Brain temperature and its fundamental properties: a review for clinical neuroscientists

Huan Wang, Bonnie Wang, Kieran P Normoyle, Kevin Jackson, Kevin Spitler, Matthew F Sharrock, Claire M Miller, Catherine Best, Daniel Llano, Rose Du, Huan Wang, Bonnie Wang, Kieran P Normoyle, Kevin Jackson, Kevin Spitler, Matthew F Sharrock, Claire M Miller, Catherine Best, Daniel Llano, Rose Du

Abstract

Brain temperature, as an independent therapeutic target variable, has received increasingly intense clinical attention. To date, brain hypothermia represents the most potent neuroprotectant in laboratory studies. Although the impact of brain temperature is prevalent in a number of common human diseases including: head trauma, stroke, multiple sclerosis, epilepsy, mood disorders, headaches, and neurodegenerative disorders, it is evident and well recognized that the therapeutic application of induced hypothermia is limited to a few highly selected clinical conditions such as cardiac arrest and hypoxic ischemic neonatal encephalopathy. Efforts to understand the fundamental aspects of brain temperature regulation are therefore critical for the development of safe, effective, and pragmatic clinical treatments for patients with brain injuries. Although centrally-mediated mechanisms to maintain a stable body temperature are relatively well established, very little is clinically known about brain temperature's spatial and temporal distribution, its physiological and pathological fluctuations, and the mechanism underlying brain thermal homeostasis. The human brain, a metabolically "expensive" organ with intense heat production, is sensitive to fluctuations in temperature with regards to its functional activity and energy efficiency. In this review, we discuss several critical aspects concerning the fundamental properties of brain temperature from a clinical perspective.

Keywords: brain; cerebral blood flow; hyperthermia; hypothermia; temperature.

Figures

Figure 1
Figure 1
Thermal map of the brain. The results of measurements of the temperature difference between arterial blood and 100 brain and subarachnoid sites in 16 monkeys during 347 experiments. Values expressed are Ti–Ta temperature of intracranial site minus the temperature of the aortic arterial blood measured simultaneously, and are all positive values). The major regions which have been studied in the primate brain have been placed on two representative frontal sections, A, frontal 14.5 and B, front 0.3. Values are expressed to the nearest 0.1 C. Reprinted with permission from The American Journal of Physiology, Hayward and Baker (1969).
Figure 2
Figure 2
Local brain temperature change during activity and active cooling. Example studies documenting localized phasic temperature changes after an increase in activity or a stimulus presentation (plotted over red background) or to external cooling (plotted over blue background). Brief experiment description, species, and brain area written inside oval and reference displayed on opposite side of abscissa.

References

    1. Abbott B. C., Hill A. V., Howarth J. V. (1958). The positive and negative heat production associated with a nerve impulse. Proc. R. Soc. Lond. B Biol. Sci. 148, 149–187 10.1098/rspb.1958.0012
    1. Abrahamson E. E., Ikonomovic M. D., Ciallella J. R., Hope C. E., Paljug W. R., Isanski B. A., et al. (2006). Caspase inhibition therapy abolishes brain trauma-induced increases in Abeta peptide: implications for clinical outcome. Exp. Neurol. 197, 437–450 10.1016/j.expneurol.2005.10.011
    1. Aihara H., Okada Y., Tamaki N. (2001). The effects of cooling and rewarming on the neuronal activity of pyramidal neurons in guinea pig hippocampal slices. Brain Res. 893, 36–45 10.1016/S0006-8993(00)03285-6
    1. Andalman A. S., Foerster J. N., Fee M. S. (2011). Control of vocal and respiratory patterns in birdsong: dissection of forebrain and brainstem mechanisms using temperature. PLoS ONE 6:e25461 10.1371/journal.pone.0025461
    1. Andersen P., Moser E. I. (1995). Brain temperature and hippocampal function. Hippocampus 5, 491–498 10.1002/hipo.450050602
    1. Andrews Z. B., Diano S., Horvath T. L. (2005). Mitochondrial uncoupling proteins in the CNS: in support of function and survival. Nat. Rev. Neurosci. 6, 829–840 10.1038/nrn1767
    1. Aronov D., Fee M. S. (2012). Natural changes in brain temperature underlie variations in song tempo during a mating behavior. PLoS ONE 7:e47856 10.1371/journal.pone.0047856
    1. Attwell D., Buchan A. M., Charpak S., Lauritzen M., Macvicar B. A., Newman E. A. (2010). Glial and neuronal control of brain blood flow. Nature 468, 232–243 10.1038/nature09613
    1. Bartnik-Olson B. L., Harris N. G., Shijo K., Sutton R. L. (2013). Insights into the metabolic response to traumatic brain injury as revealed by C NMR spectroscopy. Front. Neuroenergetics 5:8 10.3389/fnene.2013.00008
    1. Bartolome F., Wu H. C., Burchell V. S., Preza E., Wray S., Mahoney C. J., et al. (2013). Pathogenic VCP mutations induce mitochondrial uncoupling and reduced ATP levels. Neuron 78, 57–64 10.1016/j.neuron.2013.02.028
    1. Bechtold D. A., Brown I. R. (2003). Induction of Hsp27 and Hsp32 stress proteins and vimentin in glial cells of the rat hippocampus following hyperthermia. Neurochem. Res. 28, 1163–1173 10.1023/A:1024268126310
    1. Benita M., Conde H. (1972). Effects of local cooling upon conduction and synaptic transmission. Brain Res. 36, 133–151 10.1016/0006-8993(72)90771-8
    1. Bernard S. A., Gray T. W., Buist M. D., Jones B. M., Silvester W., Gutteridge G., et al. (2002). Treatment of comatose survivors of out-of-hospital cardiac arrest with induced hypothermia. N. Engl. J. Med. 346, 557–563 10.1056/NEJMoa003289
    1. Bradley L. A., Mckendree-Smith N. L., Alberts K. R., Alarcon G. S., Mountz J. M., Deutsch G. (2000). Use of neuroimaging to understand abnormal pain sensitivity in fibromyalgia. Curr. Rheumatol. Rep. 2, 141–148 10.1007/s11926-000-0054-2
    1. Brodbelt A. R., Stoodley M. A., Watling A. M., Tu J., Jones N. R. (2003). Fluid flow in an animal model of post-traumatic syringomyelia. Eur. Spine J. 12, 300–306 10.1007/s00586-002-0492-9
    1. Brooks V. B. (1983). Study of Brain Function by Local, Reversible Cooling Reviews of Physiology, Biochemistry and Pharmacology, Vol. 95 Berlin; Heidelberg: Springer, 1–109
