368–1377. doi: 10.1056/NEJMoa010307.
    1. Early Goal-Directed Therapy Collaborative Group of Zhejiang Province The effect of early goal-directed therapy on treatment of critical patients with severe sepsis/septic shock: a multi-center, prospective, randomized, controlled study (in Chinese) Zhongguo Wei Zhong Bing Ji Jiu Yi Xue. 2010;6:331–334.
    1. Levy MM, Dellinger RP, Townsend SR, Surviving Sepsis Campaign et al. The Surviving Sepsis Campaign: results of an international guideline-based performance improvement program targeting severe sepsis. Crit Care Med. 2010;38:367–374. doi: 10.1097/CCM.0b013e3181cb0cdc.
    1. Bendjelid K, Romand JA. Fluid responsiveness in mechanically ventilated patients: a review of indices used in intensive care. Intensive Care Med. 2003;29:352–360. doi: 10.1007/s00134-003-1777-0.
    1. Malbrain ML, Deeren D, De Potter TJ. Intraabdominal hypertension in the critically ill: it is time to pay attention. Curr Opin Crit Care. 2005;11:156–171. doi: 10.1097/01.ccx.0000155355.86241.1b.
    1. Varpula M, Tallgren M, Saukkonen K, et al. Hemodynamic variables related to outcome in septic shock. Intensive Care Med. 2005;31:1066–1071. doi: 10.1007/s00134-005-2688-z.
    1. Kortgen A, Niederprum P, Bauer M. Implementation of an evidence-based “standard operating procedure” and outcome in septic shock. Crit Care Med. 2006;34:943–949. doi: 10.1097/01.CCM.0000206112.32673.D4.
    1. Sebat F, Johnson D, Musthafa AA, et al. A multidisciplinary community hospital program for early and rapid resuscitation of shock in nontrauma patients. Chest. 2005;127:1729–1743. doi: 10.1378/chest.127.5.1729.
    1. Shapiro NI, Howell MD, Talmor D, et al. Implementation and outcomes of the multiple urgent sepsis therapies (MUST) protocol. Crit Care Med. 2006;34:1025–1032. doi: 10.1097/01.CCM.0000206104.18647.A8.
    1. Micek SST, Roubinian N, Heuring T, et al. Before-after study of a standardized hospital order set for the management of septic shock. Crit Care Med. 2006;34:2707–2713. doi: 10.1097/01.CCM.0000241151.25426.D7.
    1. Nguyen HB, Corbett SW, Steele R, et al. Implementation of a bundle of quality indicators for the early management of severe sepsis and septic shock is associated with decreased mortality. Crit Care Med. 2007;35:1105–1112. doi: 10.1097/01.CCM.0000259463.33848.3D.
    1. Shorr AF, Micek ST, Jackson WL, Jr, et al. Economic implications of an evidence-based sepsis protocol: can we improve outcomes and lower costs? Crit Care Med. 2007;35:1257–1262. doi: 10.1097/.
    1. Reinhart K, Kuhn HJ, Hartog C, et al. Continuous central venous and pulmonary artery oxygen saturation monitoring in the critically ill. Intensive Care Med. 2004;30:1572–1578. doi: 10.1007/s00134-004-2337-y.
    1. Trzeciak S, Dellinger RP, Abate N, et al. Translating research to clinical practice: a 1-year experience with implementing early goal-directed therapy for septic shock in the emergency department. Chest. 2006;129:225–232. doi: 10.1378/chest.129.2.225.
    1. Magder S. Central venous pressure: a useful but not so simple measurement. Crit Care Med. 2006;34:2224–2227. doi: 10.1097/01.CCM.0000227646.98423.98.
    1. Bendjelid K. Right arterial pressure: determinant or result of change in venous return? Chest. 2005;128:3639–3640. doi: 10.1378/chest.128.5.3639.
    1. Vincent JL, Weil MH. Fluid challenge revisited. Crit Care Med. 2006;34:1333–1337. doi: 10.1097/01.CCM.0000214677.76535.A5.
    1. Trzeciak S, Dellinger RP, Parrillo JE, et al. Early microcirculatory perfusion derangements in patients with severe sepsis and septic shock: relationship to hemodynamics, oxygen transport, and survival. Ann Emerg Med. 2007;49:88–98. doi: 10.1016/j.annemergmed.2006.08.021.
    1. De Backer D, Creteur J, Dubois MJ, et al. The effects of dobutamine on microcirculatory alternations in patients with septic shock are independent of its systemic effects. Crit Care Med. 2006;34:403–408. doi: 10.1097/01.CCM.0000198107.61493.5A.
    1. Buwalda M, Ince C. Opening the microcirculation: can vasodilators be useful in sepsis? Intensive Care Med. 2002;28:1208–1217. doi: 10.1007/s00134-002-1407-2.
    1. Boldt J. Clinical review: hemodynamic monitoring in the intensive care unit. Crit Care. 2002;6:52–59. doi: 10.1186/cc1453.
    1. Pinsky MR, Payen D. Functional hemodynamic monitoring. Crit Care. 2005;9:566–572. doi: 10.1186/cc3927.
    1. Jones AE, Shapiro NI, Trzeciak S, Emergency MEDICINE SHOCK RESEARCH NETWORk (EMShockNet) Investigators et al. Lactate clearance vs central venous oxygen saturation as goals of early sepsis therapy: a randomized clinical trial. JAMA. 2010;303:739–746. doi: 10.1001/jama.2010.158.
    1. Jansen TC, van Bommel J, Schoonderbeek FJ, et al. Early lactate-guided therapy in intensive care unit patients: a multicenter, open-label, randomized controlled trial. Am J Respir Crit Care Med. 2010;182:752–761. doi: 10.1164/rccm.200912-1918OC.
    1. Cinel I, Dellinger RP. Current treatment of severe sepsis. Curr Infect Dis Rep. 2006;8:358–365. doi: 10.1007/s11908-006-0046-0.
    1. Moore LJ, Jones SL, Kreiner LA, et al. Validation of a screening tool for the early identification of sepsis. J Trauma. 2009;66:1539–1546.
    1. Subbe CP, Kruger M, Rutherford P, et al. Validation of a modified early warning score in medical admissions. Quart J Med. 2001;94:521–526. doi: 10.1093/qjmed/94.10.521.
    1. Evaluation for Severe Sepsis Screening Tool, Institute for Healthcare Improvement (IHI).
    1. Evaluation for severe sepsis screening tool (2012)
    1. Rivers EP, Ahrens T. Improving outcomes for severe sepsis and septic shock: tools for early identification of at-risk patients and treatment protocol implementation. Crit Care Clin. 2008;23:S1–S47. doi: 10.1016/j.ccc.2008.04.002.
    1. Gao F, Melody T, Daniels DF, et al. The impact of compliance with 6-hour and 24-hour sepsis bundles on hospital mortality in patients with severe sepsis: a prospective observational study. Crit Care. 2005;9:R764–R770. doi: 10.1186/cc3909.
    1. Schorr C. Performance improvement in the management of sepsis. Crit Care Clin. 2009;25:857–867. doi: 10.1016/j.ccc.2009.06.005.
    1. Girardis M, Rinaldi L, Donno L, et al. Sopravvivere alla Sepsi Group of the Modena-University Hospital: effects on management and outcome of severe sepsis and septic shock patients admitted to the intensive care unit after implementation of a sepsis program: a pilot study. Crit Care. 2009;13:R143. doi: 10.1186/cc8029.
    1. Pestaña D, Espinosa E, Sangüesa-Molina JR, et al. Compliance with a sepsis bundle and its effect on intensive care unit mortality in surgical septic shock patients. J Trauma. 2010;69:1282–1287. doi: 10.1097/TA.0b013e3181c4539f.
    1. Berenholtz SM, Pronovost PJ, Ngo K, et al. Developing quality measures for sepsis care in the ICU. Jt Comm J Qual Patient Safety. 2007;33:559–568.
    1. Black MD, Schorr C, Levy MM. Knowledge translation and the multifaceted intervention in the intensive care unit. Crit Care Med. 2012;40:1324–1328. doi: 10.1097/CCM.0b013e3182431673.
    1. Suarez A, Ferrer R, Artigas A, et al. Cost-effectiveness of the Surviving Sepsis Campaign protocol for severe sepsis: a prospective nationwide study in Spain. Intensive Care Med. 2011;37:444–452. doi: 10.1007/s00134-010-2102-3.
    1. Levy MM, Pronovost PJ, Dellinger RP, et al. Sepsis change bundles: converting guidelines into meaningful change in behavior and clinical outcome. Crit Care Med. 2004;32(Suppl):S595–S597. doi: 10.1097/01.CCM.0000147016.53607.C4.
    1. Weinstein MP, Reller LP, Murphy JR, et al. The clinical significance of positive blood cultures: a comprehensive analysis of 500 episodes of bacteremia and fungemia in adults. I. Laboratory and epidemiologic observations. Rev Infect Dis. 1983;5:35–53. doi: 10.1093/clinids/5.1.35.
    1. Blot F, Schmidt E, Nitenberg G, et al. Earlier positivity of central venous versus peripheral blood cultures is highly predictive of catheter-related sepsis. J Clin Microbiol. 1998;36:105–109.
    1. Mermel LA, Maki DG. Detection of bacteremia in adults: consequences of culturing an inadequate volume of blood. Ann Intern Med. 1993;119:270–272.
    1. (2005) Guidelines for the management of adults with hospital-acquired, ventilator-associated, and healthcare-associated pneumonia. Am J Respir Crit Care Med 171:388–416
    1. Muscedere J, Dodek P, Keenan S, et al. Comprehensive evidence-based clinical practice guidelines for ventilator-associated pneumonia: diagnosis and treatment. J Crit Care. 2008;23:138–147. doi: 10.1016/j.jcrc.2007.12.008.
    1. Giamarellos-Bourboulis EJ, Giannopoulou P, Grecka P, et al. Should procalcitonin be introduced in the diagnostic criteria for the systemic inflammatory response syndrome and sepsis? J Crit Care. 2004;19:152–157. doi: 10.1016/j.jcrc.2004.07.001.
    1. Uzzan B, Cohen R, Nicolas P, et al. Procalcitonin as a diagnostic test for sepsis in critically ill adults after surgery or trauma: a systematic review and meta-analysis. Crit Care Med. 2006;34:1996–2003. doi: 10.1097/01.CCM.0000226413.54364.36.
    1. Tang BM, Eslick GD, Craig JC, et al. Accuracy of procalcitonin for sepsis diagnosis in critically ill patients: systematic review and meta-analysis. Lancet Infect Dis. 2007;7:210–217. doi: 10.1016/S1473-3099(07)70052-X.
    1. Tenover FC. Rapid detection and identification of bacterial pathogens using novel molecular technologies: infection control and beyond. Clin Infect Dis. 2007;44:418–423. doi: 10.1086/510684.
    1. Klouche M, Schroder U. Rapid methods for diagnosis of bloodstream infections. Clin Chem Lab Med. 2008;46:888–908.
    1. Tissari P, Zumla A, Tarkka E, et al. Accurate and rapid identification of bacterial species from positive blood cultures with a DNA-based microarray platform: an observational study. Lancet. 2010;16(375):224–230. doi: 10.1016/S0140-6736(09)61569-5.
    1. Alam FF, Mustafa AS, Khan ZU. Comparative evaluation of (1,3)-beta-d-glucan, mannan and anti-mannan antibodies, and Candida species-specific snPCR in patients with candidemia. BMC Infect Dis. 2007;7:103. doi: 10.1186/1471-2334-7-103.
    1. Oliveri S, Trovato L, Betta P, et al. Experience with the Platelia Candida ELISA for the diagnosis of invasive candidosis in neonatal patients. Clin Microbiol Infect. 2008;14:391–393. doi: 10.1111/j.1469-0691.2007.01938.x.
    1. Sendid B, Poirot JL, Tabouret M, et al. Combined detection of mannanaemia and antimannan antibodies as a strategy for the diagnosis of systemic infection caused by pathogenic Candida species. J Med Microbiol. 2002;51:433–442.
    1. Sendid B, Jouault T, Coudriau R, et al. Increased sensitivity of mannanemia detection tests by joint detection of alpha- and beta-linked oligomannosides during experimental and human systemic candidiasis. J Clin Microbiol. 2004;42:164–171. doi: 10.1128/JCM.42.1.164-171.2004.
    1. Sendid B, Dotan N, Nseir S, et al. Antibodies against glucan, chitin, and Saccharomyces cerevisiae mannan as new biomarkers of Candida albicans infection that complement tests based on C. albicans mannan. Clin Vaccine Immunol. 2008;15:1868–1877. doi: 10.1128/CVI.00200-08.
    1. Yera H, Sendid B, Francois N, et al. Contribution of serological tests and blood culture to the early diagnosis of systemic candidiasis. Eur J Clin Microbiol Infect Dis. 2001;20:864–870. doi: 10.1007/s100960100629.
    1. Kumar A, Roberts D, Wood KE, et al. Duration of hypotension prior to initiation of effective antimicrobial therapy is the critical determinant of survival in human septic shock. Crit Care Med. 2006;34:1589–1596. doi: 10.1097/01.CCM.0000217961.75225.E9.
    1. Morrell M, Fraser VJ, Kollef MH. Delaying the empiric treatment of candida bloodstream infection until positive blood culture results are obtained: a potential risk factor for hospital mortality. Antimicrob Agents Chemother. 2005;49:3640–3645. doi: 10.1128/AAC.49.9.3640-3645.2005.
    1. Ferrer R, Artigas A, Suarez D, et al. Effectiveness of treatments for severe sepsis: a prospective, multicenter, observational study. Am J Respir Crit Care Med. 2009;180:861–866. doi: 10.1164/rccm.200812-1912OC.
    1. Barie PS, Hydo LJ, Shou J, et al. Influence of antibiotic therapy on mortality of critical illness caused or complicated by infection. Surg Infect. 2005;6:41–54. doi: 10.1089/sur.2005.6.41.
    1. Castellanos-Ortega A, Suberviola B, Garcia-Astudillo LA, et al. Impact of the surviving sepsis protocols on hospital length of stay and mortality in septic shock patients: results of a three-year follow-up quasi-experimental study. Crit Care Med. 2010;38:1036–1043. doi: 10.1097/CCM.0b013e3181d455b6.
    1. Puskarich MA, Trzeciak S, Shapiro MI, et al. Association between timing of antibiotic administration and mortality from septic shock inpatients treated with a quantitative resuscitation protocol. Crit Care Med. 2011;39:2066–2071. doi: 10.1097/CCM.0b013e31821e87ab.
    1. El Solh AA, Akinnusi ME, Alsawalha LN, et al. Outcome of septic shock in older adults after implementation of the sepsis “Bundle”. J Am Geriat Soc. 2008;56:272–278. doi: 10.1111/j.1532-5415.2007.01529.x.
    1. Gurnani PK, Patel GP, Crank CW, et al. Impact of the implementation of a sepsis protocol for the management of fluid-refractory septic shock: a single-center, before-and-after study. Clin Therap. 2010;32:1285–1293. doi: 10.1016/j.clinthera.2010.07.003.
    1. Larsen GY, Mecham N, Greenberg R. An emergency department septic shock protocol and care guideline for children initiated at triage. Pediatrics. 2011;127:e1585–e1592. doi: 10.1542/peds.2010-3513.
    1. Barochia AV, Cui X, Vitberg D, et al. Bundled care for septic shock: an analysis of clinical trials. Crit Care Med. 2010;38:668–678. doi: 10.1097/CCM.0b013e3181cb0ddf.
    1. Pappas PG, Kauffman CA, Andes D, et al. Clinical practice guidelines for the management of candidiasis: 2009 update by the Infectious Diseases Society of America. Clin Infect Dis. 2009;48:503–535. doi: 10.1086/596757.
    1. Leibovici L, Shraga I, Drucker M, et al. The benefit of appropriate empirical antibiotic treatment in patients with bloodstream infection. J Intern Med. 1998;244:379–386. doi: 10.1046/j.1365-2796.1998.00379.x.
    1. Ibrahim EH, Sherman G, Ward S, et al. The influence of inadequate antimicrobial treatment of bloodstream infections on patient outcomes in the ICU setting. Chest. 2000;118:146–155. doi: 10.1378/chest.118.1.146.
    1. Ali MZ, Goetz MB. A meta-analysis of the relative efficacy and toxicity of single daily dosing versus multiple daily dosing of aminoglycosides. Clin Infect Dis. 1997;24:796–809. doi: 10.1093/clinids/24.5.796.
    1. Amsden GW, Ballow CH, Bertino JS. Pharmacokinetics and pharmacodynamics of anti-infective agents. In: Mandell GL, Bennett JE, Dolin R, editors. Principles and practice of infectious diseases. 7. Philadelphia: Churchill Livingstone; 2010. pp. 297–307.
    1. Heyland DK, Reynolds S, Jiang X, et al. Procalcitonin for reduced antibiotic exposure in the critical care setting: a systematic review and an economic evaluation. Crit Care Med. 2011;39:1792–1799. doi: 10.1097/CCM.0b013e31821201a5.
    1. Jensen JU, Hein L, Lundgren B, et al. Procalcitonin-guided interventions against infections to increase early appropriate antibiotics and improve survival in the intensive care unit: a randomized trial. Crit Care Med. 2011;39:2048–2058. doi: 10.1097/CCM.0b013e31821e8791.
    1. Brunkhorst FM, Oppert M, Marx G, et al. Effect of empirical treatment with moxifloxacin and meropenem vs meropenem on sepsis-related organ dysfunction in patients with severe sepsis. JAMA. 2012;307:2390–2399.
    1. Kumar A, Safdar N, Kethireddy S, et al. A survival benefit of combination antibiotic therapy for serious infections associated with sepsis and septic shock is contingent only of death: a meta-analytic/meta-regression study. Crit Care Med. 2010;38:1651–1664. doi: 10.1097/CCM.0b013e3181e96b91.
    1. Kumar A, Zarychanski R, Light B, et al. Early combination antibiotic therapy yields improved survival compared with monotherapy: a propensity-matched analysis. Crit Care Med. 2010;38:1773–1785. doi: 10.1097/CCM.0b013e3181eb3ccd.
    1. Micek ST, Welch EC, Khan J, et al. Empiric combination antimicrobial therapy is associated with improved outcome against sepsis due to gram-negative bacteria: a retrospective analysis. Antimicrob Agents Chemother. 2010;54:1742–1748. doi: 10.1128/AAC.01365-09.
    1. Al-Hassan MN, Wilson JW, Lahr BD, et al. Beta-lactam and fluoroquinolone combination antibiotic therapy for bacteremia caused by gram-negative bacilli. Antimicrob Agents Chemother. 2009;53:1386–1394. doi: 10.1128/AAC.01231-08.
    1. Klastersky J. Management of fever in neutropenic patients with different risks of complications. Clin Infect Dis. 2004;39(Suppl 1):S32–S37. doi: 10.1086/383050.