    1. Busija D. W., Leffler C. W. (1987). Hypothermia reduces cerebral metabolic rate and cerebral blood flow in newborn pigs. Am. J. Physiol. 253, H869–H873
    1. Cauli B., Hamel E. (2010). Revisiting the role of neurons in neurovascular coupling. Front. Neuroenergetics 2:9 10.3389/fnene.2010.00009
    1. Charkoudian N. (2003). Skin blood flow in adult human thermoregulation: how it works, when it does not, and why. Mayo Clin. Proc. 78, 603–612 10.4065/78.5.603
    1. Chaturvedi R. K., Beal M. F. (2013). Mitochondria targeted therapeutic approaches in Parkinson's and Huntington's diseases. Mol. Cell. Neurosci. 55, 101–114 10.1016/j.mcn.2012.11.011
    1. Chaturvedi R. K., Flint Beal M. (2013). Mitochondrial diseases of the brain. Free Radic. Biol. Med. 63, 1–29 10.1016/j.freeradbiomed.2013.03.018
    1. Chen X. H., Johnson V. E., Uryu K., Trojanowski J. Q., Smith D. H. (2009). A lack of amyloid beta plaques despite persistent accumulation of amyloid beta in axons of long-term survivors of traumatic brain injury. Brain Pathol. 19, 214–223 10.1111/j.1750-3639.2008.00176.x
    1. Chen X. H., Siman R., Iwata A., Meaney D. F., Trojanowski J. Q., Smith D. H. (2004). Long-term accumulation of amyloid-beta, beta-secretase, presenilin-1, and caspase-3 in damaged axons following brain trauma. Am. J. Pathol. 165, 357–371 10.1016/S0002-9440(10)63303-2
    1. Cheng F., Vivacqua G., Yu S. (2011). The role of alpha-synuclein in neurotransmission and synaptic plasticity. J. Chem. Neuroanat. 42, 242–248 10.1016/j.jchemneu.2010.12.001
    1. Clayton D. F., George J. M. (1999). Synucleins in synaptic plasticity and neurodegenerative disorders. J. Neurosci. Res. 58, 120–129
    1. Clifton G. L., Miller E. R., Choi S. C., Levin H. S., Mccauley S., Smith K. R., Jr., et al. (2001). Lack of effect of induction of hypothermia after acute brain injury. N. Engl. J. Med. 344, 556–563 10.1056/NEJM200102223440803
    1. Clifton G. L., Valadka A., Zygun D., Coffey C. S., Drever P., Fourwinds S., et al. (2011). Very early hypothermia induction in patients with severe brain injury (the National Acute Brain Injury Study: Hypothermia II): a randomised trial. Lancet Neurol. 10, 131–139 10.1016/S1474-4422(10)70300-8
    1. Coleshaw S. R., Van Someren R. N., Wolff A. H., Davis H. M., Keatinge W. R. (1983). Impaired memory registration and speed of reasoning caused by low body temperature. J. Appl. Physiol. 55, 27–31
    1. Collins C. A., Rojas E. (1982). Temperature dependence of the sodium channel gating kinetics in the node of Ranvier. Q. J. Exp. Physiol. 67, 41–55
    1. Craig A. D., Chen K., Bandy D., Reiman E. M. (2000). Thermosensory activation of insular cortex. Nat. Neurosci. 3, 184–190 10.1038/72131
    1. Crone C. (1963). The permeability of capillaries in various organs as determined by use of the ‘indicator diffusion’ method. Acta Physiol. Scand. 58, 292–305 10.1111/j.1748-1716.1963.tb02652.x
    1. Cushing H. (1914). Studies on the Cerebro-Spinal Fluid: I. Introduction. J. Med. Res. 31, 1–19
    1. Cypess A. M., Doyle A. N., Sass C. A., Huang T. L., Mowschenson P. M., Rosen H. N., et al. (2013). Quantification of human and rodent brown adipose tissue function using 99mTc-methoxyisobutylisonitrile SPECT/CT and 18F-FDG PET/CT. J. Nucl. Med. 54, 1896–1901 10.2967/jnumed.113.121012
    1. Deja M. A., Malinowski M., Golba K. S., Kajor M., Lebda-Wyborny T., Hudziak D., et al. (2009). Diazoxide protects myocardial mitochondria, metabolism, and function during cardiac surgery: a double-blind randomized feasibility study of diazoxide-supplemented cardioplegia. J. Thorac Cardiovasc. Surg. 137, 997–1004, 1004e1001–1002. 10.1016/j.jtcvs.2008.08.068
    1. Delgado J. M., Hanai T. (1966a). Intracerebral temperatures in free-moving cats. Am. J. Physiol. 211, 755–769
    1. Delgado J. M., Hanai T. (1966b). Intracerebral temperatures in free-moving cats. Am. J. Physiol. 211, 755–769
    1. Dietrich W. D., Atkins C. M., Bramlett H. M. (2009). Protection in animal models of brain and spinal cord injury with mild to moderate hypothermia. J. Neurotrauma 26, 301–312 10.1089/neu.2008.0806
    1. Dietrich W. D., Bramlett H. M. (2010). The evidence for hypothermia as a neuroprotectant in traumatic brain injury. Neurotherapeutics 7, 43–50 10.1016/j.nurt.2009.10.015
    1. Duschek S., Hellmann N., Merzoug K., Reyes Del Paso G. A., Werner N. S. (2012). Cerebral blood flow dynamics during pain processing investigated by functional transcranial Doppler sonography. Pain Med. 13, 419–426 10.1111/j.1526-4637.2012.01329.x
    1. Duvernoy H. M., Delon S., Vannson J. L. (1981). Cortical blood vessels of the human brain. Brain Res. Bull. 7, 519–579 10.1016/0361-9230(81)90007-1
    1. Ecker R. D., Goerss S. J., Meyer F. B., Cohen-Gadol A. A., Britton J. W., Levine J. A. (2002). Vision of the future: initial experience with intraoperative real-time high-resolution dynamic infrared imaging. Technical note. J. Neurosurg. 97, 1460–1471 10.3171/jns.2002.97.6.1460
    1. Elias H., Schwartz D. (1969). Surface areas of the cerebral cortex of mammals determined by stereological methods. Science 166, 111–113 10.1126/science.166.3901.111
    1. El-Sawalhi M. M., Ahmed L. A. (2014). Exploring the protective role of apocynin, a specific NADPH oxidase inhibitor, in cisplatin-induced cardiotoxicity in rats. Chem. Biol. Interact. 207, 58–66 10.1016/j.cbi.2013.11.008
    1. Erickson C. A., Jung M. W., Mcnaughton B. L., Barnes C. A. (1996). Contribution of single-unit spike waveform changes to temperature-induced alterations in hippocampal population spikes. Exp. Brain Res. 107, 348–360 10.1007/BF00230417
    1. Esiri M. M., Gay D. (1990). Immunological and neuropathological significance of the Virchow-Robin space. J. Neurol. Sci. 100, 3–8 10.1016/0022-510X(90)90004-7
    1. Feng T. (1936). The heat production of nerve Ergebn. Rev. Physiol. Biochem. Pharmacol. 38, 73–132
    1. Fingas M., Clark D. L., Colbourne F. (2007). The effects of selective brain hypothermia on intracerebral hemorrhage in rats. Exp. Neurol. 208, 277–284 10.1016/j.expneurol.2007.08.018
    1. Fleury C., Neverova M., Collins S., Raimbault S., Champigny O., Levi-Meyrueis C., et al. (1997). Uncoupling protein-2: a novel gene linked to obesity and hyperinsulinemia. Nat. Genet. 15, 269–272 10.1038/ng0397-269
    1. Fohlmeister J. F., Cohen E. D., Newman E. A. (2010). Mechanisms and distribution of ion channels in retinal ganglion cells: using temperature as an independent variable. J. Neurophysiol. 103, 1357–1374 10.1152/jn.00123.2009
    1. Fukuda M., Ono T., Nakamura K. (1987). Functional relations among inferotemporal cortex, amygdala, and lateral hypothalamus in monkey operant feeding behavior. J. Neurophysiol. 57, 1060–1077
    1. Fuxe K., Rivera A., Jacobsen K. X., Hoistad M., Leo G., Horvath T. L., et al. (2005). Dynamics of volume transmission in the brain. Focus on catecholamine and opioid peptide communication and the role of uncoupling protein 2. J. Neural. Transm. 112, 65–76 10.1007/s00702-004-0158-3
    1. Gahwiler B. H., Mamoon A. M., Schlapfer W. T., Tobias C. A. (1972). Effects of temperature on spontaneous bioelectric activity of cultured nerve cells. Brain Res. 40, 527–533 10.1016/0006-8993(72)90157-6
    1. Gao Y., Zorman S., Gundersen G., Xi Z., Ma L., Sirinakis G., et al. (2012). Single reconstituted neuronal SNARE complexes zipper in three distinct stages. Science 337, 1340–1343 10.1126/science.1224492
    1. Garbuzova-Davis S., Haller E., Williams S. N., Haim E. D., Tajiri N., Hernandez-Ontiveros D. G., et al. (2014). Compromised blood-brain barrier competence in remote brain areas in ischemic stroke rats at chronic stage. J. Comp. Neurol. 522, 3120–3137 10.1002/cne.23582
    1. Gelman B., Schleien C. L., Lohe A., Kuluz J. W. (1996). Selective brain cooling in infant piglets after cardiac arrest and resuscitation. Crit. Care Med. 24, 1009–1017 10.1097/00003246-199606000-00022
    1. George J. M., Jin H., Woods W. S., Clayton D. F. (1995). Characterization of a novel protein regulated during the critical period for song learning in the zebra finch. Neuron 15, 361–372 10.1016/0896-6273(95)90040-3
    1. Gheibi S., Aboutaleb N., Khaksari M., Kalalian-Moghaddam H., Vakili A., Asadi Y., et al. (2014). Hydrogen sulfide protects the brain against ischemic reperfusion injury in a transient model of focal cerebral ischemia. J. Mol. Neurosci. 54, 264–270 10.1007/s12031-014-0284-9
    1. Girard P., Bullier J. (1989). Visual activity in area V2 during reversible inactivation of area 17 in the macaque monkey. J. Neurophysiol. 62, 1287–1302
    1. Gluckman P. D., Wyatt J. S., Azzopardi D., Ballard R., Edwards A. D., Ferriero D. M., et al. (2005). Selective head cooling with mild systemic hypothermia after neonatal encephalopathy: multicentre randomised trial. Lancet 365, 663–670 10.1016/S0140-6736(05)17946-X
    1. Gorbach A. M., Heiss J., Kufta C., Sato S., Fedio P., Kammerer W. A., et al. (2003). Intraoperative infrared functional imaging of human brain. Ann. Neurol. 54, 297–309 10.1002/ana.10646
    1. Graw J. A., Von Haefen C., Poyraz D., Mobius N., Sifringer M., Spies C. D. (2013). Chronic alcohol consumption increases the expression of uncoupling protein-2 and -4 in the brain. Alcohol. Clin. Exp. Res. 37, 1650–1656 10.1111/acer.12144
    1. Greeley W. J., Kern F. H., Ungerleider R. M., Boyd J. L., 3rd., Quill T., Smith L. R., et al. (1991). The effect of hypothermic cardiopulmonary bypass and total circulatory arrest on cerebral metabolism in neonates, infants, and children. J. Thorac. Cardiovasc. Surg. 101, 783–794
    1. Green A. R., Ashwood T. (2005). Free radical trapping as a therapeutic approach to neuroprotection in stroke: experimental and clinical studies with NXY-059 and free radical scavengers. Curr. Drug Targets CNS Neurol. Disord. 4, 109–118 10.2174/1568007053544156
    1. Greenfield J. G., Love S., Louis D. N., Ellison D. (2008). Greenfield's Neuropathology. London: Hodder Arnold
    1. Guatteo E., Chung K. K., Bowala T. K., Bernardi G., Mercuri N. B., Lipski J. (2005). Temperature sensitivity of dopaminergic neurons of the substantia nigra pars compacta: involvement of transient receptor potential channels. J. Neurophysiol. 94, 3069–3080 10.1152/jn.00066.2005
    1. Guedj E. (2009). Neuroimaging findings in fibromyalgia: what clinical impact? Joint Bone Spine 76, 224–226 10.1016/j.jbspin.2009.01.004
    1. Guyton A. C., Hall J. E. (2006). Textbook of Medical Physiology. Philadelphia: Elsevier Saunders
    1. Hagerdal M., Harp J., Nilsson L., Siesjo B. K. (1975). The effect of induced hypothermia upon oxygen consumption in the rat brain. J. Neurochem. 24, 311–316 10.1111/j.1471-4159.1975.tb11881.x
    1. Hajat C., Hajat S., Sharma P. (2000). Effects of poststroke pyrexia on stroke outcome: a meta-analysis of studies in patients. Stroke 31, 410–414 10.1161/01.STR.31.2.410
    1. Hales J. R., Fawcett A. A., Bennett J. W., Needham A. D. (1978). Thermal control of blood flow through capillaries and arteriovenous anastomoses in skin of sheep. Pflugers Arch. 378, 55–63 10.1007/BF00581958
    1. Hamilton C. L. (1963). Hypothalamic temperature records of a monkey. Proc. Soc. Exp. Biol. Med. 112, 55–57 10.3181/00379727-112-27948
    1. Hammel H. T., Jackson D. C., Stolwijk J. A., Hardy J. D., Stromme S. B. (1963). Temperature regulation by hypothalamic proportional control with an adjustable set point. J. Appl. Physiol. 18, 1146–1154
    1. Haque N., Ludri A., Hossain S. A., Ashutosh M. (2012). Comparative studies on temperature threshold for heat shock protein 70 induction in young and adult Murrah buffaloes. J. Anim. Physiol. Anim. Nutr. (Berl.) 96, 920–929 10.1111/j.1439-0396.2011.01208.x
    1. Haveman J., Sminia P., Wondergem J., Van Der Zee J., Hulshof M. C. (2005). Effects of hyperthermia on the central nervous system: what was learnt from animal studies? Int. J. Hyperthermia 21, 473–487 10.1080/02656730500159079
    1. Hayward J. N., Baker M. A. (1968a). Role of cerebral arterial blood in the regulation of brain temperature in the monkey. Am. J. Physiol. 215, 389–403
    1. Hayward J. N., Baker M. A. (1968b). Role of cerebral arterial blood in the regulation of brain temperature in the monkey. Am. J. Physiol. 215, 389–403
    1. Hayward J. N., Baker M. A. (1969). A comparative study of the role of the cerebral arterial blood in the regulation of brain temperature in five mammals. Brain Res. 16, 417–440 10.1016/0006-8993(69)90236-4