    1. Martin-Loeches I, Lisboa T, Rodriguez A, et al. Combination antibiotic therapy with macrolides improves survival in intubated patients with community-acquired pneumonia. Intensive Care Med. 2010;36:612–620. doi: 10.1007/s00134-009-1730-y.
    1. Rodriguez A, Mendia A, Sirvent JM, et al. Combination antibiotic therapy improves survival in patients with community-acquired pneumonia and shock. Crit Care Med. 2007;35:1493–1498. doi: 10.1097/01.CCM.0000266755.75844.05.
    1. Baddour LM, Yu VL, Klugman KP, et al. Combination antibiotic therapy lowers mortality among severely ill patients with pneumococcal bacteremia. Am J Respir Crit Care Med. 2004;170:440–444. doi: 10.1164/rccm.200311-1578OC.
    1. Safdar N, Handelsman J, Maki DG. Does combination antimicrobial therapy reduce mortality in Gram-negative bacteraemia? A meta-analysis. Lancet Infect Dis. 2004;4:519–527. doi: 10.1016/S1473-3099(04)01108-9.
    1. Paul M, Silbiger I, Grozinsky S et al (2006) Beta lactam antibiotic monotherapy versus beta lactam aminoglycoside antibiotic combination therapy for sepsis. Cochrane Database Syst Rev (1):CD003344
    1. Garnacho-Montero J, Sa-Borges M, Sole-Violan J, et al. Optimal management therapy for Pseudomonas aeruginosa ventilator associated pneumonia: an observational, multicenter study comparing monotherapy with combination antibiotic therapy. Crit Care Med. 2007;35:1888–1895. doi: 10.1097/01.CCM.0000275389.31974.22.
    1. Jain S, Kamimoto L, Bramley AM, et al. Hospitalized patients with 2009 H1N1 influenza in the United States, April–June 2009. N Engl J Med. 2009;361:1935–1944. doi: 10.1056/NEJMoa0906695.
    1. Writing Committee of the WHO Consultation on Clinical Aspects of Pandemic (H1N1) 2009 Influenza. Bautista E, Chotpitayasunondh T, et al. Clinical aspects of pandemic influenza A (H1N1) virus infection. N Engl J Med. 2009;2010(362):1708–1719.
    1. Smith JR, Ariano RE, Toovey S. The use of antiviral agents for the management of severe influenza. Crit Care Med. 2010;38(Suppl 4):e43–e51. doi: 10.1097/CCM.0b013e3181c85229.
    1. Fiore AE, Fry A, Shay D, et al. Antiviral agents for the treatment and chemoprophylaxis of influenza: recommendations of the Advisory Committee on Immunization Practices (ACIP) MMWR Recomm Rep. 2011;60:1–24.
    1. Kalil A. A silent killer: cytomegalovirus infection in the non-immunocompromised critically ill patient. Crit Care Med. 2008;36:3261–3264. doi: 10.1097/CCM.0b013e31818f24c3.
    1. Ziemann M, Sedemund-Adib B, Reibland P, et al. Increased mortality in long-term intensive care patients with active cytomegalovirus infection. Crit Care Med. 2008;36:3145–3150. doi: 10.1097/CCM.0b013e31818f3fc4.
    1. Hotchkiss RS, Opal SM. Immunotherapy for sepsis: a new approach against an ancient foe. N Engl J Med. 2010;363:87–89. doi: 10.1056/NEJMcibr1004371.
    1. Miller GG, Dummer JS. Herpes simplex and varicella zoster viruses: forgotten but not gone. Am J Transpl. 2007;7:741–747. doi: 10.1111/j.1600-6143.2006.01718.x.
    1. Jimenez MF, Marshall JC. Source control in the management of sepsis. Intensive Care Med. 2001;27:S49–S62. doi: 10.1007/PL00003797.
    1. Moss RL, Musemeche CA, Kosloske AM. Necrotizing fascitis in children: prompt recognition and aggressive therapy improve survival. J Pediatr Surg. 1996;31:1142–1146. doi: 10.1016/S0022-3468(96)90104-9.
    1. Boyer A, Vargas F, Coste F, et al. Influence of surgical treatment on mortality from necrotizing soft tissue infections requiring intensive care management. Intensive Care Med. 2009;35:847–853. doi: 10.1007/s00134-008-1373-4.
    1. Bufalari A, Giustozzi G, Moggi L. Postoperative intraabdominal abscesses: percutaneous versus surgical treatment. Acta Chir Belg. 1996;96:197–200.
    1. O’Grady NP, Alexander M, Dellinger EP, et al. Guidelines for the prevention of intravascular catheter-related infections. MMWR Recomm Rep. 2002;51:1–29.
    1. O’Grady NP, Alexander M, Dellinger EP, et al. Guidelines for the prevention of intravascular catheter-related infections. Clin Infect Dis. 2002;35:1281–1307. doi: 10.1086/344188.
    1. Mier J, Leon EL, Castillo A, et al. Early versus late necrosectomy in severe necrotizing pancreatitis. Am J Surg. 1997;173:71–75. doi: 10.1016/S0002-9610(96)00425-4.
    1. van Santvoort HC, Besselink MG, Bakker OJ, et al. A step-up approach or open necrosectomy for necrotizing pancreatitis. N Engl J Med. 2010;362:1491–1502. doi: 10.1056/NEJMoa0908821.
    1. Evans A, Winslow BH. Oxygen saturation and hemodynamic response in critically ill mechanically ventilated adults during intra hospital transport. Am J Crit Care. 1995;4:106–111.
    1. Aitken LM, Williams G, Harvey M, et al. Nursing considerations to complement the Surviving Sepsis Campaign. Crit Care Med. 2011;39:1800–1818. doi: 10.1097/CCM.0b013e31821867cc.
    1. Liberati A, D’Amico R, Pifferi S, et al. Antibiotic prophylaxis to reduce respiratory tract infections and mortality in adults receiving intensive care. Cochrane Collab. 2010;9:1–72.
    1. de Jonge E, Schultz MJ, Spanjaard L, et al. Effects of selective decontamination of the digestive tract on mortality and acquisition of resistance bacteria on intensive care: a randomised controlled trial. Lancet. 2003;362:1011–1016. doi: 10.1016/S0140-6736(03)14409-1.
    1. de Smet AMGA, Kluytmans JAJM, Cooper BS, et al. Decontamination of the digestive tract and oropharynx in ICU patients. N Engl J Med. 2009;360:20–31. doi: 10.1056/NEJMoa0800394.
    1. Cuthbertson BH, Francis J, Campbell MK, et al. A study of the perceived risks, benefits and barriers to the use of SDD in adult critical care units (SuDDICU study) Trials. 2010;11:117. doi: 10.1186/1745-6215-11-117.
    1. de Smet AMGA, Kluytmans JAJM, Blok HEM, et al. Selective digestive tract decontamination and selective oropharyngeal decontamination and antibiotic resistance in patients in the intensive care unit: an open label, cluster grouped, randomized cross over study. Lancet Infect Dis. 2011;11:372–380. doi: 10.1016/S1473-3099(11)70035-4.
    1. Oostdijk EAN, de Smet AMGA, Blok HEM, et al. Ecological effects of selective decontamination on resistant gram-negative bacterial colonization. Am J Respir Crit Care Med. 2010;181:452–457. doi: 10.1164/rccm.200908-1210OC.
    1. Ochoa-Ardila ME, García-Cañas A, Gómez-Mediavilla K, et al. Long-term use of selective decontamination of the digestive tract does not increase antibiotic resistance: a 5-year prospective cohort study. Intensive Care Med. 2011;37:1458–1465. doi: 10.1007/s00134-011-2307-0.
    1. Guidet B, Martinet O, Boulain T, et al. Assessment of hemodynamic efficacy and safety of 6% hydroxyethylstarch 130/0.4 vs 0.9% NaCl fluid replacement in patients with severe sepsis: the CRYSTMAS study. Crit Care. 2012;16:R94. doi: 10.1186/cc11358.
    1. Perner A, Haase N, Guttormsen AB, et al. Hydroxyethyl starch 130/0.42 versus Ringer’s acetate in severe sepsis. N Engl J Med. 2012;367:124–134. doi: 10.1056/NEJMoa1204242.
    1. Myburgh JA, Finfer S, Bellomo R, et al. Hydroxyethyl starch or saline for fluid resuscitation in intensive care. N Engl J Med. 2012
    1. Perel P, Roberts I (2011) Colloids versus crystalloids for fluid resuscitation in critically ill patients. Cochrane Database Syst Rev (3):CD000567 (Review)
    1. Schortgen F, Lacherade JC, Bruneel F, et al. Effects of hydroxyethyl starch and gelatin on renal function in severe sepsis: a multicentre randomised study. Lancet. 2001;357:911–916. doi: 10.1016/S0140-6736(00)04211-2.
    1. McIntyre LA, Fergusson D, Cook DJ, et al. Fluid resuscitation in the management of early septic shock (FINESS): a randomized controlled feasibility trial. Can J Anaesth. 2008;55:819–826. doi: 10.1007/BF03034053.
    1. Brunkhorst FM, Engel C, Bloos F, et al. Intensive insulin therapy and pentastarch resuscitation in severe sepsis. N Engl J Med. 2008;358:125–139. doi: 10.1056/NEJMoa070716.
    1. Finfer S, Bellomo R, Boyce N, et al. A comparison of albumin and saline for fluid resuscitation in the intensive care unit. N Engl J Med. 2004;350:2247–2256. doi: 10.1056/NEJMoa040232.
    1. Delaney AP, Dan A, McCaffrey J, et al. The role of albumin as a resuscitation fluid for patients with sepsis: a systematic review and meta-analysis. Crit Care Med. 2011;39:386–391. doi: 10.1097/CCM.0b013e3181ffe217.
    1. Marik PE, Teboul JL. Hemodynamic parameters to guide fluid therapy. Ann Intensive Care. 2011;1:1. doi: 10.1186/2110-5820-1-1.
    1. Marik PE, Cavallazzi R, Vasu T, et al. Dynamic changes in arterial waveform derived variables and fluid responsiveness in mechanically ventilated patients: a systematic review of the literature. Crit Care Med. 2009;37:2642–2647. doi: 10.1097/CCM.0b013e3181a590da.
    1. Hollenberg SM, Ahrens TS, Annane D, et al. Practice parameters for hemodynamic support of sepsis in adult patients: 2004 update. Crit Care Med. 2004;32:1928–1948. doi: 10.1097/01.CCM.0000139761.05492.D6.
    1. LeDoux D, Astiz ME, Carpati CM, et al. Effects of perfusion pressure on tissue perfusion in septic shock. Crit Care Med. 2000;28:2729–2732. doi: 10.1097/00003246-200008000-00007.
    1. Martin C, Papazian L, Perrin G, et al. Norepinephrine or dopamine for the treatment of hyperdynamic septic shock? Chest. 1993;103:1826–1831. doi: 10.1378/chest.103.6.1826.
    1. Martin C, Viviand X, Leone M, et al. Effect of norepinephrine on the outcome of septic shock. Crit Care Med. 2000;28:2758–2765. doi: 10.1097/00003246-200008000-00012.
    1. De Backer D, Creteur J, Silva E, et al. Effects of dopamine, norepinephrine, and epinephrine on the splanchnic circulation in septic shock: which is best? Crit Care Med. 2003;31:1659–1667. doi: 10.1097/01.CCM.0000063045.77339.B6.
    1. Day NP, Phu NH, Bethell DP, et al. The effects of dopamine and adrenaline infusions on acid-base balance and systemic haemodynamics in severe infection. Lancet. 1996;348:219–223. doi: 10.1016/S0140-6736(96)09096-4.
    1. Le Tulzo Y, Seguin P, Gacouin A, et al. Effects of epinephrine on right ventricular function in patients with severe septic shock and right ventricular failure: a preliminary descriptive study. Intensive Care Med. 1997;23:664–670. doi: 10.1007/s001340050391.
    1. Bollaert PE, Bauer P, Audibert G, et al. Effects of epinephrine on hemodynamics and oxygen metabolism in dopamine-resistant septic shock. Chest. 1990;98:949–953. doi: 10.1378/chest.98.4.949.
    1. Zhou SX, Qiu HB, Huang YZ, et al. Effects of norepinephrine, epinephrine, and norepinephrine-dobutamine on systemic and gastric mucosal oxygenation in septic shock. Acta Pharm Sin. 2002;23:654–658.
    1. Levy B, Bollaert PE, Charpentier C, et al. Comparison of norepinephrine and dobutamine to epinephrine for hemodynamics, lactate metabolism, and gastric tonometric variables in septic shock: a prospective, randomized study. Intensive Care Med. 1997;23:282–287. doi: 10.1007/s001340050329.
    1. Mackenzie SJ, Kapadia F, Nimmo GR, et al. Adrenaline in treatment of septic shock: effects on haemodynamics and oxygen transport. Intensive Care Med. 1991;17:36–39. doi: 10.1007/BF01708407.
    1. Moran JL, O’Fathartaigh MS, Peisach AR, et al. Epinephrine as an inotropic agent in septic shock: a dose-profile analysis. Crit Care Med. 1993;21:70–77. doi: 10.1097/00003246-199301000-00015.
    1. Yamazaki T, Shimada Y, Taenaka N, et al. Circulatory responses to after loading with phenylephrine in hyperdynamic sepsis. Crit Care Med. 1982;10:432–435. doi: 10.1097/00003246-198207000-00003.
    1. Gregory JS, Bonfiglio MF, Dasta JF, et al. Experience with phenylephrine as a component of the pharmacologic support of septic shock. Crit Care Med. 1991;19:1395–1400. doi: 10.1097/00003246-199111000-00016.
    1. Annane D, Vignon P, Renault A, For the CATS Study Group et al. Norepinephrine plus dobutamine versus epinephrine alone for management of septic shock: a randomized trial. Lancet. 2007;370:676–684. doi: 10.1016/S0140-6736(07)61344-0.
    1. Regnier B, Rapin M, Gory G, et al. Haemodynamic effects of dopamine in septic shock. Intensive Care Med. 1977;3:47–53. doi: 10.1007/BF01683060.
    1. Ruokonen E, Takala J, Kari A, et al. Regional blood flow and oxygen transport in septic shock. Crit Care Med. 1993;21:1296–1303. doi: 10.1097/00003246-199309000-00011.
    1. Marik PE, Mohedin M. The contrasting effects of dopamine and norepinephrine on systemic and splanchnic oxygen utilization in hyperdynamic sepsis. JAMA. 1994;272:1354–1357. doi: 10.1001/jama.1994.03520170064037.
    1. Patel GP, Grahe JS, Sperry M, et al. Efficacy and safety of dopamine versus norepinephrine in the management of septic shock. Shock. 2010;33:375–380. doi: 10.1097/SHK.0b013e3181c6ba6f.
    1. De Backer D, Biston P, Devriendt J, et al. Comparison of dopamine and norepinephrine in the treatment of shock. N Engl J Med. 2010;362:779–789. doi: 10.1056/NEJMoa0907118.
    1. De Backer D, Aldecoa C, Njimi H, et al. Dopamine versus norepinephrine in the treatment of septic shock: a meta-analysis. Crit Care. 2012;40:725–730. doi: 10.1097/CCM.0b013e31823778ee.
    1. Seguin P, Bellissant E, Le-Tulzo Y, et al. Effects of epinephrine compared with the combination of dobutamine and norepinephrine on gastric perfusion in septic shock. Clin Pharmacol Ther. 2002;71:381–388. doi: 10.1067/mcp.2002.122471.
    1. Myburgh JA, Higgins A, Jovanovska A, et al. A comparison of epinephrine and norepinephrine in critically ill patients. Intensive Care Med. 2008;34:2226–2234. doi: 10.1007/s00134-008-1219-0.
    1. Morelli A, Ertmer C, Rehberg S, et al. Phenylephrine versus norepinephrine for initial hemodynamic support of patients with septic shock: a randomized, controlled trial. Crit Care. 2008;12:R143. doi: 10.1186/cc7121.
    1. Landry DW, Levin HR, Gallant EM, et al. Vasopressin deficiency contributes to the vasodilation of septic shock. Circulation. 1997;95:1122–1125. doi: 10.1161/01.CIR.95.5.1122.
    1. Patel BM, Chittock DR, Russell JA, et al. Beneficial effects of short-term vasopressin infusion during severe septic shock. Anesthesiology. 2002;96:576–582. doi: 10.1097/00000542-200203000-00011.
    1. Dünser MW, Mayr AJ, Ulmer H, et al. Arginine vasopressin in advanced vasodilatory shock: a prospective, randomized, controlled study. Circulation. 2003;107:2313–2319. doi: 10.1161/.
    1. Holmes CL, Patel BM, Russell JA, et al. Physiology of vasopressin relevant to management of septic shock. Chest. 2001;120:989–1002. doi: 10.1378/chest.120.3.989.
    1. Malay MB, Ashton RC, Landry DW, et al. Low-dose vasopressin in the treatment of vasodilatory septic shock. J Trauma. 1999;47:699–705. doi: 10.1097/00005373-199910000-00014.
    1. Holmes CL, Walley KR, Chittock DR, et al. The effects of vasopressin on hemodynamics and renal function in severe septic shock: a case series. Intensive Care Med. 2001;27:1416–1421. doi: 10.1007/s001340101014.
    1. Lauzier F, Levy B, Lamarre P, et al. Vasopressin or norepinephrine in early hyperdynamic septic shock: a randomized clinical trial. Intensive Care Med. 2006;32:1782–1789. doi: 10.1007/s00134-006-0378-0.
    1. O’Brien A, Calpp L, Singer M. Terlipressin for norepinephrine-resistant septic shock. Lancet. 2002;359:1209–1210. doi: 10.1016/S0140-6736(02)08225-9.
    1. Sharshar T, Blanchard A, Paillard M, et al. Circulating vasopressin levels in septic shock. Crit Care Med. 2003;31:1752–1758. doi: 10.1097/01.CCM.0000063046.82359.4A.
    1. Russell JA, Walley KR, Singer J, et al. Vasopressin versus norepinephrine infusion in patients with septic shock. N Engl J Med. 2008;358:877–887. doi: 10.1056/NEJMoa067373.
    1. Dünser MW, Mayr AJ, Tura A, et al. Ischemic skin lesions as a complication of continuous vasopressin infusion in catecholamine-resistant vasodilatory shock: incidence and risk factors. Crit Care Med. 2003;31:1394–1398. doi: 10.1097/01.CCM.0000059722.94182.79.
    1. Albanèse J, Leone M, Delmas A, et al. Terlipressin or norepinephrine in hyperdynamic septic shock: a prospective, randomized study. Crit Care Med. 2005;33:1897–1902. doi: 10.1097/01.CCM.0000178182.37639.D6.
    1. Morelli A, Ertmer C, Lange M, et al. Effects of short-term simultaneous infusion of dobutamine and terlipressin in patients with septic shock: the DOBUPRESS study. Br J Anesth. 2008;100:494–503. doi: 10.1093/bja/aen017.