    1. He X. (2011). Thermostability of biological systems: fundamentals, challenges, and quantification. Open Biomed. Eng. J. 5, 47–73 10.2174/1874120701105010047
    1. Helmholtz H. F. (1848). Über die Wärmeentwicklung der Muskelaction. Arch. f. Anat. Physiol. 15, 144–164
    1. Hemingway A., Robinson R., Hemingway C., Wall J. (1966). Cutaneous and brain temperatures related to respiratory metabolism of the sheep. J. Appl. Physiol. 21, 1223–1227
    1. Hernandez-Resendiz S., Buelna-Chontal M., Correa F., Zazueta C. (2013). Targeting mitochondria for cardiac protection. Curr. Drug Targets 14, 586–600 10.2174/1389450111314050008
    1. Hill A. V. (1929). The heat production and recovery of crustacean nerve. Proc. R. Soc. Lond. B 105, 133–176 10.1098/rspb.1929.0035
    1. Hirashima Y., Takaba M., Endo S., Hayashi N., Yamashita K., Takaku A. (1998). Intracerebral temperature in patients with hydrocephalus of varying aetiology. J. Neurol. Neurosurg. Psychiatr. 64, 792–794 10.1136/jnnp.64.6.792
    1. Hodgkin A. L., Huxley A. F. (1952). Movement of sodium and potassium ions during nervous activity. Cold Spring Harb. Symp. Quant. Biol. 17, 43–52 10.1101/SQB.1952.017.01.007
    1. Horvath T. L., Warden C. H., Hajos M., Lombardi A., Goglia F., Diano S. (1999). Brain uncoupling protein 2: uncoupled neuronal mitochondria predict thermal synapses in homeostatic centers. J. Neurosci. 19, 10417–10427
    1. Howarth C., Gleeson P., Attwell D. (2012). Updated energy budgets for neural computation in the neocortex and cerebellum. J. Cereb. Blood Flow Metab. 32, 1222–1232 10.1038/jcbfm.2012.35
    1. Hutchings M., Weller R. O. (1986). Anatomical relationships of the pia mater to cerebral blood vessels in man. J. Neurosurg. 65, 316–325 10.3171/jns.1986.65.3.0316
    1. Hutchison J. S., Ward R. E., Lacroix J., Hebert P. C., Barnes M. A., Bohn D. J., et al. (2008). Hypothermia therapy after traumatic brain injury in children. N. Engl. J. Med. 358, 2447–2456 10.1056/NEJMoa0706930
    1. Huxley A. F. (1957). An ultramicrotome. J. Physiol. 137, 73P–74P
    1. Hypothermia after Cardiac Arrest Study Group. (2002). Mild therapeutic hypothermia to improve the neurologic outcome after cardiac arrest. N. Engl. J. Med. 346, 549–556 10.1056/NEJMoa012689
    1. Inamura A., Adachi Y., Inoue T., He Y., Tokuda N., Nawata T., et al. (2013). Cooling treatment transiently increases the permeability of brain capillary endothelial cells through translocation of claudin-5. Neurochem. Res. 38, 1641–1647 10.1007/s11064-013-1066-4
    1. Jackson D. C., Hammel H. T. (1963). Reduced Set Point Temperature in Exercising Dog. Techn Docum Rep Amrl-Tdr-63-93. AMRL TR. 1–16
    1. James W. (1892). The stream of consciousness, in Psychology, Chapter XI (Cleveland, New York: World Publishing Company; ).
    1. Jasper H. H., Shacter D. G., Montplaisir J. (1970). The effect of local cooling upon spontaneous and evoked electrical activity of cerebral cortex. Can. J. Physiol. Pharmacol. 48, 640–652 10.1139/y70-094
    1. Jiang J. Y., Gao G. Y., Li W. P., Yu M. K., Zhu C. (2002). Early indicators of prognosis in 846 cases of severe traumatic brain injury. J. Neurotrauma 19, 869–874 10.1089/08977150260190456
    1. Johanson C. E., Duncan J. A., 3rd., Klinge P. M., Brinker T., Stopa E. G., Silverberg G. D. (2008). Multiplicity of cerebrospinal fluid functions: new challenges in health and disease. Cerebrospinal Fluid Res. 5:10 10.1186/1743-8454-5-10
    1. Kalil R. E., Chase R. (1970). Corticofugal influence on activity of lateral geniculate neurons in the cat. J. Neurophysiol. 33, 459–474
    1. Kalmbach A. S., Waters J. (2012). Brain surface temperature under a craniotomy. J. Neurophysiol. 108, 3138–3146 10.1152/jn.00557.2012
    1. Katz B., Miledi R. (1965). The effect of temperature on the synaptic delay at the neuromuscular junction. J. Physiol. 181, 656–670
    1. Kawamura H., Sawyer C. H. (1965a). Elevation in brain temperature during paradoxical sleep. Science 150, 912–913 10.1126/science.150.3698.912
    1. Kawamura H., Sawyer C. H. (1965b). Elevation in brain temperature during paradoxical sleep. Science 150, 912–913 10.1126/science.150.3698.912
    1. Keating E. G., Gooley S. G. (1988). Saccadic disorders caused by cooling the superior colliculus or the frontal eye field, or from combined lesions of both structures. Brain Res. 438, 247–255 10.1016/0006-8993(88)91343-1
    1. Khatri N., Man H. Y. (2013). Synaptic activity and bioenergy homeostasis: implications in brain trauma and neurodegenerative diseases. Front. Neurol. 4:199 10.3389/fneur.2013.00199
    1. Kim F., Nichol G., Maynard C., Hallstrom A., Kudenchuk P. J., Rea T., et al. (2013). Effect of prehospital induction of mild hypothermia on survival and neurological status among adults with cardiac arrest: a randomized clinical trial. JAMA. 311, 45–52 10.1001/jama.2013.282173
    1. King C., Robinson T., Dixon C. E., Rao G. R., Larnard D., Nemoto C. E. (2010). Brain temperature profiles during epidural cooling with the ChillerPad in a monkey model of traumatic brain injury. J. Neurotrauma 27, 1895–1903 10.1089/neu.2009.1178
    1. Kiyatkin E. A. (2010). Brain temperature homeostasis: physiological fluctuations and pathological shifts. Front. Biosci. 15, 73–92 10.2741/3608
    1. Kiyatkin E. A., Bae D. (2008). Behavioral and brain temperature responses to salient environmental stimuli and intravenous cocaine in rats: effects of diazepam. Psychopharmacology (Berl.) 196, 343–356 10.1007/s00213-007-0965-y
    1. Kiyatkin E. A., Brown P. L. (2004). Modulation of physiological brain hyperthermia by environmental temperature and impaired blood outflow in rats. Physiol. Behav. 83, 467–474 10.1016/j.physbeh.2004.08.032
    1. Kiyatkin E. A., Brown P. L., Wise R. A. (2002). Brain temperature fluctuation: a reflection of functional neural activation. Eur. J. Neurosci. 16, 164–168 10.1046/j.1460-9568.2002.02066.x
    1. Kiyatkin E. A., Mitchum R. D., Jr. (2003). Fluctuations in brain temperature during sexual interaction in male rats: an approach for evaluating neural activity underlying motivated behavior. Neuroscience 119, 1169–1183 10.1016/S0306-4522(03)00222-7
    1. Kiyatkin E. A., Sharma H. S. (2009). Permeability of the blood-brain barrier depends on brain temperature. Neuroscience 161, 926–939 10.1016/j.neuroscience.2009.04.004