    1. Morelli A, Ertmer C, Rehberg S, et al. Continuous terlipressin versus vasopressin infusion in septic shock (TERLIVAP): a randomized, controlled pilot study. Crit Care. 2009;13:R130. doi: 10.1186/cc7990.
    1. Bellomo R, Chapman M, Finfer S, et al. Low-dose dopamine in patients with early renal dysfunction: a placebo-controlled randomised trial. Australian and New Zealand Intensive Care Society (ANZICS) Clinical Trials Group. Lancet. 2000;356:2139–2143. doi: 10.1016/S0140-6736(00)03495-4.
    1. Kellum J, Decker J. Use of dopamine in acute renal failure: a meta-analysis. Crit Care Med. 2001;29:1526–1531. doi: 10.1097/00003246-200108000-00005.
    1. Gattinoni L, Brazzi L, Pelosi P, et al. A trial of goal-oriented hemodynamic therapy in critically ill patients. N Engl J Med. 1995;333:1025–1032. doi: 10.1056/NEJM199510193331601.
    1. Hayes MA, Timmins AC, Yau EHS, et al. Elevation of systemic oxygen delivery in the treatment of critically ill patients. N Engl J Med. 1994;330:1717–1722. doi: 10.1056/NEJM199406163302404.
    1. Annane D, Sebille V, Charpentier C, et al. Effect of treatment with low doses of hydrocortisone and fludrocortisone on mortality in patients with septic shock. JAMA. 2002;288:862–871. doi: 10.1001/jama.288.7.862.
    1. Briegel J, Forst H, Haller M, et al. Stress doses of hydrocortisone reverse hyperdynamic septic shock: a prospective, randomized, double-blind, single-center study. Crit Care Med. 1999;27:723–732. doi: 10.1097/00003246-199904000-00025.
    1. Bollaert PE, Charpentier C, Levy B, et al. Reversal of late septic shock with supraphysiologic doses of hydrocortisone. Crit Care Med. 1998;26:645–650. doi: 10.1097/00003246-199804000-00010.
    1. Sprung CL, Annane D, Keh D, et al. Hydrocortisone therapy for patients with septic shock. N Engl J Med. 2008;358:111–124. doi: 10.1056/NEJMoa071366.
    1. Annane D, Bellissant E, Bollaert PE, et al. Corticosteroids in the treatment of severe sepsis and septic shock in adults: a systematic review. JAMA. 2009;301:2362–2375. doi: 10.1001/jama.2009.815.
    1. Sligl WI, Milner DA, Jr, Sundar S, et al. Safety and efficacy of corticosteroids for the treatment of septic shock: a systematic review and meta-analysis. Clin Infect Dis. 2009;49:93–101. doi: 10.1086/599343.
    1. Patel GP, Balk RA. Systemic steroids in severe sepsis and septic shock. Am J Respir Crit Care Med. 2012;185:133–139. doi: 10.1164/rccm.201011-1897CI.
    1. Oppert M, Schindler R, Husung C, et al. Low dose hydrocortisone improves shock reversal and reduces cytokine levels in early hyperdynamic septic shock. Crit Care Med. 2005;33:2457–2464. doi: 10.1097/01.CCM.0000186370.78639.23.
    1. Yildiz O, Doganay M, Aygen B, et al. Physiologic-dose steroid therapy in sepsis. Crit Care. 2002;6:251–259. doi: 10.1186/cc1498.
    1. Briegel J, Möhnle P, Sprung CL, et al. Multicenter comparison of cortisol as measured by different methods in samples of patients with septic shock. Intensive Care Med. 2009;35:2151–2156. doi: 10.1007/s00134-009-1627-9.
    1. Allolio B, Dorr H, Stuttmann R, et al. Effect of a single bolus of etomidate upon eight major corticosteroid hormone and plasma ACTH. Clin Endocrinol (Oxf) 1985;22:281–286. doi: 10.1111/j.1365-2265.1985.tb03241.x.
    1. Jabre P, Combes X, Lapostolle F, et al. Etomidate versus ketamine for rapid sequence intubation in acutely ill patients: a multicentre randomised controlled trial. Lancet. 2009;374:293–300. doi: 10.1016/S0140-6736(09)60949-1.
    1. Cuthbertson BH, Sprung CL, Annane D, et al. The effects of etomidate on adrenal responsiveness and mortality in patients with septic shock. Intensive Care Med. 2009;35:1868–1876. doi: 10.1007/s00134-009-1603-4.
    1. Keh D, Boehnke T, Weber-Carstens S, et al. Immunologic and hemodynamic effects of “low-dose” hydrocortisone in septic shock: a double-blind, randomized, placebo controlled, crossover study. Am J Respir Crit Care Med. 2003;167:512–520. doi: 10.1164/rccm.200205-446OC.
    1. Huh JW, Choi HS, Lim CM, et al. Low-dose hydrocortisone treatment for patients with septic shock: a pilot study comparing 3 days with 7 days. Respirology. 2011;16:1088–1095. doi: 10.1111/j.1440-1843.2011.02018.x.
    1. Confalonieri M, Urbino R, Potena A, et al. Hydrocortisone infusion for severe community-acquired pneumonia: a preliminary randomized study. Am J Respir Crit Care Med. 2005;171:242–248. doi: 10.1164/rccm.200406-808OC.
    1. Meijvis SCA, Hardemann H, Remmelts HHF, et al. Dexamethasone and length of hospital stay in patients with community-acquired pneumonia: a randomized, double-blind, placebo-controlled trial. Lancet. 2011;377:2023–2030. doi: 10.1016/S0140-6736(11)60607-7.
    1. Weber-Carstens S, Deja M, Bercker S, et al. Impact of bolus application of low-dose hydrocortisone on glycemic control in septic shock patients. Intensive Care Med. 2007;33:730–733. doi: 10.1007/s00134-007-0540-3.
    1. Hébert PC, Wells G, Blajchman MA, et al. A multicenter, randomized, controlled clinical trial of transfusion in critical care. N Engl J Med. 1999;340:409–417. doi: 10.1056/NEJM199902113400601.
    1. Hajjar LA, Vincent JL, Galas FRBG, et al. Transfusion requirements after cardiac surgery: the TRACS randomized controlled trial. JAMA. 2010;304:1559–1567. doi: 10.1001/jama.2010.1446.
    1. Marik PE, Sibbald WJ. Effect of stored-blood transfusion on oxygen delivery in patients with sepsis. JAMA. 1993;269:3024–3029. doi: 10.1001/jama.1993.03500230106037.
    1. Lorente JA, Landín L, dePablo R, et al. Effects of blood transfusion on oxygen transport variables in severe sepsis. Crit Care Med. 1993;21:1312–1318. doi: 10.1097/00003246-199309000-00013.
    1. Fernandes CJ, Akamine N, DeMarco FVC, et al. Red blood cell transfusion does not increase oxygen consumption in critically ill septic patients. Crit Care. 2001;5:362–567. doi: 10.1186/cc1070.
    1. Corwin HL, Gettinger A, Rodriguez RM, et al. Efficacy of recombinant human erythropoietin in the critically ill patient: a randomized double-blind, placebo-controlled trial. Crit Care Med. 1999;27:2346–2350. doi: 10.1097/00003246-199911000-00004.
    1. Corwin HL, Gettinger A, Pearl RG, et al. Efficacy of recombinant human erythropoietin in critically ill patients. JAMA. 2002;28:2827–2835. doi: 10.1001/jama.288.22.2827.
    1. College of American Pathologists Practice parameter for the use of fresh-frozen plasma, cryoprecipitate, and platelets. JAMA. 1994;271:777–781. doi: 10.1001/jama.1994.03510340067036.
    1. Canadian Medical Association Expert Working Group Guidelines for red blood cell and plasma transfusion for adults and children. Can Med Assoc J. 1997;156:S1–S24.
    1. American Society of Anaesthesiologists Task Force on Blood Component Therapy Practice guidelines for blood component therapy. Anesthesiology. 1996;84:732–747. doi: 10.1097/00000542-199603000-00032.
    1. Liumbruno GL, Bennardello F, Lattanzio A, et al. Recommendations for the transfusion of plasma and platelets. Blood Transfus. 2009;7:132–150.
    1. Abdel-Wahab OI, Healy B, Dzik WH. Effect of fresh-frozen plasma transfusion on prothrombin time and bleeding in patients with mild coagulation abnormalities. Transfusion. 2006;46:1279–1285. doi: 10.1111/j.1537-2995.2006.00891.x.
    1. Stanworth SJ, Walsh TS, Prescott RJ, et al. A national study of plasma use in critical care: clinical indications, dose, and effect on prothrombin time. Crit Care. 2011;15:R108. doi: 10.1186/cc10129.
    1. Warren BL, Eid A, Singer P, et al. High-dose antithrombin III in severe sepsis: a randomized controlled trial. JAMA. 2001;286:1869–1878. doi: 10.1001/jama.286.15.1869.
    1. Wiedermann CJ, Hoffmann JN, Juers M, et al. High-dose antithrombin III in the treatment of severe sepsis in patients with a high risk of death: efficacy and safety. Crit Care Med. 2006;34:285–292. doi: 10.1097/01.CCM.0000194731.08896.99.
    1. Schiffer CA, Anderson KC, Bennett CL, et al. Platelet transfusion for patients with cancer: clinical practice guidelines of the American Society of Clinical Oncology. J Clin Oncol. 2001;19:1519–1538.
    1. (2003) Guidelines for the use of platelet transfusions. Br J Haematol 122:10–23
    1. Werdan K, Pilz G, Bujdoso O, et al. Score-based immunoglobulin G therapy of patients with sepsis: the SBITS study. Crit Care Med. 2007;35:2693–2701. doi: 10.1097/01.CCM.0000295426.37471.79.
    1. INIS Collaborative Group. Brocklehurst P, Farrell B, et al. Treatment of neonatal sepsis with intravenous immune globulin. N Engl J Med. 2011;365:1201–1211. doi: 10.1056/NEJMoa1100441.
    1. Alejandria MM, Lansang MAD, Dans LF et al (2002) Intravenous immunoglobulin for treating sepsis, severe sepsis and septic shock. Cochrane Database Syst Rev (1):CD001090
    1. Burns ER, Lee V, Rubinstein A. Treatment of septic thrombocytemia with immune globulin. J Clin Immunol. 1991;11:363–368. doi: 10.1007/BF00918802.
    1. Darenberg J, Ihendyane N, Sjölin J, et al. Intravenous immunoglobulin G therapy in streptococcal toxic shock syndrome: a European randomized, double-blind, placebo-controlled trial. Clin Infect Dis. 2003;37:333–340. doi: 10.1086/376630.
    1. Hentrich M, Fehnle K, Ostermann H, et al. IgMA-enriched immunoglobulin in neutropenic patients with sepsis syndrome and septic shock: a randomized, controlled, multiple-center trial. Crit Care Med. 2006;34:1319–1325. doi: 10.1097/01.CCM.0000215452.84291.C6.
    1. Rodriguez A, Rello J, Neira J, et al. Effects of high-dose intravenous immunoglobulin and antibiotics on survival for severe sepsis undergoing surgery. Shock. 2005;23:298–304. doi: 10.1097/01.shk.0000157302.69125.f8.
    1. Pildal J, Gøtzsche PC. Polyclonal immunoglobulin for treatment of bacterial sepsis: a systematic review. Clin Infect Dis. 2004;39:38–46. doi: 10.1086/421089.
    1. Laupland KB, Kirkpatrick AW, Delaney A. Polyclonal intravenous immunoglobulin for the treatment of severe sepsis and septic shock in critically ill adults: a systematic review and meta-analysis. Crit Care Med. 2007;35:2686–2692. doi: 10.1097/01.CCM.0000295312.13466.1C.
    1. Kreymann KG, de Heer G, Nierhaus A, et al. Use of polyclonal immunoglobulins as adjunctive therapy for sepsis or septic shock. Crit Care Med. 2007;35:2677–2685. doi: 10.1097/01.CCM.0000295263.12774.97.
    1. Turgeon AF, Hutton B, Fergusson DA, et al. Meta-analysis: intravenous immunoglobulin in critically ill adult patients with sepsis. Ann Intern Med. 2007;146:193–203.
    1. Angstwurm MW, Engelmann L, Zimmermann T, et al. Selenium in intensive care (SIC): results of a prospective randomized, placebo-controlled, multiple-center study in patients with severe systemic inflammatory response syndrome, sepsis, and septic shock. Crit Care Med. 2007;35:118–126. doi: 10.1097/01.CCM.0000251124.83436.0E.
    1. Forceville X, Laviolle B, Annane D, et al. Effects of high doses of selenium, a sodium selenite, in septic shock: a placebo-controlled, randomized, double-blind, phase II study. Crit Care. 2007;11:R73. doi: 10.1186/cc5960.
    1. Manzanares W, Biestro A, Torre MH, et al. High-dose selenium reduces ventilator-associated pneumonia and illness severity in critically ill patients with systemic inflammation. Intensive Care Med. 2011;37:1120–1127. doi: 10.1007/s00134-011-2212-6.
    1. Berger MM, Eggimann P, Heyland DK, et al. Reduction of nosocomial pneumonia after major burns by trace element supplementation: aggregation of two randomized trials. Crit Care. 2006;10:R153. doi: 10.1186/cc5084.
    1. Mishra V, Baines M, Perry SE, et al. Effect of selenium supplementation on biochemical markers and outcome in critically ill patients. Clin Nutr. 2007;26:41–50. doi: 10.1016/j.clnu.2006.10.003.
    1. Andrews PJ, Avenell A, Noble DW, et al. Randomised trial of glutamine, selenium, or both, to supplemental parenteral nutrition for critically ill patients. BMJ. 2011;342:d1542. doi: 10.1136/bmj.d1542.
    1. Wang Z, Forceville X, Van Antwerpen P, et al. A large-bolus injection, but not continuous infusion of sodium selenite improves outcome in peritonitis. Shock. 2009;32:140–146. doi: 10.1097/SHK.0b013e318193c35d.
    1. Bernard GR, Vincent JL, Laterre PF, Recombinant Human Protein C Worldwide Evaluation in Severe Sepsis (PROWESS) Study Group et al. Efficacy and safety of recombinant human activated protein C for severe sepsis. N Engl J Med. 2001;344:699–709. doi: 10.1056/NEJM200103083441001.
    1. Abraham E, Laterre P-F, Garg F, et al. Drotrecogin alfa (activated) for adults with severe sepsis and a low risk of death. N Engl J Med. 2005;353:1332–1341. doi: 10.1056/NEJMoa050935.
    1. Nadel S, Goldstein B, Williams MD, et al. Drotrecogin alfa (activated) in children with severe sepsis: a multicentre phase III randomised controlled trial. Lancet. 2007;369:836–843. doi: 10.1016/S0140-6736(07)60411-5.
    1. . Accessed 18 Dec 2011
    1. Bernard GR, Artigas A, Brigham KL, et al. The American-European Consensus Conference on ARDS: definitions, mechanisms, relevant outcomes, and clinical trial coordination. Am J Respir Crit Care Med. 1994;149:818–824.
    1. Ranieri VM, Rubenfeld GD, Thompson BT, et al. Acute respiratory distress syndrome: the Berlin definition. JAMA. 2012;307:25226–25233.
    1. Acute Respiratory Distress Syndrome Network Ventilation with lower tidal volumes as compared with traditional tidal volumes for acute lung injury and the acute respiratory distress syndrome. N Engl J Med. 2000;342:1301–1308. doi: 10.1056/NEJM200005043421801.
    1. Amato MB, Barbas CS, Medeiros DM, et al. Effect of a protective-ventilation strategy on mortality in the acute respiratory distress syndrome. N Engl J Med. 1998;338:347–354. doi: 10.1056/NEJM199802053380602.
    1. Brochard L, Roudot-Thoraval F, Roupie E, et al. Tidal volume reduction for prevention of ventilator-induced lung injury in acute respiratory distress syndrome: the multicenter trail group on tidal volume reduction in ARDS. Am J Respir Crit Care Med. 1998;158:1831–1838.
    1. Brower RG, Shanholtz CB, Fessler HE, et al. Prospective, randomized, controlled clinical trial comparing traditional versus reduced tidal volume ventilation in acute respiratory distress syndrome patients. Crit Care Med. 1999;27:1492–1498. doi: 10.1097/00003246-199908000-00015.
    1. Stewart TE, Meade MO, Cook DJ, et al. Evaluation of a ventilation strategy to prevent barotrauma in patients at high risk for acute respiratory distress syndrome. N Engl J Med. 1998;338:355–361. doi: 10.1056/NEJM199802053380603.
    1. Eichacker PQ, Gerstenberger EP, Banks SM, et al. Meta-analysis of acute lung injury and acute respiratory distress syndrome trials testing low tidal volumes. Am J Respir Crit Care Med. 2002;166:1510–1514. doi: 10.1164/rccm.200208-956OC.
    1. Putensen C, Theuerkauf N, Zinserling J, et al. Meta-analysis: ventilation strategies and outcomes of the acute respiratory distress syndrome and acute lung injury. Ann Intern Med. 2009;151:566–576.
    1. Burns KE, Adhikari NK, Slutsky AS, et al. Pressure and volume limited ventilation for the ventilatory management of patients with acute lung injury: a systematic review and meta-analysis. PLoS ONE. 2011;6:e14623. doi: 10.1371/journal.pone.0014623.
    1. Tobin MJ. Culmination of an era in research on the acute respiratory distress syndrome. N Engl J Med. 2000;342:1360–1361. doi: 10.1056/NEJM200005043421808.
    1. Marini JJ, Gattinoni L. Ventilatory management of acute respiratory distress syndrome: a consensus of two. Crit Care Med. 2004;32:250–255. doi: 10.1097/01.CCM.0000104946.66723.A8.
    1. Hager DN, Krishnan JA, Hayden DL, et al. Tidal volume reduction in patients with acute lung injury when plateau pressures are not high. Am J Respir Crit Care Med. 2005;172:1241–1245. doi: 10.1164/rccm.200501-048CP.
    1. Checkley W, Brower R, Korpak A, et al. Effects of a clinical trial on mechanical ventilation practices in patients with acute lung injury. Am J Respir Crit Care Med. 2008;177:1215–1222. doi: 10.1164/rccm.200709-1424OC.
    1. Kallet RH, Jasmer RM, Luce JM, et al. The treatment of acidosis in acute lung injury with tris-hydroxymethyl aminomethane (THAM) Am J Respir Crit Care Med. 2000;161:1149–1153.
    1. Weber T, Tschernich H, Sitzwohl C, et al. Tromethamine buffer modifies the depressant effect of permissive hypercapnia on myocardial contractility in patients with acute respiratory distress syndrome. Am J Respir Crit Care Med. 2000;162:1361–1365.
    1. Determann RM, Royakkers A, Wolthuis EK, et al. Ventilation with lower tidal volumes as compared with conventional tidal volumes for patients without acute lung injury: a preventive randomized controlled trial. Crit Care. 2010;14:R1. doi: 10.1186/cc8230.
    1. Yilmaz M, Keegan MT, Iscimen R, et al. Toward the prevention of acute lung injury: protocol-guided limitation of large tidal volume ventilation and inappropriate transfusion. Crit Care Med. 2007;35:1660–1666. doi: 10.1097/01.CCM.0000269037.66955.F0.
    1. Gajic O, Dara SI, Mendez JL, et al. Ventilator-associated lung injury in patients without acute lung injury at the onset of mechanical ventilation. Crit Care Med. 2004;32:1817–1824. doi: 10.1097/01.CCM.0000133019.52531.30.
    1. Schultz MJ. Lung-protective mechanical ventilation with lower tidal volumes in patients not suffering from acute lung injury: a review of clinical studies. Med Sci Monit. 2008;14:RA22–RA26.
    1. Marini JJ, Ravenscraft SA. Mean airway pressure: physiologic determinants and clinical importance—part 1: physiologic determinants and measurements. Crit Care Med. 1992;20:1461–1472. doi: 10.1097/00003246-199210000-00017.
    1. Gattinoni L, Marcolin R, Caspani ML, et al. Constant mean airway pressure with different patterns of positive pressure breathing during the adult respiratory distress syndrome. Bull Eur Physiopathol Respir. 1985;21:275–279.
    1. Pesenti A, Marcolin R, Prato P, et al. Mean airway pressure vs. positive end-expiratory pressure during mechanical ventilation. Crit Care Med. 1985;13:34–37. doi: 10.1097/00003246-198501000-00009.
    1. Mercat A, Richard JC, Vielle B, et al. Positive end-expiratory pressure setting in adults with acute lung injury and acute respiratory distress syndrome: a randomized controlled trial. JAMA. 2008;299:646–655. doi: 10.1001/jama.299.6.646.
    1. Meade MO, Cook DJ, Guyatt GH, et al. Ventilation strategy using low tidal volumes, recruitment maneuvers, and high positive end-expiratory pressure for acute lung injury and acute respiratory distress syndrome: a randomized controlled trial. JAMA. 2008;299:637–645. doi: 10.1001/jama.299.6.637.
    1. Brower RG, Lanken PN, MacIntyre N, et al. Higher versus lower positive end-expiratory pressures in patients with the acute respiratory distress syndrome. N Engl J Med. 2004;351:327–336. doi: 10.1056/NEJMoa032193.
    1. Briel M, Meade M, Mercat A, et al. Higher vs lower positive end-expiratory pressure in patients with acute lung injury and acute respiratory distress syndrome: systematic review and meta-analysis. JAMA. 2010;303:865–873. doi: 10.1001/jama.2010.218.
    1. Amato MB, Barbas CS, Medeiros DM, et al. Beneficial effects of the “open lung approach” with low distending pressures in acute respiratory distress syndrome: a prospective randomized study on mechanical ventilation. Am J Respir Crit Care Med. 1995;152:1835–1846.
    1. Gattinoni L, Caironi P, Cressoni M, et al. Lung recruitment in patients with the acute respiratory distress syndrome. N Engl J Med. 2006;354:1775–1786. doi: 10.1056/NEJMoa052052.
    1. Pipeling MR, Fan E. Therapies for refractory hypoxemia in acute respiratory distress syndrome. JAMA. 2010;304:2521–2527. doi: 10.1001/jama.2010.1752.
    1. Fan E, Wilcox ME, Brower RG, et al. Recruitment maneuvers for acute lung injury: a systematic review. Am J Respir Crit Care Med. 2008;178:1156–1163. doi: 10.1164/rccm.200802-335OC.
    1. Stocker R, Neff T, Stein S, et al. Prone positioning and low-volume pressure-limited ventilation improve survival in patients with severe ARDS. Chest. 1997;111:1008–1017. doi: 10.1378/chest.111.4.1008.
    1. Lamm WJ, Graham MM, Albert RK. Mechanism by which the prone position improves oxygenation in acute lung injury. Am J Respir Crit Care Med. 1994;150:184–193.
    1. Jolliet P, Bulpa P, Chevrolet JC. Effects of the prone position on gas exchange and hemodynamics in severe acute respiratory distress syndrome. Crit Care Med. 1998;26:1977–1985. doi: 10.1097/00003246-199812000-00023.
    1. Guerin C, Gaillard S, Lemasson S, et al. Effects of systematic prone positioning in hypoxemic acute respiratory failure: a randomized controlled trial. JAMA. 2004;292:2379–2387. doi: 10.1001/jama.292.19.2379.
    1. Taccone P, Pesenti A, Latini R, et al. Prone positioning in patients with moderate and severe acute respiratory distress syndrome: a randomized controlled trial. JAMA. 2009;302:1977–1984. doi: 10.1001/jama.2009.1614.
    1. Mancebo J, Fernandez R, Blanch L, et al. A multicenter trial of prolonged prone ventilation in severe acute respiratory distress syndrome. Am J Respir Crit Care Med. 2006;173:1233–1239. doi: 10.1164/rccm.200503-353OC.
    1. Gattinoni L, Tognoni G, Pesenti A, et al. Effect of prone positioning on the survival of patients with acute respiratory failure. N Engl J Med. 2001;345:568–573. doi: 10.1056/NEJMoa010043.
    1. Sud S, Friedrich JO, Taccone P, et al. Prone ventilation reduces mortality in patients with acute respiratory failure and severe hypoxemia: systematic review and meta-analysis. Intensive Care Med. 2010;36:585–599. doi: 10.1007/s00134-009-1748-1.
    1. Sud S, Sud M, Friedrich JO, et al. High frequency oscillation in patients with acute lung injury and acute respiratory distress syndrome (ARDS): systematic review and meta-analysis. BMJ. 2010;340:c2327. doi: 10.1136/bmj.c2327.
    1. Noah MA, Peek GJ, Finney SJ, et al. Referral to an extracorporeal membrane oxygenation center and mortality among patients with severe 2009 influenza A (H1N1) JAMA. 2011;306:1659–1668. doi: 10.1001/jama.2011.1471.
    1. Checkley W. Extracorporeal membrane oxygenation as a first-line treatment strategy for ARDS: is the evidence sufficiently strong? JAMA. 2011;306:1703–1704. doi: 10.1001/jama.2011.1504.
    1. Peek GJ, Mugford M, Tiruvoipati R, et al. Efficacy and economic assessment of conventional ventilator support versus extracorporeal membrane oxygenation for severe adult respiratory failure (CESAR): a multicenter randomised controlled trial. Lancet. 2009;374:1330. doi: 10.1016/S0140-6736(09)61069-2.
    1. Adhaikari NK, Burns KE, Friedrich JO. Effect of nitric oxide on oxygenation and mortality in acute lung injury: systematic review and meta-analysis. BMJ. 2007;334:779. doi: 10.1136/bmj.39139.716794.55.
    1. Drakulovic MB, Torres A, Bauer TT, et al. Supine body position as a risk factor for nosocomial pneumonia in mechanically ventilated patients: a randomised trial. Lancet. 1999;354:1851–1858. doi: 10.1016/S0140-6736(98)12251-1.
    1. van Nieuwenhoven CA, Vandenbroucke-Grauls C, van Tiel FH, et al. Feasibility and effects of the semi-recumbent position to prevent ventilator-associated pneumonia: a randomized study. Crit Care Med. 2006;34:396–402. doi: 10.1097/01.CCM.0000198529.76602.5E.
    1. Antonelli M, Conti G, Rocco M, et al. A comparison of noninvasive positive-pressure ventilation and conventional mechanical ventilation in patients with acute respiratory failure. N Engl J Med. 1998;339:429–435. doi: 10.1056/NEJM199808133390703.
    1. Ferrer M, Esquinas A, Leon M, et al. Noninvasive ventilation in severe hypoxemic respiratory failure: a randomized clinical trial. Am J Respir Crit Care Med. 2003;168:1438–1444. doi: 10.1164/rccm.200301-072OC.
    1. Rana S, Jenad H, Gay PC, et al. Failure of non-invasive ventilation in patients with acute lung injury: observational cohort study. Crit Care. 2006;10:R79. doi: 10.1186/cc4923.
    1. Domenighetti G, Moccia A, Gayer R. Observational case-control study of non-invasive ventilation in patients with ARDS. Monaldi Arch Chest Dis. 2008;69:5–10.
    1. Ely W, Baker AB, Dunagen DP. Effect on the duration of mechanical ventilation of identifying patients capable of breathing spontaneously. New Engl J Med. 1996;335:1865–1869. doi: 10.1056/NEJM199612193352502.
    1. Kress JP, Pohlman AS, O’Connor MF, et al. Daily interruption of sedative infusions in critically ill patients undergoing mechanical ventilation. N Engl J Med. 2000;342:1471–1477. doi: 10.1056/NEJM200005183422002.
    1. Girard TD, Kress JP, Fuchs BD, et al. Efficacy and safety of a paired sedation and ventilator weaning protocol for mechanically ventilated patients in intensive care (awakening and breathing controlled trial): a randomised controlled trial. Lancet. 2008;371:126–134. doi: 10.1016/S0140-6736(08)60105-1.
    1. Iberti TJ, Fischer EP, Leibowitz AB, et al. A multicenter study of physicians’ knowledge of the pulmonary artery catheter. JAMA. 1990;264:2928–2932. doi: 10.1001/jama.1990.03450220094030.
    1. Al-Kharrat T, Zarich S, Amoateng-Adjepong Y, et al. Analysis of observer variability in measurement of pulmonary artery occlusion pressures. Am J Respir Crit Care Med. 1999;160:415–420.
    1. Connors AF, Jr, McCaffree DR, Gray BA. Evaluation of right-heart catheterization in the critically ill patient without acute myocardial infarction. N Engl J Med. 1983;308:263–267. doi: 10.1056/NEJM198302033080508.
    1. Osman D, Ridel C, Ray P, et al. Cardiac filling pressures are not appropriate to predict hemodynamic response to volume challenge. Crit Care Med. 2007;35:64–68. doi: 10.1097/01.CCM.0000249851.94101.4F.
    1. Richard C, Warszawski J, Anguel N, et al. Early use of the pulmonary artery catheter and outcomes in patients with shock and acute respiratory distress syndrome: a randomized controlled trial. JAMA. 2003;290:2713–2720. doi: 10.1001/jama.290.20.2713.
    1. National Heart, Lung, and Blood Institute Acute Respiratory Distress Syndrome (ARDS) Clinical Trials Network et al. Pulmonary-artery versus central venous catheter to guide treatment of acute lung injury. N Engl J Med. 2006;354:2213–2224.
    1. Sandham JD, Hull RD, Brant RF, et al. A randomized, controlled trial of the use of pulmonary-artery catheters in high-risk surgical patients. N Engl J Med. 2003;348:5–14. doi: 10.1056/NEJMoa021108.
    1. Shah MR, Hasselblad V, Stevenson LW, et al. Impact of the pulmonary artery catheter in critically ill patients: meta-analysis of randomized clinical trials. JAMA. 2005;294:1664–1670. doi: 10.1001/jama.294.13.1664.
    1. Harvey S, Harrison DA, Singer M, et al. Assessment of the clinical effectiveness of pulmonary artery catheters in management of patients in intensive care (PAC-man): a randomised controlled trial. Lancet. 2005;366:472–477. doi: 10.1016/S0140-6736(05)67061-4.
    1. Harvey S, Young D, Brampton W et al (2006) Pulmonary artery catheters for adult patients in intensive care. Cochrane Database Syst Rev (3):CD003408
    1. Sibbald WJ, Short AK, Warshawski FJ, et al. Thermal dye measurements of extravascular lung water in critically ill patients: intravascular starling forces and extravascular lung water in the adult respiratory distress syndrome. Chest. 1985;87:585–592. doi: 10.1378/chest.87.5.585.
    1. Martin GS, Mangialardi RJ, Wheeler AP, et al. Albumin and furosemide therapy in hypoproteinemic patients with acute lung injury. Crit Care Med. 2002;30:2175–2182. doi: 10.1097/00003246-200210000-00001.
    1. Mitchell JP, Schuller D, Calandrino FS, et al. Improved outcome based on fluid management in critically ill patients requiring pulmonary artery catheterization. Am Rev Respir Dis. 1992;145:990–998. doi: 10.1164/ajrccm/145.5.990.
    1. Schuller D, Mitchell JP, Calandrino FS, et al. Fluid balance during pulmonary edema: is fluid gain a marker or a cause of poor outcome? Chest. 1991;100:1068–1075. doi: 10.1378/chest.100.4.1068.
    1. National Heart, Lung, and Blood Institute Acute Respiratory Distress Syndrome (ARDS) Clinical Trials Network et al. Comparison of two fluid-management strategies in acute lung injury. N Engl J Med. 2006;354:2564–2575.
    1. Perkins GD, McAuley DF, Thickett DR, et al. The β-agonist lung injury trial (BALTI): a randomized placebo-controlled clinical trial. Am J Respir Crit Care Med. 2006;173:281–287. doi: 10.1164/rccm.200508-1302OC.
    1. Matthay MA, Brower RG, Carson S, et al. Randomized, placebo-controlled clinical trial of an aerolosolized β-2 agonist for treatment of acute lung injury. Am J Resp Crit Care Med. 2011;184:561–568. doi: 10.1164/rccm.201012-2090OC.
    1. Gao Smith F, Perkins DG, Gates S, et al. Effect of intravenous β-2 agonist treatment on clinical outcomes in acute respiratory distress syndrome (BALTI-2): a multicentre, randomised controlled trial. Lancet. 2012;379:229–235.
    1. Marx WH, DeMaintenon NL, Mooney KF, et al. Cost reduction and outcome improvement in the intensive care unit. J Trauma. 1999;46:625–629.
    1. MacLaren R, Plamondon JM, Ramsay KB, et al. A prospective evaluation of empiric versus protocol-based sedation and analgesia. Pharmacotherapy. 2000;20:662–672. doi: 10.1592/phco.20.7.662.35172.
    1. Brook AD, Ahrens TS, Schaiff R, et al. Effect of a nursing-implemented sedation protocol on the duration of mechanical ventilation. Crit Care Med. 1999;27:2609–2615. doi: 10.1097/00003246-199912000-00001.
    1. Shehabi Y, Bellomo R, Reade MC. Early intensive care sedation predicts long-term mortality in ventilated critically ill patients. Am J Respir Crit Care Med. 2012;186:724–731.
    1. Strom T, Martinussen T, Toft P. A protocol of no sedation for critically ill patients receiving mechanical ventilation: a randomised trial. Lancet. 2010;375:475–480. doi: 10.1016/S0140-6736(09)62072-9.
    1. Devlin JW, Boleski G, Mlynarek M, et al. Motor activity assessment scale: a valid and reliable sedation scale for use with mechanically ventilated patients in an adult surgical intensive care unit. Crit Care Med. 1999;27:1271–1275. doi: 10.1097/00003246-199907000-00008.
    1. De Jonghe B, Cook D, Sharshar T, et al. Groupe de réflexion et d’étude sur les neuromyopathies en réanimation: acquired neuromuscular disorders in critically ill patients: a systematic review. Intensive Care Med. 1998;24:1242–1250. doi: 10.1007/s001340050757.
    1. Kollef MH, Levy NT, Ahrens TS, et al. The use of continuous IV sedation is associated with prolongation of mechanical ventilation. Chest. 1998;114:541–548. doi: 10.1378/chest.114.2.541.
    1. Mehta S, Burry L, Cook D, et al. SLEAP Investigators; Canadian Critical Care Trials Group: Daily sedation interruption in mechanically ventilated critically ill patients cared for with a sedation protocol: a randomized controlled trial. JAMA. 2012;308:1985–1992.
    1. Kress JP, Vinayak AG, Levitt J, et al. Daily sedative interruption in mechanically ventilated patients at risk for coronary artery disease. Crit Care Med. 2007;35:365–371. doi: 10.1097/01.CCM.0000254334.46406.B3.
    1. Schweickert WD, Pohlman MC, Pohlman AS, et al. Early physical and occupational therapy in mechanically ventilated, critically ill patients: a randomised controlled trial. Lancet. 2009;373:1874–1882. doi: 10.1016/S0140-6736(09)60658-9.
    1. Klessig HT, Geiger HJ, Murray MJ, et al. A national survey on the practice patterns of anesthesiologist intensivists in the use of muscle relaxants. Crit Care Med. 1992;20:1341–1345. doi: 10.1097/00003246-199209000-00024.
    1. Murray MJ, Cowen J, DeBlock H, et al. Clinical practice guidelines for sustained neuromuscular blockade in the adult critically ill patient. Crit Care Med. 2002;30:142–156. doi: 10.1097/00003246-200201000-00021.
    1. Hansen-Flaschen JH, Brazinsky S, Basile C, et al. Use of sedating drugs and neuromuscular blocking agents in patients requiring mechanical ventilation for respiratory failure: a national survey. JAMA. 1991;266:2870–2875. doi: 10.1001/jama.1991.03470200082040.
    1. Freebairn RC, Derrick J, Gomersall CD, et al. Oxygen delivery, oxygen consumption, and gastric intramucosal pH are not improved by a computer-controlled, closed-loop, vecuronium infusion in severe sepsis and septic shock. Crit Care Med. 1997;25:72–77. doi: 10.1097/00003246-199701000-00015.
    1. Papazian L, Forel JM, Gacouin A, et al. Neuromuscular blockers in early acute respiratory distress syndrome. N Engl J Med. 2010;363:1107–1116. doi: 10.1056/NEJMoa1005372.
    1. Forel JM, Roch A, Marin V, et al. Neuromuscular blocking agents decrease inflammatory response in patients presenting with acute respiratory distress syndrome. Crit Care Med. 2006;34:2749–2757. doi: 10.1097/01.CCM.0000239435.87433.0D.
    1. Shapiro BA, Warren J, Egol AB, et al. Practice parameters for sustained neuromuscular blockade in the adult critically ill patient: an executive summary. Crit Care Med. 1995;23:1601–1605. doi: 10.1097/00003246-199509000-00022.
    1. Meyer KC, Prielipp RC, Grossman JE, et al. Prolonged weakness after infusion of atracurium in two intensive care unit patients. Anesth Analg. 1994;78:772–774. doi: 10.1213/00000539-199404000-00027.
    1. Lacomis D, Petrella JT, Giuliani MJ. Causes of neuromuscular weakness in the intensive care unit: a study of ninety-two patients. Muscle Nerve. 1998;21:610–617. doi: 10.1002/(SICI)1097-4598(199805)21:5<610::AID-MUS7>;2-B.
    1. Rudis MI, Sikora CA, Angus E, et al. A prospective, randomized, controlled evaluation of peripheral nerve stimulation versus standard clinical dosing of neuromuscular blocking agents in critically ill patients. Crit Care Med. 1997;25:575–583. doi: 10.1097/00003246-199704000-00005.
    1. Frankel H, Jeng J, Tilly E, et al. The impact of implementation of neuromuscular blockade monitoring standards in a surgical intensive care unit. Am Surg. 1996;62:503–506.
    1. Strange C, Vaughan L, Franklin C, et al. Comparison of train-of-four and best clinical assessment during continuous paralysis. Am J Respir Crit Care Med. 1997;156:1556–1561.