    1. Kovalzon V. M. (1973). Brain temperature variations during natural sleep and arousal in white rats. Physiol. Behav. 10, 667–670 10.1016/0031-9384(73)90141-8
    1. Kuluz J. W., Prado R., Chang J., Ginsberg M. D., Schleien C. L., Busto R. (1993). Selective brain cooling increases cortical cerebral blood flow in rats. Am. J. Physiol. 265, H824–H827
    1. Lamanna J. C., Mccracken K. A., Patil M., Prohaska O. J. (1989). Stimulus-activated changes in brain tissue temperature in the anesthetized rat. Metab. Brain Dis. 4, 225–237 10.1007/BF00999769
    1. Lamanna J. C., Rosenthal M., Novack R., Moffett D. F., Jobsis F. F. (1980). Temperature coefficients for the oxidative metabolic responses to electrical stimulation in cerebral cortex. J. Neurochem. 34, 203–209 10.1111/j.1471-4159.1980.tb04641.x
    1. Laptook A. R., Shalak L., Corbett R. J. (2001). Differences in brain temperature and cerebral blood flow during selective head versus whole-body cooling. Pediatrics 108, 1103–1110 10.1542/peds.108.5.1103
    1. Lassen N. A. (1985). Normal average value of cerebral blood flow in younger adults is 50 ml/100 g/min. J. Cereb. Blood Flow Metab. 5, 347–349 10.1038/jcbfm.1985.48
    1. Lee J. C., Callaway J. C., Foehring R. C. (2005). Effects of temperature on calcium transients and Ca2+-dependent afterhyperpolarizations in neocortical pyramidal neurons. J. Neurophysiol. 93, 2012–2020 10.1152/jn.01017.2004
    1. Li Q., Khatibi N., Zhang J. H. (2014). Vascular neural network: the importance of vein drainage in stroke. Transl. Stroke Res. 5, 163–166 10.1007/s12975-014-0335-0
    1. Lomber S. G., Payne B. R., Cornwell P. (1996). Learning and recall of form discriminations during reversible cooling deactivation of ventral-posterior suprasylvian cortex in the cat. Proc. Natl. Acad. Sci. U.S.A. 93, 1654–1658 10.1073/pnas.93.4.1654
    1. Lomber S. G., Payne B. R., Horel J. A. (1999). The cryoloop: an adaptable reversible cooling deactivation method for behavioral or electrophysiological assessment of neural function. J. Neurosci. Methods 86, 179–194 10.1016/S0165-0270(98)00165-4
    1. Long M. A., Fee M. S. (2008). Using temperature to analyse temporal dynamics in the songbird motor pathway. Nature 456, 189–194 10.1038/nature07448
    1. Lu L., Zhang C., Cai Q., Lu Q., Duan C., Zhu Y., et al. (2013). Voltage-dependent anion channel involved in the alpha-synuclein-induced dopaminergic neuron toxicity in rats. Acta Biochim. Biophys. Sin. 45, 170–178 10.1093/abbs/gms114
    1. Lucchesi B. R. (1990). Myocardial ischemia, reperfusion and free radical injury. Am. J. Cardiol. 65, 14I–23I 10.1016/0002-9149(90)90120-P
    1. Lust A., Fuller A., Maloney S. K., Mitchell D., Mitchell G. (2007). Thermoregulation in pronghorn antelope (Antilocapra americana Ord) in the summer. J. Exp. Biol. 210, 2444–2452 10.1242/jeb.005587
    1. Mack W. J., Mocco J., Ducruet A. F., Laufer I., King R. G., Zhang Y., et al. (2006). A cerebroprotective dose of intravenous citrate/sorbitol-stabilized dehydroascorbic acid is correlated with increased cerebral ascorbic acid and inhibited lipid peroxidation after murine reperfused stroke. Neurosurgery 59, 383–388 discussion: 383–388. 10.1227/01.NEU.0000223496.96945.A7
    1. Madsen P. L., Sperling B. K., Warming T., Schmidt J. F., Secher N. H., Wildschiodtz G., et al. (1993). Middle cerebral artery blood velocity and cerebral blood flow and O2 uptake during dynamic exercise. J. Appl. Physiol. 74, 245–250
    1. Maloney S. K., Mitchell D., Mitchell G., Fuller A. (2007). Absence of selective brain cooling in unrestrained baboons exposed to heat. Am. J. Physiol. Regul. Integr. Comp. Physiol. 292, R2059–R2067 10.1152/ajpregu.00809.2006
    1. Marklund N., Farrokhnia N., Hanell A., Vanmechelen E., Enblad P., Zetterberg H., et al. (2013). Monitoring of β-amyloid dynamics after human traumatic brain injury. J. Neurotrauma 31, 42–55 10.1089/neu.2013.2964
    1. Mascio C. E., Myers J. A., Edmonds H. L., Austin E. H., 3rd. (2009). Near-infrared spectroscopy as a guide for an intermittent cerebral perfusion strategy during neonatal circulatory arrest. ASAIO J. 55, 287–290 10.1097/MAT.0b013e3181964861
    1. Masuda H., Hirata A., Kawai H., Wake K., Watanabe S., Arima T., et al. (2011). Local exposure of the rat cortex to radiofrequency electromagnetic fields increases local cerebral blood flow along with temperature. J. Appl. Physiol. 110, 142–148 10.1152/japplphysiol.01035.2010
    1. Matthias A., Ohlson K. B., Fredriksson J. M., Jacobsson A., Nedergaard J., Cannon B. (2000). Thermogenic responses in brown fat cells are fully UCP1-dependent. UCP2 or UCP3 do not substitute for UCP1 in adrenergically or fatty scid-induced thermogenesis. J. Biol. Chem. 275, 25073–25081 10.1074/jbc.M000547200
    1. Mattson M. P., Kroemer G. (2003). Mitochondria in cell death: novel targets for neuroprotection and cardioprotection. Trends Mol. Med. 9, 196–205 10.1016/S1471-4914(03)00046-7
    1. Maybhate A., Hu C., Bazley F. A., Yu Q., Thakor N. V., Kerr C. L., et al. (2012). Potential long-term benefits of acute hypothermia after spinal cord injury: assessments with somatosensory-evoked potentials. Crit. Care Med. 40, 573–579 10.1097/CCM.0b013e318232d97e
    1. Mcelligott J. G., Melzack R. (1967a). Localized thermal changes evoked in the brain by visual and auditory stimulation. Exp. Neurol. 17, 293–312 10.1016/0014-4886(67)90108-2
    1. Mcelligott J. G., Melzack R. (1967b). Localized thermal changes evoked in the brain by visual and auditory stimulation. Exp. Neurol. 17, 293–312 10.1016/0014-4886(67)90108-2
    1. Mellergard P. (1995). Intracerebral temperature in neurosurgical patients: intracerebral temperature gradients and relationships to consciousness level. Surg. Neurol. 43, 91–95 10.1016/0090-3019(95)80049-M
    1. Mellergard P., Nordstrom C. H. (1990). Epidural temperature and possible intracerebral temperature gradients in man. Br. J. Neurosurg. 4, 31–38 10.3109/02688699009000679
    1. Michenfelder J. D., Milde J. H. (1991). The relationship among canine brain temperature, metabolism, and function during hypothermia. Anesthesiology 75, 130–136 10.1097/00000542-199107000-00021
    1. Milhorat T. H. (1975). The third circulation revisited. J. Neurosurg. 42, 628–645 10.3171/jns.1975.42.6.0628