    1. van den Berghe G, Wouters P, Weekers F, et al. Intensive insulin therapy in critically ill patients. N Engl J Med. 2001;345:1359–1367. doi: 10.1056/NEJMoa011300.
    1. van den Berghe G, Wilmer A, Hermans G, et al. Intensive insulin therapy in the medical ICU. N Engl J Med. 2006;354:449–461. doi: 10.1056/NEJMoa052521.
    1. Arabi YM, Dabbagh OC, Tamim HM. Intensive versus conventional insulin therapy: a randomized controlled trial in medical and surgical critically ill patients. Crit Care Med. 2008;36:3190–3197. doi: 10.1097/CCM.0b013e31818f21aa.
    1. De La Rosa GDC, Hernando Donado J, Restrepo AH (2008) Strict glycaemic control in patients hospitalised in a mixed medical and surgical intensive care unit: a randomised clinical trial. Critical Care 12:R120
    1. COIITSS Study Investigators. Annane D, Cariou A, et al. Corticosteroid treatment and intensive insulin therapy for septic shock in adults: a randomized controlled trial. JAMA. 2012;303:341–348.
    1. The NICE-SUGAR Study Investigators Intensive versus conventional glucose control in critically ill patients. N Engl J Med. 2009;360:1283–1297. doi: 10.1056/NEJMoa0810625.
    1. Preiser JC, Devos P, Ruiz-Santana S. A prospective randomised multi-centre controlled trial on tight glucose control by intensive insulin therapy in adult intensive care units: the Glucontrol study. Intensive Care Med. 2009;35:1738–1748. doi: 10.1007/s00134-009-1585-2.
    1. Wiener RS, Wiener DC, Larson RJ. Benefits and risks of tight glucose control in critically ill adults: a meta-analysis. JAMA. 2008;300:933–936. doi: 10.1001/jama.300.8.933.
    1. Griesdale DEG, de Souza RJ, van Dam RM, et al. Intensive insulin therapy and mortality among critically ill patients: a meta-analysis including NICE-SUGAR study data. CMAJ. 2009;180:821–827.
    1. Marik PE, Preiser JC. Toward understanding tight glycemic control in the ICU: a systematic review and metaanalysis. Chest. 2010;137:544–551. doi: 10.1378/chest.09-1737.
    1. Friedrich JO, Chant C, Adhikari NKJ. Does intensive insulin therapy really reduce mortality in critically ill surgical patients? A reanalysis of meta-analytic data. Crit Care. 2010;14:324–330. doi: 10.1186/cc9240.
    1. Kansagara D, Fu R, Freeman M, et al. Intensive insulin therapy in hospitalized patients: a systematic review. Ann Intern Med. 2011;154:268–282.
    1. Peberdy MA, Callaway CW, Neumar RW, et al. Part 9: post-cardiac arrest care: 2010 American Heart Association guidelines for cardiopulmonary resuscitation and emergency cardiovascular care. Circulation. 2010;122:S768–S786. doi: 10.1161/CIRCULATIONAHA.110.971002.
    1. Qaseem A, Humphrey LL, Chou R, et al. Use of intensive insulin therapy for the management of glycemic control in hospitalized patients: a clinical practice guideline from the American College of Physicians. Ann Intern Med. 2011;154:260–267.
    1. Moghissi ES, Korytkowski MT, Dinardo M, et al. American Association of Clinical Endocrinologists and American Diabetes Association consensus statement on inpatient glycemic control. Diabetes Care. 2009;32:1119–1131. doi: 10.2337/dc09-9029.
    1. Jacobi J, Bircher N, Krinsley J, et al. Guidelines for the use of insulin infusion for the management of hyperglycemia in critically ill patients. Crit Care Med. 2012;40:3251–3276.
    1. Kauffmann RM, Hayes RM, Jenkins JM, et al. Provision of balanced nutrition protects against hypoglycemia in the critically ill surgical patient. JPEN J Parenter Enteral Nutr. 2011;35:686–694. doi: 10.1177/0148607111413904.
    1. Egi M, Bellomo R, Stachowski E, et al. Variability in blood glucose concentrations and short-term mortality in critically ill patients. Anesthesiology. 2006;105:233–234. doi: 10.1097/00000542-200608000-00006.
    1. Krinsley JS. Glycemic variability: a strong independent predictor of mortality in critically ill patients. Crit Care Med. 2008;36:3008–3013. doi: 10.1097/CCM.0b013e31818b38d2.
    1. Mackenzie IMJ, Whitehouse T, Nightingale PG. The metrics of glycaemic control in critical care. Intensive Care Med. 2011;37:435–443. doi: 10.1007/s00134-010-2103-2.
    1. Egi M, Bellomo R, Stachowski E. Blood glucose concentration and outcome of critical illness: the impact of diabetes. Crit Care Med. 2008;36:2249–2255. doi: 10.1097/CCM.0b013e318181039a.
    1. Krinsley JS. Glycemic variability and mortality in critically ill patients: the impact of diabetes. J Diabetes Sci Technol. 2009;3:1292–1301.
    1. Nichols JH (2002) Bedside testing, glucose monitoring, and diabetes management. In: Kost GJ (ed) Principles of point of care testing. Lippincott Williams & Wilkins, Philadelphia
    1. Kanji S, Buffie J, Hutton B, et al. Reliability of point-of-care testing for glucose measurement in critically ill adults. Crit Care Med. 2005;33:2778–2785. doi: 10.1097/01.CCM.0000189939.10881.60.
    1. Hoedemaekers CW, Klein Gunnewiek JM, Prinsen MA, et al. Accuracy of bedside glucose measurement from three glucometers in critically ill patients. Crit Care Med. 2008;36:3062–3066. doi: 10.1097/CCM.0b013e318186ffe6.
    1. Khan AI, Vasquez Y, Gray J, et al. The variability of results between point-of-care testing glucose meters and the central laboratory analyzer. Arch Pathol Lab Med. 2006;130:1527–1532.
    1. Desachy A, Vuagnat AC, Ghazali AD, et al. Accuracy of bedside glucometry in critically ill patients: influence of clinical characteristics and perfusion index. Mayo Clin Proc. 2008;83:400–405. doi: 10.4065/83.4.400.
    1. Fekih Hassen M, Ayed S, Gharbi R, et al. Bedside capillary blood glucose measurements in critically ill patients: influence of catecholamine therapy. Diabetes Res Clin Pract. 2010;87:87–91.
    1. Wilson M, Weinreb J, Soo Hoo GW. Intensive insulin therapy in critical care: a review of a dozen protocols. Diabetes Care. 2007;30:1005–1011. doi: 10.2337/dc06-1964.
    1. Newton CA, Smiley D, Bode BW, et al. A comparison study of continuous insulin infusion protocols in the medical intensive care unit: computer-guided vs. standard column-based algorithms. J Hosp Med. 2010;5:432–437. doi: 10.1002/jhm.816.
    1. Dortch MJ, Mowery NT, Ozdas A, et al. A computerized insulin infusion titration protocol improves glucose control with less hypoglycemia compared to a manual titration protocol in a trauma intensive care unit. JPEN J Parenter Enteral Nutr. 2008;32:18–27. doi: 10.1177/014860710803200118.
    1. Mauritz W, Sporn P, Schindler I, et al. Acute renal failure in abdominal infection: comparison of hemodialysis and continuous arteriovenous and continuous hemofiltration. Anasth Intensivther Nortfallmed. 1986;21:212–217. doi: 10.1055/s-2007-1002472.
    1. Bartlett RH, Mault JR, Dechert RE, et al. Continuous arteriovenous hemofiltration: improved survival in surgical acute renal failure. Surgery. 1986;100:400–408.
    1. Kierdorf H. Continuous versus intermittent treatment: clinical results in acute renal failure. Contrib Nephrol. 1991;93:1–12.
    1. Bellomo R, Mansfield D, Rumble S, et al. Acute renal failure in critical illness: conventional dialysis versus continuous hemodiafiltration. Am Soc Artif Intern Organs J. 1992;38:M654–M657. doi: 10.1097/00002480-199207000-00118.
    1. Bellomo R, Farmer M, Parkin G, et al. Severe acute renal failure: a comparison of acute continuous hemodiafiltration and conventional dialytic therapy. Nephron. 1995;71:59–64. doi: 10.1159/000188675.
    1. Kruczinski K, Irvine-Bird K, Toffelmire EB, et al. A comparison of continuous arteriovenous hemofiltration and intermittent hemodialysis in acute renal failure patients in intensive care unit. Am Soc Artif Intern Organs J. 1993;38:M778–M781. doi: 10.1097/00002480-199339030-00121.
    1. Van Bommel EH, Bouvy ND, Sob KL, et al. Acute dialytic support for the critically ill: intermittent hemodialysis versus continuous arteriovenous hemodiafiltration. Am J Nephrol. 1995;15:192–200. doi: 10.1159/000168832.
    1. Guerin C, Girard R, Selli JM, et al. Intermittent versus continuous renal replacement therapy for acute renal failure in intensive care units: results from a multicenter prospective epidemiological survey. Intensive Care Med. 2002;28:1411–1418. doi: 10.1007/s00134-002-1391-6.
    1. Kellum JA, Angus DC, Johnson JP, et al. Continuous versus intermittent renal replacement therapy: a meta-analysis. Intensive Care Med. 2002;28:29–37. doi: 10.1007/s00134-001-1159-4.
    1. Tonelli M, Manns B, Feller-Kopman D. Acute renal failure in the intensive care unit: a systematic review of the impact of dialytic modality on mortality and renal recovery. Am J Kidney Dis. 2002;40:875–885. doi: 10.1053/ajkd.2002.36318.
    1. Mehta RL, McDonald B, Gabbai FB, et al. A randomized clinical trial of continuous versus intermittent dialysis for acute renal failure. Kidney Int. 2001;60:1154–1163. doi: 10.1046/j.1523-1755.2001.0600031154.x.
    1. Gasparovic V, Filipovic-Greie I, Merkler M, et al. Continuous renal replacement therapy (CRRT) or intermittent hemodialysis (IHD)—what is the procedure of choice in critically ill patients? Ren Fail. 2003;25:855–862. doi: 10.1081/JDI-120024300.
    1. Augustine JJ, Sandy D, Seifert TH, et al. A randomized controlled trial comparing intermittent with continuous dialysis in patients with ARF. Am J Kidney Dis. 2004;44:1000–1007. doi: 10.1053/j.ajkd.2004.08.022.
    1. Uehlinger DE, Jakob SM, Ferrari P, et al. Comparison of continuous and intermittent renal replacement therapy for acute renal failure. Nephrol Dial Transpl. 2005;20:1630–1637. doi: 10.1093/ndt/gfh880.
    1. Vinsonneau C, Camus C, Combes A, et al. Continuous venovenous haemodiafiltration versus intermittent haemodialysis for acute renal failure in patients with multiple-organ dysfunction syndrome: a multicentre randomised trial. Lancet. 2006;368:379–385. doi: 10.1016/S0140-6736(06)69111-3.
    1. John S, Griesbach D, Baumgärtel M, et al. Effects of continuous haemofiltration vs intermittent haemodialysis on systemic haemodynamics and splanchnic regional perfusion in septic shock patients: a prospective, randomized clinical trial. Nephrol Dial Transpl. 2001;16:320–327. doi: 10.1093/ndt/16.2.320.
    1. Misset B, Timsit JF, Chevret S, et al. A randomized cross-over comparison of the hemodynamic response to intermittent hemodialysis and continuous hemofiltration in ICU patients with acute renal failure. Intensive Care Med. 1996;22:742–746. doi: 10.1007/BF01709515.
    1. Ronco C, Bellomo R, Homel P, et al. Effects of different doses in continuous venovenous haemofiltration on outcomes of acute renal failure: a prospective randomized trial. Lancet. 2000;356:26–30. doi: 10.1016/S0140-6736(00)02430-2.
    1. Bouman CS, Oudemans-Van Straaten HM, Tijssen JG, et al. Effects of early high-volume continuous venovenous hemofiltration on survival and recovery of renal function in intensive care patients with acute renal failure: a prospective, randomized trial. Crit Care Med. 2002;30:2205–2211. doi: 10.1097/00003246-200210000-00005.
    1. The VA/NIH Acute Renal Failure Trial Network Intensity of renal support in critically ill patients with acute kidney injury. N Engl J Med. 2008;359:7–20.
    1. The RENAL Replacement Therapy Study Investigators Intensity of continuous renal-replacement therapy in critically ill patients. N Engl J Med. 2009;361:1627–1638.
    1. Cooper DJ, Walley KR, Wiggs BR, et al. Bicarbonate does not improve hemodynamics in critically ill patients who have lactic acidosis: a prospective, controlled clinical study. Ann Intern Med. 1990;112:492–498.
    1. Mathieu D, Neviere R, Billard V, et al. Effects of bicarbonate therapy on hemodynamics and tissue oxygenation in patients with lactic acidosis: a prospective, controlled clinical study. Crit Care Med. 1991;19:1352–1356. doi: 10.1097/00003246-199111000-00008.
    1. Cade JF. High risk of the critically ill for venous thromboembolism. Crit Care Med. 1982;10:448–450. doi: 10.1097/00003246-198207000-00006.
    1. Halkin H, Goldberg J, Modal M, et al. Reduction in mortality in general medical in-patients by low-dose heparin prophylaxis. Ann Intern Med. 1982;96:561–565.
    1. Pingleton SK, Bone RC, Pingleton WW, et al. Prevention of pulmonary emboli in a respiratory intensive care unit. Chest. 1981;79:647–650. doi: 10.1378/chest.79.6.647.
    1. Belch JJ, Lowe DO, Ward AG, et al. Prevention of deep vein thrombosis in medical patients by low-dose heparin. Scott Med J. 1981;26:115–117.
    1. Gardlund B. Randomized, controlled trial of low-dose heparin for prevention of fatal pulmonary embolism in patients with infectious diseases: the Heparin Prophylaxis Study Group. Lancet. 1996;347:1357–1361. doi: 10.1016/S0140-6736(96)91009-0.
    1. Samama MM, Cohen AT, Darmon JY, et al. A comparison of enoxaparin with placebo for the prevention of venous thromboembolism in acutely ill medical patients. N Engl J Med. 1999;341:793–800. doi: 10.1056/NEJM199909093411103.
    1. Dahan R, Houlbert D, Caulin C, et al. Prevention of deep vein thrombosis in elderly medical in-patients by a low molecular weight heparin: a randomized double-blind trial. Haemostasis. 1986;16:159–164.
    1. Hirsch DR, Ingenito EP, Goldhaber SZ. Prevalence of deep venous thrombosis among patients in medical intensive care. JAMA. 1995;274:335–337. doi: 10.1001/jama.1995.03530040063042.
    1. Fraisse F, Holzapfel L, Couland JM, et al. Nadroparin in the prevention of deep vein thrombosis in acute decompensated COPD: the Association of Non-University Affiliated Intensive Care Specialist Physicians of France. Am J Respir Crit Care Med. 2000;161:1109–1114.
    1. Kupfer Y, Anwar J, Seneviratne C, et al. Prophylaxis with subcutaneous heparin significantly reduces the incidence of deep venous thrombophlebitis in the critically ill. Abstr Am J Crit Care Med. 1999;159(Suppl):A519.
    1. Geerts W, Cook D, Shelby R, et al. Venous thromboembolism and its prevention in critical care. J Crit Care. 2002;17:95–104. doi: 10.1053/jcrc.2002.33941.
    1. Attia J, Ray JG, Cook DJ, et al. Deep vein thrombosis and its prevention in critically ill adults. Arch Intern Med. 2001;161:1268–1279. doi: 10.1001/archinte.161.10.1268.
    1. PROTECT Investigators for the Canadian Critical Care Trials Group and the Australian and New Zealand Intensive Care Society Clinical Trials Group et al. Dalteparin versus unfractionated heparin in critically ill patients. New Engl J Med. 2011;364:1305–1314.
    1. King CS, Holley AB, Jackson JF, et al. Twice vs three times daily heparin dosing for thromboembolism prophylaxis in the general medical population: a meta-analysis. Chest. 2007;131:507–516. doi: 10.1378/chest.06-1861.
    1. Douketis J, Cook D, Meade M, et al. Prophylaxis against deep vein thrombosis in critically ill patients with severe renal insufficiency with the low-molecular-weight heparin dalteparin: an assessment of safety and pharmacodynamics: the DIRECT study. Arch Intern Med. 2008;168:1805–1812. doi: 10.1001/archinte.168.16.1805.
    1. Vanek VW. Meta-analysis of effectiveness of intermittent pneumatic compression devices with a comparison of thigh-high to knee-high sleeves. Am Surg. 1998;64:1050–1058.
    1. Turpie AG, Hirsh J, Gent M, et al. Prevention of deep vein thrombosis in potential neurosurgical patients: a randomized trial comparing graduated compression stockings alone or graduated compression stockings plus intermittent pneumatic compression with control. Arch Intern Med. 1989;149:679–681. doi: 10.1001/archinte.1989.00390030131025.
    1. Agu O, Hamilton G, Baker D. Graduated compression stocking in the prevention of venous thromboembolism. Br J Surg. 1999;86:992–1004. doi: 10.1046/j.1365-2168.1999.01195.x.
    1. Kakkos SK, Caprini JA, Geroulakos G et al (2008) Combined intermittent pneumatic leg compression and pharmacological prophylaxis for prevention of venous thromboembolism in high-risk patients. Cochrane Database Syst Rev (4): CD005258
    1. German Hip Arthroplasty Trial Group (GHAT) Prevention of deep vein thrombosis with low molecular-weight heparin in patients undergoing total hip replacement: a randomized trial. Arch Orthop Trauma Surg. 1992;111:110–120.
    1. Colwell CW, Spiro TE, Trowbridge AA, et al. Use of enoxaparin, a low-molecular-weight heparin, and unfractionated heparin for the prevention of deep venous thrombosis after elective hip replacement: a clinical trial comparing efficacy and safety. J Bone Joint Surg Am. 1994;76:3–14.
    1. Geerts WH, Jay RM, Code KI, et al. A comparison of low-dose heparin with low-molecular-weight heparin as prophylaxis against venous thromboembolism after major trauma. N Engl J Med. 1996;335:701–707. doi: 10.1056/NEJM199609053351003.
    1. Guyatt GH, Akl EA, Crowther M et al (2012) Executive summary: antithrombotic therapy and prevention of thrombosis, 9th ed: American College of Chest Physicians Evidence-Based Clinical Practice Guidelines. Chest 141(Suppl 2):7S–47S
    1. Basso N, Bagarani M, Materia A, et al. Cimetidine and antacid prophylaxis of acute upper gastrointestinal bleeding in high risk patients. Am J Surg. 1981;141:339–342. doi: 10.1016/0002-9610(81)90191-4.
    1. Bresalier RS, Grendell JH, Cello JP, et al. Sucralfate versus titrated antacid for the prevention of acute stress-related gastrointestinal hemorrhage in critically ill patients. Am J Med. 1987;83:110–116. doi: 10.1016/0002-9343(87)90839-4.
    1. Poleski MH, Spanier AH. Cimetidine versus antacids in the prevention of stress erosions in critically ill patients. Am J Gastroenterol. 1986;81:107–111.
    1. Stothert JC, Simonowitz DA, Dellinger EP, et al. Randomized prospective evaluation of cimetidine and antacid control of gastric pH in the critically ill. Ann Surg. 1980;192:169–174. doi: 10.1097/00000658-198008000-00006.
    1. Cook DJ, Fuller HD, Guyatt GH, et al. Risk factors for gastrointestinal bleeding in critically ill patients. N Engl J Med. 1994;330:377–381. doi: 10.1056/NEJM199402103300601.
    1. Schuster DP, Rowley H, Feinstein S, et al. Prospective evaluation of the risk of upper gastrointestinal bleeding after admission to a medical intensive care unit. Am J Med. 1984;76:623–629. doi: 10.1016/0002-9343(84)90286-9.
    1. Kahn JM, Doctor JN, Rubenfeld GD. Stress ulcer prophylaxis in mechanically ventilated patients: integrating evidence and judgment using a decision analysis. Intensive Care Med. 2006;32:1151–1158. doi: 10.1007/s00134-006-0244-0.
    1. Cook DJ, Reeve BK, Guyatt GH, et al. Stress ulcer prophylaxis in critically ill patients: resolving discordant meta-analyses. JAMA. 1996;275:308–314. doi: 10.1001/jama.1996.03530280060038.
    1. Marik P, Vasu T, Hirani A, et al. Stress ulcer prophylaxis in the new millennium: a systematic review and meta-analysis. Crit Care Med. 2010;38:222–228. doi: 10.1097/CCM.0b013e3181f17adf.
    1. Howell MD, Novack C, Grgurich P, et al. Iatrogenic gastric acid suppression and the risk of nosocomial Clostridium difficile infection. Arch Intern Med. 2010;170:784–790. doi: 10.1001/archinternmed.2010.89.
    1. Leonard J, Marshall JK, Moayyedi P. Systematic review of the risk of enteric infection in patients taking acid supression. Am J Gastroenterol. 2007;102:2047–2056. doi: 10.1111/j.1572-0241.2007.01275.x.
    1. Cook D, Guyatt G, Marshall J, et al. A comparison of sucralfate and ranitidine for the prevention of upper gastrointestinal bleeding in patients requiring mechanical ventilation. N Engl J Med. 1998;338:791–797. doi: 10.1056/NEJM199803193381203.
    1. Lin P, Chang C, Hsu P, et al. The efficacy and safety of proton pump inhibitors vs histamine-2 receptor antagonists for stress ulcer bleeding prophylaxis among critical care patients: a meta-analysis. Crit Care Med. 2010;38:1197–1205.
    1. Pongprasobchai S, Kridkratoke S, Nopmaneejumruslers C. Proton pump inhibitors for the prevention of stress-related mucosal disease in critically-ill patients: a meta-analysis. J Med Assoc Thai. 2009;92:632–637.
    1. Alhazzani W, Alshahrani M, Moayyedi P, et al. Stress ulcer prophylaxis in critically ill patients: review of the evidence. Pol Arch Med Wewn. 2012;122:107–114.
    1. Moore EE, Jones TN. Benefits of immediate jejunostomy feeding after major abdominal trauma: a prospective, randomized study. J Trauma. 1986;26:874–881. doi: 10.1097/00005373-198610000-00003.
    1. Chiarelli A, Enzi G, Casadei A, et al. Very early nutrition supplementation in burned patients. Am J Clin Nutr. 1990;51:1035–1039.
    1. Eyer SD, Micon LT, Konstantinides FN, et al. Early enteral feeding does not attenuate metabolic response after blunt trauma. J Trauma. 1993;34:639–643. doi: 10.1097/00005373-199305000-00005.
    1. Chuntrasakul C, Siltharm S, Chinswangwatanakul V, et al. Early nutritional support in severe traumatic patients. J Med Assoc Thai. 1996;79:21–26.
    1. Singh G, Ram RP, Khanna SK. Early postoperative enteral feeding in patients with nontraumatic intestinal perforation and peritonitis. J Am Coll Surg. 1998;187:142–146. doi: 10.1016/S1072-7515(98)00154-9.
    1. Kompan L, Kremzar B, Gadzijev E, et al. Effects of early enteral nutrition on intestinal permeability and the development of multiple organ failure after multiple injury. Intensive Care Med. 1999;25:157–161. doi: 10.1007/s001340050809.
    1. Minard G, Kudsk KA, Melton S, et al. Early versus delayed feeding with an immune-enhancing diet in patients with severe head injuries. JPEN J Parenter Enteral Nutr. 2000;24:145–149. doi: 10.1177/0148607100024003145.
    1. Pupelis G, Selga G, Austrums E, et al. Jejunal feeding, even when instituted late, improves outcomes in patients with severe pancreatitis and peritonitis. Nutrition. 2001;17:91–94. doi: 10.1016/S0899-9007(00)00508-6.
    1. Kompan L, Vidmar G, Spindler-Vesel A, et al. Is early enteral nutrition a risk factor for gastric intolerance and pneumonia? Clin Nutr. 2004;23:527–532. doi: 10.1016/j.clnu.2003.09.013.
    1. Nguyen NQ, Fraser RJ, Bryant LK, et al. The impact of delaying enteral feeding on gastric emptying, plasma cholecystokinin, and peptide YY concentrations in critically ill patients. Crit Care Med. 2008;36:1469–1474. doi: 10.1097/CCM.0b013e31816fc457.
    1. Marik PE, Zaloga GP. Early enteral nutrition in acutely ill patients: a systematic review. Crit Care Med. 2001;29:2264–2270. doi: 10.1097/00003246-200112000-00005.
    1. Heyland DK, Dhaliwal R, Drover JW, et al. Canadian clinical practice guidelines for nutrition support in mechanically ventilated, critically ill adult patients. JPEN J Parenter Enteral Nutr. 2003;27:355–373. doi: 10.1177/0148607103027005355.
    1. Doig GS, Heighes PT, Simpson F, et al. Early enteral nutrition, provided within 24 hours of injury or intensive care unit admission, significantly reduces mortality in critically ill patients: a meta-analysis of randomised controlled trials. Intensive Care Med. 2009;35:2018–2027. doi: 10.1007/s00134-009-1664-4.
    1. Taylor SJ, Fettes SB, Jewkes C, et al. Prospective, randomized, controlled trial to determine the effect of early enhanced enteral nutrition on clinical outcome in mechanically ventilated patients suffering head injury. Crit Care Med. 1999;27:2525–2531. doi: 10.1097/00003246-199911000-00033.
    1. Ibrahim EH, Mehringer L, Prentice D, et al. Early versus late enteral feeding of mechanically ventilated patients: results of a clinical trial. JPEN J Parenter Enteral Nutr. 2002;26:174–181. doi: 10.1177/0148607102026003174.
    1. Rice TW, Mogan S, Hays MA, et al. Randomized trial of initial trophic versus full-energy enteral nutrition in mechanically ventilated patients with acute respiratory failure. Crit Care Med. 2011;39:967–974. doi: 10.1097/CCM.0b013e31820a905a.
    1. National Heart, Lung, and Blood Institute Acute Respiratory Distress Syndrome (ARDS) Clinical Trials Network et al. Trophic vs full enteral feeding in patients with acute lung injury: the EDEN randomized trial. JAMA. 2012;137:795–803.
    1. Arabi YM, Tamim HM, Dhar GS, et al. Permissive underfeeding and intensive insulin therapy in critically ill patients: a randomized controlled trial. Am J Clin Nutr. 2011;93:569–577. doi: 10.3945/ajcn.110.005074.
    1. Cerra FB, McPherson JP, Konstantinides FN, et al. Enteral nutrition does not prevent multiple organ failure syndrome (MOFS) after sepsis. Surgery. 1988;104:727–733.
    1. Heyland DK, MacDonald S, Keefe L, et al. Total parenteral nutrition in the critically ill patient: a meta-analysis. JAMA. 1998;280:2013–2019. doi: 10.1001/jama.280.23.2013.
    1. Braunschweig CL, Levy P, Sheean PM, et al. Enteral compared with parenteral nutrition: a meta-analysis. Am J Clin Nutr. 2001;74:534–542.
    1. Gramlich L, Kichian K, Pinilla J, et al. Does enteral nutrition compared to parenteral nutrition result in better outcomes in critically ill adult patients? A systematic review of the literature. Nutrition. 2004;20:843–848. doi: 10.1016/j.nut.2004.06.003.
    1. Dhaliwal R, Jurewitsch B, Harrietha D, et al. Combination enteral and parenteral nutrition in critically ill patients: harmful or beneficial? A systematic review of the evidence. Intensive Care Med. 2004;30:1666–1671. doi: 10.1007/s00134-004-2345-y.
    1. Peter JV, Moran JL, Phillips-Hughes J. A meta-analysis of treatment outcomes of early enteral versus early parenteral nutrition in hospitalized patients. Crit Care Med. 2005;33:213–220. doi: 10.1097/01.CCM.0000150960.36228.C0.
    1. Simpson F, Doig GS. Parenteral vs. enteral nutrition in the critically ill patient: a meta-analysis of trials using the intention to treat principle. Intensive Care Med. 2005;31:12–23. doi: 10.1007/s00134-004-2511-2.
    1. Koretz RL, Avenell A, Lipman TO, et al. Does enteral nutrition affect clinical outcome? A systematic review of the randomized trials. Am J Gastroenterol. 2007;102:412–429. doi: 10.1111/j.1572-0241.2006.01024.x.
    1. Casaer MP, Mesotten D, Hermans G, et al. Early versus late parenteral nutrition in critically ill adults. N Engl J Med. 2011;365:506–517. doi: 10.1056/NEJMoa1102662.
    1. Beale RJ, Bryg DJ, Bihari DJ. Immunonutrition in the critically ill: a systematic review of clinical outcome. Crit Care Med. 1999;27:2799–2805. doi: 10.1097/00003246-199912000-00032.
    1. Heyland DK, Novak F, Drover JW, et al. Should immunonutrition become routine in critically ill patients? A systematic review of the evidence. JAMA. 2001;286:944–953. doi: 10.1001/jama.286.8.944.
    1. Montejo JC, Zarazaga A, Lopez-Martinez J, et al. Immunonutrition in the intensive care unit: a systematic review and consensus statement. Clin Nutr. 2003;22:221–233. doi: 10.1016/S0261-5614(03)00007-4.
    1. Marik PE, Zaloga GP. Immunonutrition in critically ill patients: a systematic review and analysis of the literature. Intensive Care Med. 2008;34:1980–1990. doi: 10.1007/s00134-008-1213-6.
    1. Kieft H, Roos AN, van Drunen JD, et al. Clinical outcome of immunonutrition in a heterogeneous intensive care population. Intensive Care Med. 2005;31:524–532. doi: 10.1007/s00134-005-2564-x.
    1. Tugrul S, Ozcan PE, Akinci IO, et al. The effects of immunonutrition on the development of nosocomial infections and on clinical outcome in critically ill patients [in Turkish] Ulus Travma Acil Cerrahi Derg. 2004;10:89–96.
    1. Radrizzani D, Bertolini G, Facchini R, et al. Early enteral immunonutrition vs. parenteral nutrition in critically ill patients without severe sepsis: a randomized clinical trial. Intensive Care Med. 2006;32:1191–1198. doi: 10.1007/s00134-006-0238-y.
    1. Bertolini G, Iapichino G, Radrizzani D, et al. Early enteral immunonutrition in patients with severe sepsis: results of an interim analysis of a randomized multicentre clinical trial. Intensive Care Med. 2003;29:834–840. doi: 10.1007/s00134-003-2019-1.
    1. Suchner U, Kuhn KS, Furst P. The scientific basis of immunonutrition. Proc Nutr Soc. 2000;59:553–563. doi: 10.1017/S0029665100000793.
    1. Santora R, Kozar RA. Molecular mechanisms of pharmaconutrients. J Surg Res. 2010;161:288–294. doi: 10.1016/j.jss.2009.06.024.
    1. Bower RH, Cerra FB, Bershadsky B, et al. Early enteral administration of a formula (Impact) supplemented with arginine, nucleotides, and fish oil in intensive care unit patients: results of a multicenter, prospective, randomized, clinical trial. Crit Care Med. 1995;23:436–449. doi: 10.1097/00003246-199503000-00006.
    1. Galban C, Montejo JC, Mesejo A, et al. An immune-enhancing enteral diet reduces mortality rate and episodes of bacteremia in septic intensive care unit patients. Crit Care Med. 2000;28:643–648. doi: 10.1097/00003246-200003000-00007.
    1. Caparros T, Lopez J, Grau T. Early enteral nutrition in critically ill patients with a high-protein diet enriched with arginine, fiber, and antioxidants compared with a standard high-protein diet: the effect on nosocomial infections and outcome. JPEN J Parenter Enteral Nutr. 2001;25:299–308. doi: 10.1177/0148607101025006299.
    1. Preiser JC, Berre PJ, Van Gossum A, et al. Metabolic effects of arginine addition to the enteral feeding of critically ill patients. JPEN J Parenter Enteral Nutr. 2001;25:182–187. doi: 10.1177/0148607101025004182.
    1. Novak F, Heyland DK, Avenell A, et al. Glutamine supplementation in serious illness: a systematic review of the evidence. Crit Care Med. 2002;30:2022–2029. doi: 10.1097/00003246-200209000-00011.
    1. Avenell A. Glutamine in critical care: current evidence from systematic reviews. Proc Nutr Soc. 2006;65:236–241. doi: 10.1079/PNS2006498.
    1. Jiang H, Chen W, Hu W, et al. The impact of glutamine-enhanced enteral nutrition on clinical outcome of patients with critical illness: a systematic review of randomized controlled trials (in Chinese) Zhonghua Shao Shang Za Zhi. 2009;25:325–330.
    1. Avenell A. Hot topics in parenteral nutrition: current evidence and ongoing trials on the use of glutamine in critically ill patients and patients undergoing surgery. Proc Nutr Soc. 2009;68:261–268. doi: 10.1017/S0029665109001372.
    1. Tian H, Wang KF, Wu TJ. Effect of total parenteral nutrition with supplementation of glutamine on the plasma diamine oxidase activity and d-lactate content in patients with multiple organ dysfunction syndrome (in Chinese) Zhongguo Wei Zhong Bing Ji Jiu Yi Xue. 2006;18:616–618.
    1. Cai GL, Yan J, Yu YH, et al. Influence of glutamine and growth hormone intensified nutrition support on immunomodulation in critically ill elderly patients (in Chinese) Zhongguo Wei Zhong Bing Ji Jiu Yi Xue. 2006;18:595–598.
    1. Grau T, Bonet A, Minambres E, et al. The effect of L-alanyl-l-glutamine dipeptide supplemented total parenteral nutrition on infectious morbidity and insulin sensitivity in critically ill patients. Crit Care Med. 2011;39:1263–1268. doi: 10.1097/CCM.0b013e31820eb774.
    1. Wernerman J, Kirketeig T, Andersson B, et al. Scandinavian glutamine trial: a pragmatic multi-centre randomised clinical trial of intensive care unit patients. Acta Anaesthesiol Scand. 2011;55:812–818. doi: 10.1111/j.1399-6576.2011.02453.x.
    1. Fuentes-Orozco C, Anaya-Prado R, Gonzalez-Ojeda A, et al. L-alanyl-l-glutamine-supplemented parenteral nutrition improves infectious morbidity in secondary peritonitis. Clin Nutr. 2004;23:13–21. doi: 10.1016/S0261-5614(03)00055-4.
    1. Beale RJ, Sherry T, Lei K, et al. Early enteral supplementation with key pharmaconutrients improves sequential organ failure assessment score in critically ill patients with sepsis: outcome of a randomized, controlled, double-blind trial. Crit Care Med. 2008;36:131–144. doi: 10.1097/01.CCM.0000297954.45251.A9.
    1. Trial of glutamine and antioxidant supplementation in critically ill patients (REDOXS).
    1. Pontes-Arruda A, Demichele S, Seth A, et al. The use of an inflammation-modulating diet in patients with acute lung injury or acute respiratory distress syndrome: a meta-analysis of outcome data. JPEN J Parenter Enteral Nutr. 2008;32:596–605. doi: 10.1177/0148607108324203.
    1. Pontes-Arruda A, Aragao AM, Albuquerque JD. Effects of enteral feeding with eicosapentaenoic acid, gamma-linolenic acid, and antioxidants in mechanically ventilated patients with severe sepsis and septic shock. Crit Care Med. 2006;34:2325–2333. doi: 10.1097/01.CCM.0000234033.65657.B6.
    1. Gadek JE, DeMichele SJ, Karlstad MD, et al. Effect of enteral feeding with eicosapentaenoic acid, gamma-linolenic acid, and antioxidants in patients with acute respiratory distress syndrome. Enteral Nutrition in ARDS Study Group. Crit Care Med. 1999;27:1409–1420. doi: 10.1097/00003246-199908000-00001.
    1. Singer P, Theilla M, Fisher H, et al. Benefit of an enteral diet enriched with eicosapentaenoic acid and gamma-linolenic acid in ventilated patients with acute lung injury. Crit Care Med. 2006;34:1033–1038. doi: 10.1097/01.CCM.0000206111.23629.0A.
    1. Pontes-Arruda A, Martins LF, de Lima SM, et al. Enteral nutrition with eicosapentaenoic acid, gamma-linolenic acid and antioxidants in the early treatment of sepsis: Results from a multicenter, prospective, randomized, double-blinded, controlled study: The INTERSEPT study. Crit Care. 2011;15:R144. doi: 10.1186/cc10267.
    1. Rice TW, Wheeler AP, Thompson BT, et al. Enteral omega-3 fatty acid, gamma-linolenic acid, and antioxidant supplementation in acute lung injury. JAMA. 2011;306:1574–1581. doi: 10.1001/jama.2011.1435.
    1. Stapleton RD, Martin TR, Weiss NS, et al. A phase II randomized placebo-controlled trial of omega-3 fatty acids for the treatment of acute lung injury. Crit Care Med. 2011;39:1655–1662. doi: 10.1097/CCM.0b013e318218669d.
    1. Grau-Carmona T, Moran-Garcia V, Garcia-de-Lorenzo A, et al. Effect of an enteral diet enriched with eicosapentaenoic acid, gamma-linolenic acid and anti-oxidants on the outcome of mechanically ventilated, critically ill, septic patients. Clin Nutr. 2011;30:578–584. doi: 10.1016/j.clnu.2011.03.004.
    1. Friesecke S, Lotze C, Kohler J, et al. Fish oil supplementation in the parenteral nutrition of critically ill medical patients: a randomised controlled trial. Intensive Care Med. 2008;34:1411–1420. doi: 10.1007/s00134-008-1072-1.