    1. Miller G., Stein F., Trevino R., David Y., Contant C. F., Jefferson L. S. (1999). Rectal-scalp temperature difference predicts brain death in children. Pediatr. Neurol. 20, 267–269 10.1016/S0887-8994(98)00146-5
    1. Min L. J., Mogi M., Tsukuda K., Jing F., Ohshima K., Nakaoka H., et al. (2014). Direct stimulation of angiotensin II type 2 receptor initiated after stroke ameliorates ischemic brain damage. Am. J. Hypertens. 27, 1036–1044 10.1093/ajh/hpu015
    1. Mitchell G., Fuller A., Maloney S. K., Rump N., Mitchell D. (2006). Guttural pouches, brain temperature and exercise in horses. Biol. Lett. 2, 475–477 10.1098/rsbl.2006.0469
    1. Moriyama E. (1990). Cerebral blood flow changes during localized hyperthermia. Neurol. Med. Chir. (Tokyo) 30, 923–929 10.2176/nmc.30.923
    1. Moser E. I., Mathiesen L. I. (1996). Relationship between neuronal activity and brain temperature in rats. Neuroreport 7, 1876–1880 10.1097/00001756-199607290-00038
    1. Murray A. J., Anderson R. E., Watson G. C., Radda G. K., Clarke K. (2004). Uncoupling proteins in human heart. Lancet 364, 1786–1788 10.1016/S0140-6736(04)17402-3
    1. Nakada T., Kwee I. L., Fujii Y., Knight R. T. (2005). High-field, T2 reversed MRI of the hippocampus in transient global amnesia. Neurology 64, 1170–1174 10.1212/01.WNL.0000156158.48587.EA
    1. Nakagawa K., Hills N. K., Kamel H., Morabito D., Patel P. V., Manley G. T., et al. (2011). The effect of decompressive hemicraniectomy on brain temperature after severe brain injury. Neurocrit. Care 15, 101–106 10.1007/s12028-010-9446-y
    1. Neumar R. W., Nolan J. P., Adrie C., Aibiki M., Berg R. A., Bottiger B. W., et al. (2008). Post-cardiac arrest syndrome: epidemiology, pathophysiology, treatment, and prognostication. A consensus statement from the International Liaison Committee on Resuscitation (American Heart Association, Australian and New Zealand Council on Resuscitation, European Resuscitation Council, Heart and Stroke Foundation of Canada, InterAmerican Heart Foundation, Resuscitation Council of Asia, and the Resuscitation Council of Southern Africa); the American Heart Association Emergency Cardiovascular Care Committee; the Council on Cardiovascular Surgery and Anesthesia; the Council on Cardiopulmonary, Perioperative, and Critical Care; the Council on Clinical Cardiology; and the Stroke Council. Circulation 118, 2452–2483 10.1161/CIRCULATIONAHA.108.190652
    1. Nielsen N., Wetterslev J., Cronberg T., Erlinge D., Gasche Y., Hassager C., et al. (2013). Targeted temperature management at 33 degrees C versus 36 degrees C after cardiac arrest. N. Engl. J. Med. 369, 2197–2206 10.1056/NEJMoa1310519
    1. Nybo L., Moller K., Volianitis S., Nielsen B., Secher N. H. (2002a). Effects of hyperthermia on cerebral blood flow and metabolism during prolonged exercise in humans. J. Appl. Physiol. 93, 58–64 10.1152/japplphysiol.00049
    1. Nybo L., Nielsen B. (2001). Middle cerebral artery blood velocity is reduced with hyperthermia during prolonged exercise in humans. J. Physiol. 534, 279–286 10.1111/j.1469-7793.2001.t01-1-00279.x
    1. Nybo L., Secher N. H., Nielsen B. (2002b). Inadequate heat release from the human brain during prolonged exercise with hyperthermia. J. Physiol. 545, 697–704 10.1113/jphysiol.2002.030023
    1. O'Collins V. E., Macleod M. R., Donnan G. A., Horky L. L., Van Der Worp B. H., Howells D. W. (2006). 1,026 experimental treatments in acute stroke. Ann. Neurol. 59, 467–477 10.1002/ana.20741
    1. Ogawa S., Lee T. M., Nayak A. S., Glynn P. (1990). Oxygenation-sensitive contrast in magnetic resonance image of rodent brain at high magnetic fields. Magn. Reson. Med. 14, 68–78 10.1002/mrm.1910140108
    1. Ogawa S., Menon R. S., Tank D. W., Kim S. G., Merkle H., Ellermann J. M., et al. (1993). Functional brain mapping by blood oxygenation level-dependent contrast magnetic resonance imaging. A comparison of signal characteristics with a biophysical model. Biophys. J. 64, 803–812 10.1016/S0006-3495(93)81441-3
    1. Ohmoto Y., Fujisawa H., Ishikawa T., Koizumi H., Matsuda T., Ito H. (1996). Sequential changes in cerebral blood flow, early neuropathological consequences and blood-brain barrier disruption following radiofrequency-induced localized hyperthermia in the rat. Int. J. Hyperthermia 12, 321–334 10.3109/02656739609022521
    1. Oku T., Fujii M., Tanaka N., Imoto H., Uchiyama J., Oka F., et al. (2009). The influence of focal brain cooling on neurophysiopathology: validation for clinical application. J. Neurosurg. 110, 1209–1217 10.3171/2009.1.JNS08499
    1. Paulson O. B., Hasselbalch S. G., Rostrup E., Knudsen G. M., Pelligrino D. (2010). Cerebral blood flow response to functional activation. J. Cereb. Blood Flow Metab. 30, 2–14 10.1038/jcbfm.2009.188
    1. Percy A., Widman S., Rizzo J. A., Tranquilli M., Elefteriades J. A. (2009). Deep hypothermic circulatory arrest in patients with high cognitive needs: full preservation of cognitive abilities. Ann. Thorac. Surg. 87, 117–123 10.1016/j.athoracsur.2008.10.025
    1. Raichle M. E. (1983). Neurogenic control of blood-brain barrier permeability. Acta Neuropathol. Suppl. 8, 75–79 10.1007/978-3-642-68970-3_6
    1. Raichle M. E., Mintun M. A. (2006). Brain work and brain imaging. Annu. Rev. Neurosci. 29, 449–476 10.1146/annurev.neuro.29.051605.112819
    1. Rajanikant G. K., Zemke D., Senut M. C., Frenkel M. B., Chen A. F., Gupta R., et al. (2007). Carnosine is neuroprotective against permanent focal cerebral ischemia in mice. Stroke 38, 3023–3031 10.1161/STROKEAHA.107.488502
    1. Rampone A. J., Shirasu M. E. (1964). Temperature changes in the rat in response to feeding. Science 144, 317–319 10.1126/science.144.3616.317
    1. Redzic Z. B., Preston J. E., Duncan J. A., Chodobski A., Szmydynger-Chodobska J. (2005). The choroid plexus-cerebrospinal fluid system: from development to aging. Curr. Top. Dev. Biol. 71, 1–52 10.1016/S0070-2153(05)71001-2
    1. Reite M. L., Pegram G. V. (1968). Cortical temperature during paradoxical sleep in the monkey. Electroencephalogr. Clin. Neurophysiol. 25, 36–41 10.1016/0013-4694(68)90084-9
    1. Rennels M. L., Blaumanis O. R., Grady P. A. (1990). Rapid solute transport throughout the brain via paravascular fluid pathways. Adv. Neurol. 52, 431–439
    1. Ribrault C., Sekimoto K., Triller A. (2011). From the stochasticity of molecular processes to the variability of synaptic transmission. Nat. Rev. Neurosci. 12, 375–387 10.1038/nrn3025
    1. Richard D., Rivest R., Huang Q., Bouillaud F., Sanchis D., Champigny O., et al. (1998). Distribution of the uncoupling protein 2 mRNA in the mouse brain. J. Comp. Neurol. 397, 549–560
    1. Ritchie J. M. (1973). Energetic aspects of nerve conduction: the relationships between heat production, electrical activity and metabolism. Prog. Biophys. Mol. Biol. 26, 147–187 10.1016/0079-6107(73)90019-9
    1. Rittenberger J. C., Callaway C. W. (2013). Temperature management and modern post-cardiac arrest care. N. Engl. J. Med. 369, 2262–2263 10.1056/NEJMe1312700
    1. Robinson A. D., Ramanathan K. B., Mcgee J. E., Newman K. P., Weber K. T. (2011). Oxidative stress and cardiomyocyte necrosis with elevated serum troponins: pathophysiologic mechanisms. Am. J. Med. Sci. 342, 129–134 10.1097/MAJ.0b013e3182231ee3
    1. Rosen A. D. (2001). Nonlinear temperature modulation of sodium channel kinetics in GH(3) cells. Biochim. Biophys. Acta 1511, 391–396 10.1016/S0005-2736(01)00301-7
    1. Rossi S., Zanier E. R., Mauri I., Columbo A., Stocchetti N. (2001). Brain temperature, body core temperature, and intracranial pressure in acute cerebral damage. J. Neurol. Neurosurg. Psychiatr. 71, 448–454 10.1136/jnnp.71.4.448
    1. Rost B. R., Nicholson P., Ahnert-Hilger G., Rummel A., Rosenmund C., Breustedt J., et al. (2011). Activation of metabotropic GABA receptors increases the energy barrier for vesicle fusion. J. Cell Sci. 124, 3066–3073 10.1242/jcs.074963
    1. Sabbah H. N., Tocchetti C. G., Wang M., Daya S., Gupta R. C., Tunin R. S., et al. (2013). Nitroxyl (HNO): a novel approach for the acute treatment of heart failure. Circ. Heart Fail. 6, 1250–1258 10.1161/CIRCHEARTFAILURE.113.000632
    1. Sachdev R. N., Ebner F. F., Wilson C. J. (2004). Effect of subthreshold up and down states on the whisker-evoked response in somatosensory cortex. J. Neurophysiol. 92, 3511–3521 10.1152/jn.00347.2004
    1. Saltin B., Gagge A. P., Bergh U., Stolwijk J. A. (1972). Body temperatures and sweating during exhaustive exercise. J. Appl. Physiol. 32, 635–643
    1. Schiller P. H., Stryker M., Cynader M., Berman N. (1974). Response characteristics of single cells in the monkey superior colliculus following ablation or cooling of visual cortex. J. Neurophysiol. 37, 181–194
    1. Schlessinger M., Spiro I. J. (1995). Infrared Technology Fundamentals. New York, NY: M. Dekker
    1. Schmielau F., Singer W. (1977). The role of visual cortex for binocular interactions in the cat lateral geniculate nucleus. Brain Res. 120, 354–361 10.1016/0006-8993(77)90914-3
    1. Schwartz A. E., Stone J. G., Finck A. D., Sandhu A. A., Mongero L. B., Adams D. C., et al. (1996). Isolated cerebral hypothermia by single carotid artery perfusion of extracorporeally cooled blood in baboons. Neurosurgery 39, 577–581 discussion: 581–572.
    1. Sedunova E. V. (1992). [Brain temperature in small birds and mammals]. Fiziol. Zh. SSSR Im. I M Sechenova 78, 85–89
    1. Segal M. B. (1993). Extracellular and cerebrospinal fluids. J. Inherit. Metab. Dis. 16, 617–638 10.1007/BF00711896
    1. Serota H. (1939a). Temperature changes in the cortex and hypothalamus during sleep. J. Neurophysiol. 2, 42–47
    1. Serota H. G. (1938). Localized temperature changes in the cat brain. J. Neurophysiol. 1, 115–124
    1. Serota H. M. (1939b). Temperature changes in the cortex and hypothalamus during sleep. J. Neurophysiol. 2, 42–47
    1. Serota H. M., Gerard R. W. (1938). Localized temperature changes in the cat brain. J. Neurophysiol. 1, 115–124
    1. Serpell L. C., Berriman J., Jakes R., Goedert M., Crowther R. A. (2000). Fiber diffraction of synthetic alpha-synuclein filaments shows amyloid-like cross-beta conformation. Proc. Natl. Acad. Sci. U.S.A. 97, 4897–4902 10.1073/pnas.97.9.4897
    1. Shankaran S., Laptook A. R., Ehrenkranz R. A., Tyson J. E., Mcdonald S. A., Donovan E. F., et al. (2005). Whole-body hypothermia for neonates with hypoxic-ischemic encephalopathy. N. Engl. J. Med. 353, 1574–1584 10.1056/NEJMcps050929
    1. Sharma H. S., Hoopes P. J. (2003). Hyperthermia induced pathophysiology of the central nervous system. Int. J. Hyperthermia 19, 325–354 10.1080/0265673021000054621
    1. Sharma S., Aramburo A., Rafikov R., Sun X., Kumar S., Oishi P. E., et al. (2013). L-carnitine preserves endothelial function in a lamb model of increased pulmonary blood flow. Pediatr. Res. 74, 39–47 10.1038/pr.2013.71
    1. Shevelev I. A. (1998). Functional imaging of the brain by infrared radiation (thermoencephaloscopy). Prog. Neurobiol. 56, 269–305 10.1016/S0301-0082(98)00038-0
    1. Siesjö B. K. (1978). Brain Energy Metabolism. Chichester; New York, NY: Wiley
    1. Simoens P., Lauwers H., De Geest J. P., De Schaepdrijver L. (1987). Functional morphology of the cranial retia mirabilia in the domestic mammals. Schweiz. Arch. Tierheilkd. 129, 295–307
    1. Smith C. M., Adelson P. D., Chang Y. F., Brown S. D., Kochanek P. M., Clark R. S., et al. (2011). Brain-systemic temperature gradient is temperature-dependent in children with severe traumatic brain injury. Pediatr. Crit. Care Med. 12, 449–454 10.1097/PCC.0b013e3181f390dd
    1. Soukup J., Zauner A., Doppenberg E. M., Menzel M., Gilman C., Young H. F., et al. (2002). The importance of brain temperature in patients after severe head injury: relationship to intracranial pressure, cerebral perfusion pressure, cerebral blood flow, and outcome. J. Neurotrauma 19, 559–571 10.1089/089771502753754046
    1. Squire L. R. (2012). Fundamental Neuroscience. Amsterdam; Boston: Elsevier
    1. Stone J. G., Goodman R. R., Baker K. Z., Baker C. J., Solomon R. A. (1997). Direct intraoperative measurement of human brain temperature. Neurosurgery 41, 20–24 10.1097/00006123-199707000-00007
    1. Stoodley M. A., Brown S. A., Brown C. J., Jones N. R. (1997). Arterial pulsation-dependent perivascular cerebrospinal fluid flow into the central canal in the sheep spinal cord. J. Neurosurg. 86, 686–693 10.3171/jns.1997.86.4.0686