    1. Barbosa VM, Miles EA, Calhau C, et al. Effects of a fish oil containing lipid emulsion on plasma phospholipid fatty acids, inflammatory markers, and clinical outcomes in septic patients: a randomized, controlled clinical trial. Crit Care. 2010;14:R5. doi: 10.1186/cc8844.
    1. Gupta A, Govil D, Bhatnagar S, et al. Efficacy and safety of parenteral omega 3 fatty acids in ventilated patients with acute lung injury. Indian J Crit Care Med. 2011;15:108–113. doi: 10.4103/0972-5229.83019.
    1. Thompson BT, Cox PN, Antonelli M, et al. Challenges in end-of-life care in the ICU: statement of the 5th international consensus conference in critical care: Brussels, Belgium, April 2003: executive summary. Crit Care Med. 2004;32:1781–1784. doi: 10.1097/01.CCM.0000126895.66850.14.
    1. Sprung CL, Cohen SL, Sjokvist P, et al. End of life practices in European intensive care units: the Ethicus Study. JAMA. 2003;290:790–797. doi: 10.1001/jama.290.6.790.
    1. White DB, Engelberg RA, Wenrich MD, et al. The language of prognostication in the intensive care units. Med Decis Making. 2010;30:76–83. doi: 10.1177/0272989X08317012.
    1. Nelson JE, Bassett R, Boss RD, et al. Models for structuring a clinical initiative to enhance palliative care in the intensive care unit: a report from the IPAL-ICU Project (improving palliative care in the ICU) Crit Care Med. 2010;38:1765–1772. doi: 10.1097/CCM.0b013e3181e8ad23.
    1. Evans LR, Boyd EA, Malvar G, et al. Surrogate decision-makers’ perspectives on discussing prognosis in the face of uncertainty. Am J Respir Crit Care Med. 2009;179:48–53. doi: 10.1164/rccm.200806-969OC.
    1. Lee Char SJ, Evans LR, Malvar GL, et al. A randomized trial of two methods to disclose prognosis to surrogate decision makers in intensive care units. Am J Respir Crit Care Med. 2010;182:905–909. doi: 10.1164/rccm.201002-0262OC.
    1. Azoulay E, Metnizt B, Sprung CL, et al. End-of-life practices in 282 intensive care units: data from the SAPS 3 database. Int Care Med. 2009;35:623–630. doi: 10.1007/s00134-008-1310-6.
    1. Azoulay E, Timsit JF, Sprung CL, et al. Prevalence and factors of intensive care unit conflicts: the Conflicus study. A J Resp Crit Care Med. 2009;180:854–860.
    1. Bertolini G, Boffelli S, Malacarne P, et al. End-of-life decision making and quality of ICU performance: an observational study in 84 Italian units. Int Care Med. 2010;36:1495–1504. doi: 10.1007/s00134-010-1910-9.
    1. Detering KM, Hancock AD, Reade MC, et al. The impact of advance care planning on end of life care in elderly patients: randomised controlled trial. BMJ. 2010;340:c1345. doi: 10.1136/bmj.c1345.
    1. Marchare Delgado E, Callahan A, Paganelli G, et al. Multidisciplinary family meetings in the ICU facilitate end-of-life decision making. Am J Hosp Palliat Care. 2009;26:295–302. doi: 10.1177/1049909109333934.
    1. Lautrette A, Darmon M, Megarbane B, et al. A communication strategy and brochure for relatives of patients dying in the ICU. N Engl J Med. 2007;356:469–478. doi: 10.1056/NEJMoa063446.
    1. Norton SA, Hogan LA, Holloway RG, et al. Proactive palliative care in the medical intensive care unit: effect on length of stay for selected high-risk patients. Crit Care Med. 2007;35:1530–1535. doi: 10.1097/01.CCM.0000266533.06543.0C.
    1. Scheunemann LP, McDevitt M, Carson SS, et al. Randomized controlled trials of interventions to improve communication in intensive care: a systematic review. Chest. 2011;139:543–554. doi: 10.1378/chest.10-0595.
    1. Davidson J, Powers K, Hedayat K, et al. Clinical practice guidelines for support of the family in the patient-centered intensive care unit: american College of Critical Care Medicine Task Force. Crit Care Med. 2007;35:605–622. doi: 10.1097/01.CCM.0000254067.14607.EB.
    1. Curtis JR, Treece PD, Nielsen EL, et al. Integrating palliative and critical care: evaluation of a quality-improvement intervention. Am J Respir Crit Care Med. 2008;178:269–275. doi: 10.1164/rccm.200802-272OC.
    1. Odetola FO, Gebremariam A, Freed GL. Patient and hospital correlates of clinical outcomes and resource utilization in severe pediatric sepsis. Pediatrics. 2007;119:487–494. doi: 10.1542/peds.2006-2353.
    1. Typpo KV, Petersen NJ, Hallman DM, et al. Day 1 multiple organ dysfunction syndrome is associated with poor functional outcome and mortality in the pediatric intensive care unit. Pediatr Crit Care Med. 2009;10:562–570. doi: 10.1097/PCC.0b013e3181a64be1.
    1. Kissoon N, Carcillo J, Espinosa V, et al. Global sepsis initiative. Pediatr Crit Care Med. 2011;12:494–503. doi: 10.1097/PCC.0b013e318207096c.
    1. Goldstein B, Giroir B, Randolph A. International pediatric sepsis consensus conference: definitions for sepsis and organ dysfunction in pediatrics. Pediatr Crit Care Med. 2005;6:2–8. doi: 10.1097/01.PCC.0000149131.72248.E6.
    1. Kuch BA, Carcillo JA, Han YY, et al. Definitions of pediatric septic shock. Pediatr Crit Care Med. 2005;6:501. doi: 10.1097/01.PCC.0000168256.60790.6C.
    1. Cam BV, Tuan DT, Fonsmark L, et al. Randomized comparison of oxygen mask treatment vs nasal continuous positive airway pressure in dengue shock syndrome with acute respiratory failure. J Trop Pediatr. 2002;48:335–339. doi: 10.1093/tropej/48.6.335.
    1. Duke T, Frank D, Mgone J. Hypoxaemia in children with severe pneumonia in Papua New Guinea. Int J TB Lung Dis. 2000;5:511–519.
    1. Pollard AJ, Britto J, Nadel S, et al. Emergency management of meningococcal disease. Arch Dis Child. 1999;80:290–296. doi: 10.1136/adc.80.3.290.
    1. den Brinker M, Joosten KFM, Lime O, et al. Adrenal insufficiency in meningococcal sepsis: bioavailable cortisol levels and impact of interleukin-6 levels and intubation with etomidate on adrenal function and mortality. Clin Endocrinol Metab. 2005;90:5110–5117. doi: 10.1210/jc.2005-1107.
    1. Han YY, Carcillo JA, Dragotta MA, et al. Early reversal of pediatric-neonatal septic shock by community physicians is associated with improved outcome. Pediatrics. 2003;112:793–799. doi: 10.1542/peds.112.4.793.
    1. Carcillo JA, Kuch BA, Han YY, et al. Mortality and functional morbidity after use of PALS/APLS by community physicians. Pediatrics. 2009;124:500–508. doi: 10.1542/peds.2008-1967.
    1. Oliveira CF, Nogueira de Sá FR, Oliveira DS, et al. Time- and fluid-sensitive resuscitation for hemodynamic support of children in septic shock: barriers to the implementation of the American College of Critical Care Medicine/Pediatric Advanced Life Support Guidelines in a pediatric intensive care unit in a developing world. Pediatr Emerg Care. 2008;24:810–815. doi: 10.1097/PEC.0b013e31818e9f3a.
    1. Raimer PL, Han YY, Weber MS, et al. A normal capillary refill time of ≤2 seconds is associated with superior vena cava oxygen saturations of ≥70% J Pediatr. 2011;158:968–972. doi: 10.1016/j.jpeds.2010.11.062.
    1. Brierly J, Carcillo JA, Choong K, et al. Clinical practice parameters for hemodynamic support of pediatric and neonatal patients in septic shock: 2007 update from the American College of Critical Care Medicine. Crit Care Med. 2009;37:666–688. doi: 10.1097/CCM.0b013e31819323c6.
    1. de Oliveira CF, de Oliveira DS, Gottschald AF, et al. ACCM/PALS haemodynamic support guidelines for paediatric septic shock: an outcomes comparison with and without monitoring central venous oxygen saturation. Intensive Care Med. 2008;34:1065–1075. doi: 10.1007/s00134-008-1085-9.
    1. Inwald DP, Tasker RC, Peters MJ, et al. Paediatric Intensive Care Society sepsis audit. Arch Dis Child. 2009;94:348–353. doi: 10.1136/adc.2008.153064.
    1. Malbrain ML, De laet I, Cheatham M (2007) Consensus conference definitions and recommendations on intra-abdominal hypertension (IAH) and the abdominal compartment syndrome (ACS): the long road to the final publications, how did we get there? Acta Clin Belg (Suppl):54–59
    1. Cheatham ML, Malbrain ML, Kirkpatrick A, et al. Results from the international conference of experts on intra-abdominal hypertension and abdominal compartment syndrome—part II: recommendations. Intensive Care Med. 2007;33:951–962. doi: 10.1007/s00134-007-0592-4.
    1. Rollins MD, Vogler SA, Mills MK, et al. Decompressive laparotomy for abdominal compartment syndrome in children: before it is too late. J Pediatr Surg. 2010;45:1324–1329. doi: 10.1016/j.jpedsurg.2010.08.038.
    1. Amado VM, Vilela GP, Queiroz A, et al. Effect of a quality improvement intervention to decrease delays in antibiotic delivery in pediatric febrile neutropenia: A pilot study. J Crit Care. 2011;26:103–103.
    1. Cordery RJ, Roberts CH, Cooper SJ, et al. Evaluation of risk factors for the acquisition of bloodstream infections with extended-spectrum beta-lactamase-producing Escherichia coli and Klebsiella species in the intensive care unit: antibiotic management and clinical outcome. J Hosp Infect. 2008;68:108–115. doi: 10.1016/j.jhin.2007.10.011.
    1. Ardura MI, Mejías A, Katz KS, et al. Daptomycin therapy for invasive gram-positive bacterial infections in children. Pediatr Infect Dis J. 2007;26:1128–1132. doi: 10.1097/INF.0b013e31814523f8.
    1. Corey AL, Snyder S. Antibiotics in 30 minutes or less for febrile neutropenic patients: a quality control measure in a new hospital. J Pediatr Oncol Nurs. 2008;25:208–212. doi: 10.1177/1043454208319971.
    1. Russell NE, Pachorek RE. Clindamycin in the treatment of streptococcal and staphylococcal toxic shock syndromes. Ann Pharmacother. 2000;34:936–939. doi: 10.1345/aph.19095.
    1. Nathwani D, Morgan M, Masterton RG, et al. Guidelines for UK practice for the diagnosis and management of methicillin-resistant Staphylococcus aureus (MRSA) infections presenting in the community. J Antimicrob Chemother. 2008;61:976–994. doi: 10.1093/jac/dkn096.
    1. Gemmell CG, Edwards DI, Fraise AP, et al. Guidelines for the prophylaxis and treatment of methicillin-resistant Staphylococcus aureus (MRSA) infections in the UK. J Antimicrob Chemother. 2006;57:589–608. doi: 10.1093/jac/dkl017.
    1. Cawley MJ, Briggs M, Haith LR, Jr, et al. Intravenous immunoglobulin as adjunctive treatment for streptococcal toxic shock syndrome associated with necrotizing fasciitis: case report and review. Pharmacotherapy. 1999;19:1094–1098. doi: 10.1592/phco.19.13.1094.31589.
    1. Rodríguez-Nuñez A, Dosil-Gallardo S, Jordan I, et al. Clinical characteristics of children with group A streptococcal toxic shock syndrome admitted to pediatric intensive care units. Eur J Pediatr. 2011;170:639–644. doi: 10.1007/s00431-010-1337-x.
    1. Paganini HR, Della Latta P, Soto A, et al. Community-acquired Staphylococcus aureus bacteremia: 17 years of experience in Argentine children (in Spanish) Arch Argent Pediatr. 2010;108:311–317.
    1. Tilanus AM, de Geus HR, Rijnders BJ, et al. Severe group A streptococcal toxic shock syndrome presenting as primary peritonitis: a case report and brief review of the literature. Int J Infect Dis. 2010;14(Suppl 3):e208–e212. doi: 10.1016/j.ijid.2009.07.014.
    1. Newland JG, Kearns GL. Treatment strategies for methicillin-resistant Staphylococcus aureus infections in pediatrics. Paediatr Drugs. 2008;10:367–378. doi: 10.2165/0148581-200810060-00004.
    1. Barie PS, Williams MD, McCollam JS, et al. Benefit/risk profile of drotrecogin alfa (activated) in surgical patients with severe sepsis. Am J Surg. 2004;188:212–220. doi: 10.1016/j.amjsurg.2004.06.008.
    1. Barie PS, Hydo LJ, Shou J, et al. Efficacy and safety of drotrecogin alfa (activated) for the therapy of surgical patients with severe sepsis. Surg Infect. 2006;7(Suppl 2):S77–S80.
    1. Marshall JC, Maier RV, Jimenez M, et al. Source control in the management of severe sepsis and septic shock: an evidence-based review. Crit Care Med. 2004;32(Suppl 11):S513–S526. doi: 10.1097/01.CCM.0000143119.41916.5D.
    1. Penington AJ, Craft RO, Tilkorn DJ. Plastic surgery management of soft tissue loss in meningococcal septicemia: experience of the Melbourne Royal Children’s Hospital. Ann Plast Surg. 2007;58:308–314. doi: 10.1097/01.sap.0000237642.46000.e6.
    1. Wheeler JS, Anderson BJ, De Chalain TM. Surgical interventions in children with meningococcal purpura fulminans: a review of 117 procedures in 21 children. J Pediatr Surg. 2003;38:597–603. doi: 10.1053/jpsu.2003.50130.
    1. Jackson MA, Colombo J, Boldrey A. Streptococcal fasciitis with toxic shock syndrome in the pediatric patient. Orthop Nurs. 2003;22:4–8. doi: 10.1097/00006416-200301000-00004.
    1. Xiao-Wu W, Herndon DN, Spies M, et al. Effects of delayed wound excision and grafting in severely burned children. Arch Surg. 2002;137:1049–1054. doi: 10.1001/archsurg.137.9.1049.
    1. Haecker FM, Berger D, Schumacher U, et al. Peritonitis in childhood: aspects of pathogenesis and therapy. Pediatr Surg Int. 2000;16:182–188. doi: 10.1007/s003830050719.
    1. Gwynne-Jones DP, Stott NS. Community-acquired methicillin-resistant Staphylococcus aureus: a cause of musculoskeletal sepsis in children. J Pediatr Orthop. 1999;19:413–416.
    1. Wu MH, Tseng YL, Lin MY, et al. Surgical treatment of pediatric lung abscess. Pediatr Surg Int. 1997;12:293–295. doi: 10.1007/BF01372153.
    1. Murphy JJ, Granger R, Blair GK, et al. Necrotizing fasciitis in childhood. J Pediatr Surg. 1995;30:1131–1134. doi: 10.1016/0022-3468(95)90004-7.
    1. Jaber MR, Olafsson S, Fung WL, et al. Clinical review of the management of fulminant clostridium difficile infection. Am J Gastroenterol. 2008;103:3195–3203. doi: 10.1111/j.1572-0241.2008.02198.x.
    1. Ananthakrishnan AN. Clostridium difficile infection: epidemiology, risk factors and management. Nat Rev Gastroenterol Hepatol. 2011;8:17–26. doi: 10.1038/nrgastro.2010.190.
    1. Olivas AD, Umanskiy K, Zuckerbraun B, et al. Avoiding colectomy during surgical management of fulminant Clostridium difficile colitis. Surg Infect. 2010;11:299–305. doi: 10.1089/sur.2010.026.
    1. Ngo NT, Cao XT, Kneen R, et al. Acute management of dengue shock syndrome: a randomized double-blind comparison of 4 intravenous fluid regimens in the first hour. Clin Infect Dis. 2001;32:204–213. doi: 10.1086/318479.
    1. Willis BA, Dung NM, Loan HT, et al. Comparison of three fluid solutions for resuscitation in dengue shock syndrome. N Engl J Med. 2005;353:877–889. doi: 10.1056/NEJMoa044057.
    1. Dung NM, Day NP, Tam DT, et al. Fluid replacement in dengue shock syndrome: a randomized, double-blind comparison of four intravenous-fluid regimens. Clin Infect Dis. 1999;29:787–794. doi: 10.1086/520435.
    1. Booy R, Habibi P, Nadel S, et al. Reduction in case fatality rate from meningococcal disease associated with improved healthcare delivery. Arch Dis Child. 2001;85:386–390. doi: 10.1136/adc.85.5.386.
    1. Maat M, Buysse CM, Emonts M, et al. Improved survival of children with sepsis and purpura: effects of age, gender and era. Crit Care. 2007;11:R112. doi: 10.1186/cc6161.
    1. Cruz AT, Perry AM, Williams EA, et al. Implementation of goal-directed therapy for children with suspected sepsis in the emergency department. Pediatrics. 2011;127:e758–e766. doi: 10.1542/peds.2010-2895.
    1. Kanter RK, Zimmerman JJ, Strauss RH, et al. Pediatric emergency intravenous access: evaluation of a protocol. Am J Dis Child. 1986;140:132–134.
    1. Carcillo JA, Davis AL, Zaritsky A. Role of early fluid resuscitation in pediatric septic shock. JAMA. 1991;266:1242–1245. doi: 10.1001/jama.1991.03470090076035.
    1. Ranjit S, Kissoon N, Jayakumar I. Aggressive management of dengue shock syndrome may decrease mortality rate: a suggested protocol. Pediatr Crit Care Med. 2005;6:412–419. doi: 10.1097/.
    1. Akech S, Ledermann N, Maitland K. Choice of fluids for resuscitation in children with severe infection and shock. Systematic review. BMJ. 2010;341:c4416. doi: 10.1136/bmj.c4416.
    1. Santhanam I, Sangareddi S, Venkataraman S, et al. A prospective randomized controlled study of two fluid regimens in the initial management of septic shock in the emergency department. Pediatr Emerg Care. 2008;24:647–655. doi: 10.1097/PEC.0b013e31818844cf.
    1. Ninis N, Phillips C, Bailey L, et al. The role of healthcare delivery in the outcome of meningococcal disease in children: case-control study of fatal and non-fatal meningococcal disease in children. BMJ. 2005;330:1475. doi: 10.1136/bmj.330.7506.1475.
    1. Thompson MJ, Ninis N, Perera R, et al. Clinical recognition of meningococcal disease in children and adolescents. Lancet. 2006;367:397–403. doi: 10.1016/S0140-6736(06)67932-4.
    1. Ceneviva G, Paschall JA, Maffei F, et al. Hemodynamic support in fluid-refractory pediatric septic shock. Pediatrics. 1998;102:e19. doi: 10.1542/peds.102.2.e19.
    1. Choong K, Bohn D, Fraser DD, et al. Vasopressin in pediatric vasodilatory shock: a multicenter randomized controlled trial. Am J Respir Crit Care Med. 2009;180:632–639. doi: 10.1164/rccm.200902-0221OC.
    1. Yildizdas D, Yapicioglu H, Celik U, et al. Terlipressin as a rescue therapy for catecholamine-resistant septic shock in children. Intensive Care Med. 2008;34:511–517. doi: 10.1007/s00134-007-0971-x.
    1. Rodriguez-Nunez A, Lopez-Herce J, Gil-Anton J, et al. Tescue treatment with terlipressin in children with refractory septic shock: a clinical study. Crit Care. 2006;10:R20. doi: 10.1186/cc3984.
    1. Rodríguez-Núñez A, Oulego-Erroz I, Gil-Antón J, et al. Continuous terlipressin infusion as rescue treatment in a case series of children with refractory septic shock. Ann Pharmacother. 2010;44:1545–1553. doi: 10.1345/aph.1P254.
    1. Keeley SR, Bohn DJ. The use of inotropic and afterload-reducing agents in neonates. Clin Perinatol. 1988;15:467–489.
    1. Barton P, Garcia J, Kouatli A, et al. Hemodynamic effects of i.v. milrinone lactate in pediatric patients with septic shock: a prospective, double-blinded, randomized, placebo-controlled, interventional study. Chest. 1996;109:1302–1312. doi: 10.1378/chest.109.5.1302.
    1. Lindsay CA, Barton P, Lawless S, et al. Pharmacokinetics and pharmacodynamics of milrinone lactate in pediatric patients with septic shock. J Pediatr. 1998;132:329–334. doi: 10.1016/S0022-3476(98)70454-8.
    1. Irazuzta JE, Pretzlaff RK, Rowin ME. Amrinone in pediatric refractory septic shock: an open-label pharmacodynamic study. Pediatr Crit Care Med. 2001;2:24–28. doi: 10.1097/00130478-200101000-00006.
    1. Powell KR, Sugarman LI, Eskenazi AE, et al. Normalization of plasma arginine vasopressin concentrations when children with meningitis are given maintenance plus replacement fluid therapy. J Pediatr. 1991;117:515–522.
    1. Ringe HI, Varnholt V, Gaedicke G. Cardiac rescue with enoximone in volume and catecholamine refractory septic shock. Pediatr Crit Care Med. 2003;4:471–475. doi: 10.1097/01.PCC.0000074275.61913.72.
    1. Morelli A, Donati A, Ertmer C, et al. Levosimendan for resuscitating the microcirculation in patients with septic shock: a randomized controlled study. Crit Care. 2010;14:R232. doi: 10.1186/cc9387.
    1. Namachivayam P, Crossland DS, Butt WW, et al. Early experience with Levosimendan in children with ventricular dysfunction. Pediatr Crit Care Med. 2006;7:445–448. doi: 10.1097/01.PCC.0000235251.14491.75.
    1. Magliola R, Moreno G, Vassallo JC, et al. Levosimendan, a new inotropic drug: experience in children with acute heart failure (in Spanish) Arch Argent Pediatr. 2009;107:139–145.
    1. Harris E, Schulzke SM, Patole SK. Pentoxifylline in preterm neonates: a systematic review. Paediatr Drugs. 2010;12:301–311. doi: 10.2165/11532600-000000000-00000.
    1. Meyer DM, Jessen ME. Results of extracorporeal membrane oxygenation in children with sepsis: the extracorporeal Life Support Organization. Ann Thorac Surg. 1997;63:756–761. doi: 10.1016/S0003-4975(96)01272-6.
    1. Goldman AP, Kerr SJ, Butt W, et al. Extracorporeal support for intractable cardiorespiratory failure due to meningococcal disease. Lancet. 1997;349:466–469. doi: 10.1016/S0140-6736(96)12106-1.
    1. Skinner SC, Iocono JA, Ballard HO, et al. Improved survival in venovenous vs venoarterial extracorporeal membrane oxygenation for pediatric noncardiac sepsis patients: a study of the Extracorporeal Life Support registry. J Ped Surg. 2012;47:63–67.
    1. Domico MB, Ridout DA, Bronicki R, et al. The impact of mechanical ventilation time before initiation of extracorporeal life support on survival in pediatric respiratory failure: a review of the extracorporeal life support registry. Pediatr Crit Care Med. 2012;13:16–21.
    1. Bartlett RH. Extracorporeal support for septic shock. Pediatr Crit Care Med. 2007;8:498–499.
    1. Maclaren G, Butt W, Best D, et al. Central extracorporeal membrane oxygenation for refractory pediatric septic shock. Pediatr Crit Care Med. 2011;12:133–136. doi: 10.1097/PCC.0b013e3181e2a4a1.
    1. Flagg A, Danziger-Isakov L, Foster C, et al. Novel 2009 H1N1 influenza virus infection requiring extracorporeal membrane oxygenation in a pediatric heart transplant recipient. J Heart Lung Transpl. 2010;29:582–584. doi: 10.1016/j.healun.2009.11.600.
    1. Kumar A, Zarychanski R, Pinto R, et al. Critically ill patients with 2009 influenza A (H1N1) infection in Canada. JAMA. 2009;302:1872–1879. doi: 10.1001/jama.2009.1496.
    1. Pizarro CF, Troster EJ, Damiani D, et al. Absolute and relative adrenal insufficiency in children with septic shock. Crit Care Med. 2005;33:855–859. doi: 10.1097/01.CCM.0000159854.23324.84.
    1. Riordan FA, Thomson AP, Ratcliffe JM, et al. Admission cortisol and adrenocorticotrophic hormone levels in children with meningococcal disease: evidence of adrenal insufficiency? Crit Care Med. 1999;27:2257–2261. doi: 10.1097/00003246-199910000-00032.
    1. De Kleijn ED, Joosten KF, Van Rijn B, et al. Low serum cortisol in combination with high adrenocorticotrophic hormone concentrations is associated with poor outcome in children with severe meningococcal disease. Pediatr Infect Dis J. 2002;21:330–336. doi: 10.1097/00006454-200204000-00013.
    1. Markovitz BP, Goodman DM, Watson S, et al. A retrospective cohort study of prognostic factors associated with outcome in pediatric severe sepsis: what is the role of steroids? Pediatr Crit Care Med. 2005;6:270–274. doi: 10.1097/01.PCC.0000160596.31238.72.
    1. Pizarro CF, Troster EJ. Adrenal function in sepsis and septic shock. J Pediatr (Rio J) 2007;83(Suppl 5):S155–S162.
    1. Zimmerman JJ, Williams MD. Adjunctive corticosteroid therapy in pediatric severe sepsis: observations from the RESOLVE study. Pediatr Crit Care Med. 2011;12:2–8. doi: 10.1097/PCC.0b013e3181d903f6.
    1. Lacroix J, Hebert PC, Hutchison JS, et al. Transfusion strategies for patients in pediatric intensive care units. N Engl J Med. 2007;256:1609–1619. doi: 10.1056/NEJMoa066240.
    1. Karam O, Tucci M, Ducruet T, et al. Ted blood cell transfusion thresholds in pediatric patients with sepsis. Pediatr Crit Care Med. 2011;12:512–518. doi: 10.1097/PCC.0b013e3181fe344b.
    1. Church GD, Matthay MA, Liu K, et al. Blood product transfusions and clinical outcomes in pediatric patients with acute lung injury. Pediatr Crit Care Med. 2009;10:297–302. doi: 10.1097/PCC.0b013e3181988952.
    1. López-Herce Cid J, Bustinza Arriortúa A, Alcaraz Romero A, et al. Treatment of septic shock with continuous plasma filtration and hemodiafiltration (in Spanish) An Pediatr. 2003;59:491–496. doi: 10.1157/13053373.
    1. Stegmayr BG, Banga R, Berggren L, et al. Plasma exchange as rescue therapy in multiple organ failure including acute renal failure. Crit Care Med. 2003;31:1730–1736. doi: 10.1097/01.CCM.0000064742.00981.14.
    1. El-Nawawy A, Abbassy AA, El-Bordiny M, et al. Evaluation of early detection and management of disseminated intravascular coagulation among Alexandria University pediatric intensive care patients. J Trop Pediatr. 2004;50:339–347. doi: 10.1093/tropej/50.6.339.
    1. Campanelli A, Kaya G, Ozsahin AH, et al. Purpura fulminans in a child as a complication of chicken pox infection. Dermatology. 2004;208:262–264. doi: 10.1159/000077315.
    1. Muntean W. Fresh frozen plasma in the pediatric age group and in congenital coagulation factor deficiency. Thromb Res. 2002;107(Suppl 1):S29–S32. doi: 10.1016/S0049-3848(02)00149-4.
    1. Sánchez Miralles A, Reig Sáenz R, Marco Vera P, et al. Abnormalities in coagulation and fibrinolysis in septic shock with purpura (in Spanish) An Esp Pediatr. 2002;56:99–100.
    1. Hazelzet JA, Risseeuw-Appel IM, Kornelisse RF, et al. Age-related differences in outcome and severity of DIC in children with septic shock and purpura. Thromb Haemost. 1996;76:932–938.
    1. Churchwell KB, McManus ML, Kent P, et al. Intensive blood and plasma exchange for treatment of coagulopathy in meningococcemia. J Clin Apher. 1995;10:171–177. doi: 10.1002/jca.2920100403.
    1. Ala FA, Greaves M, Jones J, et al. Guidelines for the use of fresh frozen plasma. British Committee for Standards in Haematology, Working Party of the Blood Transfusion Task Force. Curr Vasc Pharmacol. 2009;7:110–119. doi: 10.2174/157016109787455671.
    1. Meyer B, Hellstern P. Recommendations for the use of therapeutic plasma. Semin Nephrol. 2008;28:447–456. doi: 10.1016/j.semnephrol.2008.05.004.
    1. Fortenberry JD. Pediatric critical care management of septic shock prior to acute kidney injury and renal replacement therapy. Semin Nephrol. 2008;28:447–456. doi: 10.1016/j.semnephrol.2008.05.004.
    1. O’Shaughnessy DF, Atterbury C, Bolton M, et al. British Committee for Standards in Haematology, Blood Transfusion Task Force. Practical guidelines for the clinical use of plasma. Thromb Res. 2002;107(Suppl 1):S53–S57.
    1. Muntean W, Schramm W, Seifried E, et al. Guideline for the use of fresh-frozen plasma. Medical Directors Advisory Committee, National Blood Transfusion Council. S Afr Med J. 1998;88:1344–1347.
    1. Nguyen TC, Han YY. Plasma exchange therapy for thrombotic microangiopathies. Organogenesis. 2011;1:28–31. doi: 10.4161/org.7.1.14027.
    1. van Deuren M, Brandtzaeg P, van der Meer JW. Update on meningococcal disease with emphasis on pathogenesis and clinical management. Clin Microbiol Rev. 2000;13:144–166. doi: 10.1128/CMR.13.1.144-166.2000.
    1. Scharfman WB, Tillotson JR, Taft EG, et al. Plasmapheresis for meningococcemia with disseminated intravascular coagulation. N Engl J Med. 1979;300:1277–1278.
    1. van Deuren M, Santman FW, van Dalen R, et al. Plasma and whole blood exchange in meningococcal sepsis. Clin Infect Dis. 1992;15:424–430. doi: 10.1093/clind/15.3.424.
    1. Bjorvatn B, Bjertnaes L, Fadnes HO, et al. Meningococcal septicaemia treated with combined plasmapheresis and leucapheresis or with blood exchange. Br Med J. 1984;288:439–441. doi: 10.1136/bmj.288.6415.439.
    1. Brandtzaeg P, Sirnes K, Folsland B, et al. Plasmapheresis in the treatment of severe meningococcal or pneumococcal septicaemia with DIC and fibrinolysis: preliminary data on eight patients. Scand J Clin Lab Invest. 1985;178(Suppl):53–55.
    1. Drapkin MS, Wisch JS, Gelfand JA, et al. Plasmapheresis for fulminant meningococcemia. Pediatr Infect Dis J. 1989;8:399–400. doi: 10.1097/00006454-198906000-00015.
    1. Schott U, Bjorsell-Ostling E. Sonoclot coagulation analysis and plasma exchange in a case of meningococcal septicaemia. Can J Anaesth. 1995;42:64–68. doi: 10.1007/BF03010573.
    1. Mok Q, Butt W. The outcome of children admitted to intensive care with meningococcal septicaemia. Intensive Care Med. 1996;22:259–263. doi: 10.1007/BF01712247.
    1. Kumar A, Kanagasundaram NS, Collyns TA, et al. Plasma exchange and haemodiafiltration in fulminant meningococcal sepsis. Nephrol Dial Transpl. 1998;13:484–487. doi: 10.1093/oxfordjournals.ndt.a027853.
    1. Muntean C, Bloodworth LL, Korn TH. Antithrombin concentrate with plasma exchange in purpura fulminans. Pediatr Crit Care Med. 2000;1:84–87. doi: 10.1097/00130478-200007000-00016.
    1. Busund R, Koukline V, Utrobin U, et al. Plasmapheresis in severe sepsis and septic shock: a prospective, randomised, controlled trial. Intensive Care Med. 2002;28:1434–1439. doi: 10.1007/s00134-002-1410-7.
    1. Randolph AG. Management of acute lung injury and acute respiratory distress syndrome in children. Crit Care Med. 2009;37:2448–2454. doi: 10.1097/CCM.0b013e3181be7b72.
    1. Krishnan J, Morrison W. Airway pressure release ventilation: a pediatric case series. Pediatr Pulmonol. 2007;42:83–88. doi: 10.1002/ppul.20550.
    1. Ten IS, Anderson MR. Is high-frequency ventilation more beneficial than low-tidal volume conventional ventilation? Respir Care Clin N Am. 2006;12:437–451.
    1. Rotta AT, Steinhorn DM. Is permissive hypercapnia a beneficial strategy for pediatric acute lung injury? Respir Care Clin N Am. 2006;12:371–387.
    1. Ben Jaballah N, Khaldi A, Mnif K, et al. High-frequency oscillatory ventilation in pediatric patients with acute respiratory failure. Pediatr Crit Care Med. 2006;7:362–367. doi: 10.1097/01.PCC.0000227108.38119.2E.
    1. Kam PC, Cardone D. Propofol infusion syndrome. Anaesthesia. 2007;62:690–701. doi: 10.1111/j.1365-2044.2007.05055.x.
    1. Parke TJ, Stevens JE, Rice AS, et al. Metabolic acidosis and fatal myocardial failure after propofol infusion in children: five case reports. BMJ. 1992;305:613–616. doi: 10.1136/bmj.305.6854.613.
    1. den Brinker M, Hokken-Koelega AC, Hazelzet JA, et al. One single dose of etomidate negatively influences adrenocortical performance for at least 24 h in children with meningococcal sepsis. Intensive Care Med. 2008;34:163–168. doi: 10.1007/s00134-007-0836-3.
    1. Su F, Hammer GB. Dexmedetomidine: pediatric pharmacology, clinical uses and safety. Expert Opin Drug Saf. 2011;10:55–66. doi: 10.1517/14740338.2010.512609.
    1. Carcillo JA, Doughty L, Kofos D, et al. Cytochrome P450 mediated-drug metabolism is reduced in children with sepsis-induced multiple organ failure. Intensive Care Med. 2003;29:980–984.
    1. Branco RG, Garcia PC, Piva JP, et al. Glucose level and risk of mortality in pediatric septic shock. Pediatr Crit Care Med. 2005;6:470–472. doi: 10.1097/01.PCC.0000161284.96739.3A.
    1. Faustino EV, Apkon M. Persistent hyperglycemia in critically ill children. J Pediatr. 2005;146:30–34. doi: 10.1016/j.jpeds.2004.08.076.
    1. Jeschke MG, Kulp GA, Kraft R, et al. Intensive insulin therapy in severely burned pediatric patients: a prospective randomized trial. Am J Respir Crit Care Med. 2010;182:351–359. doi: 10.1164/rccm.201002-0190OC.
    1. Day KM, Haub N, Betts H, et al. Hyperglycemia is associated with morbidity in critically ill children with meningococcal sepsis. Pediatr Crit Care Med. 2008;9:636–640. doi: 10.1097/PCC.0b013e31818d350b.
    1. Garcia Branco R, Tasker RC, Ramos Garcia PC, et al. Glycemic control and insulin therapy in sepsis and critical illness. J Pediatr (Rio J) 2007;83(Suppl 5):S128–S136.
    1. Verhoeven JJ, den Brinker M, Hokken-Koelega AC, et al. Pathophysiological aspects of hyperglycemia in children with meningococcal sepsis and septic shock: a prospective, observational cohort study. Crit Care. 2011;15:R44. doi: 10.1186/cc10006.
    1. Vlasselaers D, Milants I, Desmet L, et al. Intensive insulin therapy for patients in paediatric intensive care: a prospective, randomised controlled study. Lancet. 2009;373:547–556. doi: 10.1016/S0140-6736(09)60044-1.
    1. Foland JA, Fortenberry JD, Warshaw BL, et al. Fluid overload before continuous hemofiltration and survival in critically ill children: a retrospective analysis. Crit Care Med. 2004;32:1771–1776. doi: 10.1097/01.CCM.0000132897.52737.49.
    1. Santiago MJ, López-Herce J, Urbano J, et al. Clinical course and mortality risk factors in critically ill children requiring continuous renal replacement therapy. Intensive Care Med. 2010;36:843–849. doi: 10.1007/s00134-010-1858-9.
    1. Brophy PD. Renal supportive therapy for pediatric acute kidney injury in the setting of multiorgan dysfunction syndrome/sepsis. Semin Nephrol. 2008;28:457–469. doi: 10.1016/j.semnephrol.2008.05.005.
    1. Krafte-Jacobs B, Sivit CJ, Mejia R, et al. Catheter-related thrombosis in critically ill children: comparison of catheters with and without heparin bonding. J Pediatr. 1995;126:50–54. doi: 10.1016/S0022-3476(95)70499-X.
    1. Pierce CM, Wade A, Mok Q. Heparin-bonded central venous lines reduce thrombotic and infective complications in critically ill children. Intensive Care Med. 2000;26:967–972. doi: 10.1007/s001340051289.
    1. Chaïbou M, Tucci M, Dugas MA, et al. Clinically significant upper gastrointestinal bleeding acquired in a pediatric intensive care unit: a prospective study. Pediatrics. 1998;102:933–938. doi: 10.1542/peds.102.4.933.
    1. Gauvin F, Dugas M, Chaïbou M, et al. The impact of clinically significant upper gastrointestinal bleeding in a pediatric intensive care unit. Pediatr Crit Care Med. 2001;2:294–298. doi: 10.1097/00130478-200110000-00002.
    1. Sheridan RL, Yu YM, Prelack K, et al. Maximal parenteral glucose oxidation in hypermetabolic young children: a stable isotope study. JPEN J Parenter Enteral Nutr. 1998;22:212–216. doi: 10.1177/0148607198022004212.

Source: PubMed

3
Předplatit