    1. Suehiro E., Fujisawa H., Koizumi H., Nomura S., Kajiwara K., Fujii M., et al. (2011). Significance of differences between brain temperature and core temperature (delta T) during mild hypothermia in patients with diffuse axonal injury. Neurol. Med. Chir. (Tokyo) 51, 551–555 10.2176/nmc.51.551
    1. Sullivan R. M., Wilson D. A., Leon M. (1988). Physical stimulation reduces the brain temperature of infant rats. Dev. Psychobiol. 21, 237–250 10.1002/dev.420210305
    1. Sundgren P. C., Petrou M., Harris R. E., Fan X., Foerster B., Mehrotra N., et al. (2007). Diffusion-weighted and diffusion tensor imaging in fibromyalgia patients: a prospective study of whole brain diffusivity, apparent diffusion coefficient, and fraction anisotropy in different regions of the brain and correlation with symptom severity. Acad. Radiol. 14, 839–846 10.1016/j.acra.2007.03.015
    1. Swan H. (1974). Thermoregulation and Bioenergetics; Patterns for Vertebrate Survival. New York, NY: American Elsevier Pub. Co
    1. Taketomo T., Saito A. (1965). Experimental studies on cerebrospinal fluid flow. Neurology 15, 578–586 10.1212/WNL.15.6.578
    1. Thompson S. M., Masukawa L. M., Prince D. A. (1985). Temperature dependence of intrinsic membrane properties and synaptic potentials in hippocampal CA1 neurons in vitro. J. Neurosci. 5, 817–824
    1. Thornton K. (2003). The electrophysiological effects of a brain injury on auditory memory functioning. The QEEG correlates of impaired memory. Arch. Clin. Neuropsychol. 18, 363–378 10.1093/arclin/18.4.363
    1. Triller A., Choquet D. (2008). New concepts in synaptic biology derived from single-molecule imaging. Neuron 59, 359–374 10.1016/j.neuron.2008.06.022
    1. Trimble W. S., Cowan D. M., Scheller R. H. (1988). VAMP-1: a synaptic vesicle-associated integral membrane protein. Proc. Natl. Acad. Sci. U.S.A. 85, 4538–4542 10.1073/pnas.85.12.4538
    1. Trubel H. K., Sacolick L. I., Hyder F. (2006). Regional temperature changes in the brain during somatosensory stimulation. J. Cereb. Blood Flow Metab. 26, 68–78 10.1038/sj.jcbfm.9600164
    1. Tryba A. K., Ramirez J. M. (2004). Hyperthermia modulates respiratory pacemaker bursting properties. J. Neurophysiol. 92, 2844–2852 10.1152/jn.00752.2003
    1. Volgushev M., Vidyasagar T. R., Chistiakova M., Eysel U. T. (2000). Synaptic transmission in the neocortex during reversible cooling. Neuroscience 98, 9–22 10.1016/S0306-4522(00)00109-3
    1. Wagner H. J., Pilgrim C., Brandl J. (1974). Penetration and removal of horseradish peroxidase injected into the cerebrospinal fluid: role of cerebral perivascular spaces, endothelium and microglia. Acta Neuropathol. 27, 299–315 10.1007/BF00690695
    1. Walter B., Bauer R., Kuhnen G., Fritz H., Zwiener U. (2000). Coupling of cerebral blood flow and oxygen metabolism in infant pigs during selective brain hypothermia. J. Cereb. Blood Flow Metab. 20, 1215–1224 10.1097/00004647-200008000-00007
    1. Wang G., Hamid T., Keith R. J., Zhou G., Partridge C. R., Xiang X., et al. (2010). Cardioprotective and antiapoptotic effects of heme oxygenase-1 in the failing heart. Circulation 121, 1912–1925 10.1161/CIRCULATIONAHA.109.905471
    1. Wang H., Olivero W., Lanzino G., Elkins W., Rose J., Honings D., et al. (2004). Rapid and selective cerebral hypothermia achieved using a cooling helmet. J. Neurosurg. 100, 272–277 10.3171/jns.2004.100.2.0272
    1. Wang Q., Tompkins K. D., Simonyi A., Korthuis R. J., Sun A. Y., Sun G. Y. (2006a). Apocynin protects against global cerebral ischemia-reperfusion-induced oxidative stress and injury in the gerbil hippocampus. Brain Res. 1090, 182–189 10.1016/j.brainres.2006.03.060
    1. Wang Y., Kimura K., Inokuma K., Saito M., Kontani Y., Kobayashi Y., et al. (2006b). Potential contribution of vasoconstriction to suppression of heat loss and homeothermic regulation in UCP1-deficient mice. Pflugers Arch. 452, 363–369 10.1007/s00424-005-0036-3
    1. Weimer M. S., Hanke W. (2005). Correlation between the durations of refractory period and intrinsic optical signal of retinal spreading depression during temperature variations. Exp. Brain Res. 161, 201–208 10.1007/s00221-004-2060-5
    1. Whitby J. D., Dunkin L. J. (1971). Cerebral, oesophageal and nasopharyngeal temperatures. Br. J. Anaesth. 43, 673–676 10.1093/bja/43.7.673
    1. Wolfson L. I., Katzman R., Escriva A. (1974). Clearance of amine metabolites from the cerebrospinal fluid: the brain as a “sink.” Neurology 24, 772–779 10.1212/WNL.24.8.772
    1. Xie T., Mccann U. D., Kim S., Yuan J., Ricaurte G. A. (2000). Effect of temperature on dopamine transporter function and intracellular accumulation of methamphetamine: implications for methamphetamine-induced dopaminergic neurotoxicity. J. Neurosci. 20, 7838–7845
    1. Yablonskiy D. A., Ackerman J. J., Raichle M. E. (2000). Coupling between changes in human brain temperature and oxidative metabolism during prolonged visual stimulation. Proc. Natl. Acad. Sci. U.S.A. 97, 7603–7608 10.1073/pnas.97.13.7603
    1. Yang X. F., Chang J. H., Rothman S. M. (2003). Long-lasting anticonvulsant effect of focal cooling on experimental neocortical seizures. Epilepsia 44, 1500–1505 10.1111/j.0013-9580.2003.23003.x
    1. Yu Y., Hill A. P., Mccormick D. A. (2012). Warm body temperature facilitates energy efficient cortical action potentials. PLoS Comput. Biol. 8:e1002456 10.1371/journal.pcbi.1002456
    1. Yusuf J., Khan M. U., Cheema Y., Bhattacharya S. K., Weber K. T. (2012). Disturbances in calcium metabolism and cardiomyocyte necrosis: the role of calcitropic hormones. Prog. Cardiovasc. Dis. 55, 77–86 10.1016/j.pcad.2012.02.004
    1. Zenker W., Kubik S. (1996). Brain cooling in humans–anatomical considerations. Anat. Embryol. (Berl.) 193, 1–13 10.1007/BF00186829
    1. Zhang E. T., Inman C. B., Weller R. O. (1990). Interrelationships of the pia mater and the perivascular (Virchow-Robin) spaces in the human cerebrum. J. Anat. 170, 111–123
    1. Zhou J., Empey P. E., Bies R. R., Kochanek P. M., Poloyac S. M. (2011). Cardiac arrest and therapeutic hypothermia decrease isoform-specific cytochrome P450 drug metabolism. Drug Metab. Dispos. 39, 2209–2218 10.1124/dmd.111.040642
    1. Zhu M., Ackerman J. J., Yablonskiy D. A. (2009). Body and brain temperature coupling: the critical role of cerebral blood flow. J. Comp. Physiol. B 179, 701–710 10.1007/s00360-009-0352-6

Source: PubMed

3
Předplatit