Influence of intranasal and carotid cooling on cerebral temperature balance and oxygenation

Lars Nybo, Michael Wanscher, Niels H Secher, Lars Nybo, Michael Wanscher, Niels H Secher

Abstract

The present study evaluated the influence of intranasal cooling with balloon catheters, increased nasal ventilation, or percutaneous cooling of the carotid arteries on cerebral temperature balance and oxygenation in six healthy male subjects. Aortic arch and internal jugular venous blood temperatures were measured to assess the cerebral heat balance and corresponding paired blood samples were obtained to evaluate cerebral metabolism and oxygenation at rest, following 60 min of intranasal cooling, 5 min of nasal ventilation, and 15 min with carotid cooling. Intranasal cooling induced a parallel drop in jugular venous and arterial blood temperatures by 0.30 ± 0.08°C (mean ± SD), whereas nasal ventilation and carotid cooling failed to lower the jugular venous blood temperature. The magnitude of the arterio-venous temperature difference across the brain remained unchanged at -0.33 ± 0.05°C following intranasal and carotid cooling, but increased to -0.44 ± 0.11°C (P < 0.05) following nasal ventilation. Calculated cerebral capillary oxygen tension was 43 ± 3 mmHg at rest and remained unchanged during intranasal and carotid cooling, but decreased to 38 ± 2 mmHg (P < 0.05) following increased nasal ventilation. In conclusion, percutaneous cooling of the carotid arteries and intranasal cooling with balloon catheters are insufficient to influence cerebral oxygenation in normothermic subjects as the cooling rate is only 0.3°C per hour and neither intranasal nor carotid cooling is capable of inducing selective brain cooling.

Keywords: balloon catheter; brain temperature; cerebral oxygenation; cooling; hypothermia.

Figures

Figure 1
Figure 1
Arterial (open symbols) and jugular venous blood temperature (filled symbols) at rest (0 min) and during 60 min of nasal cooling with 1°C saline circulated through the nasal catheters at a flow rate of 200 ml/min. *Signifies that the value is lower compared to corresponding value at 0 min (P < 0.05). The jugular venous blood temperature was significantly higher than that of the arterial blood at all time points (P < 0.001).
Figure 2
Figure 2
Top panel. Average face skin (mean of cheek and forehead), neck skin over the carotid arteries, and intra-nasal temperatures at rest (baseline), during intranasal cooling, increased nasal ventilation and carotid cooling. Lower panel shows the delta difference between arterial (aortic arch) and internal jugular venous blood temperatures at rest during intranasal cooling, increased nasal ventilation and carotid cooling. *Indicates that the value is significantly different from corresponding value at rest (P < 0.05).
Figure 3
Figure 3
Arterial, jugular venous and mean capillary oxygen tension (lower panel) and saturation (top panel) at rest (baseline), following 1 h of intranasal cooling, after 5 min of increased nasal ventilation and 15 min of carotid cooling. *Indicates that the value is different from corresponding value at rest (P < 0.05).

References

    1. Abou-Chebl A., Sung G., Barbut D., Torbey M. (2011). Local brain temperature reduction through intranasal cooling with the RhinoChill device: preliminary safety data in brain-injured patients. Stroke 42, 2164–2169 10.1161/STROKEAHA.110.613000
    1. Brengelmann G. L. (1993). Specialized brain cooling in humans? FASEB J. 7, 1148–1153
    1. Cabanac M. (1993). Selective brain cooling in humans: “fancy” or fact? FASEB J. 7, 1143–1146
    1. Covaciu L., Weis J., Bengtsson C., Allers M., Lunderquist A., Ahlstrom H., et al. (2011). Brain temperature in volunteers subjected to intranasal cooling. Int. Care Med. 37, 1277–1284 10.1007/s00134-011-2264-7
    1. Geurts M., MacLeod M. R., Kollmar R., Kremer P. H., van der Worp H. B. (2014). Therapeutic hypothermia and the risk of infection: a systematic review and meta-analysis. Crit. Care Med. 42, 231–242 10.1097/CCM.0b013e3182a276e8
    1. Harris B., Andrews P. J., Murray G. D., Forbes J., Moseley O. (2012). Systematic review of head cooling in adults after traumatic brain injury and stroke. Health Technol. Assess. 16, 1–175 10.3310/hta16450
    1. Hoesch R. E., Geocadin R. G. (2007). Therapeutic hypothermia for global and focal ischemic brain injury - a cool way to improve neurologic outcomes. Neurologist 13, 331–342 10.1097/NRL.0b013e318154bb79
    1. Holzer M. (2008). Devices for rapid induction of hypothermia. Eur. J. Anaesthesiol. Suppl. 42, 31–38 10.1017/S0265021507003274
    1. Holzer M. (2013). Therapeutic hypothermia following cardiac arrest. Best Pract. Res. Clin. Anaesthesiol. 27, 335–346 10.1016/j.bpa.2013.07.003
    1. Immink R. V., Pott F., Secher N. H., van Lieshout J. J. (in press). Hyperventilation, cerebral perfusion and syncope. J. Appl. Physiol. 10.1152/japplphysiol.00637.2013
    1. Jessen C. (2001). Selective brain cooling in mammals and birds. Jpn. J. Physiol. 51, 291–301 10.2170/jjphysiol.51.291
    1. Jørgensen L. (1995). Transcranial Doppler ultrasound for cerebral perfusion. Acta Physiol. Scand. 154(Suppl. 625), 1–44
    1. Kety S., Schmidt C. (1948). The effects of altered arterial tensions of carbon dioxide and oxygen on cerebral blood flow and cerebral oxygen consumption of normal young men. J. Clin. Invest. 27, 484–492 10.1172/JCI101995
    1. Klementavicius R., Nemoto E. M., Yonas H. (1996). The Q10 ratio for basal cerebral metabolic rate of oxygen in rats. J. Neurosurg. 85, 482–487 10.3171/jns.1996.85.3.0482
    1. Koehn J., Kollmar R., Cimpianu C. L., Kallmunzer B., Moeller S., Schwab S., et al. (2012). Head and neck cooling decreases tympanic and skin temperature, but significantly increases blood pressure. Stroke 43, 2142–2148 10.1161/STROKEAHA.112.652248
    1. Lay C., Badjatia N. (2010). Therapeutic hypothermia after cardiac arrest. Curr. Atheroscler. Rep. 12, 336–342 10.1007/s11883-010-0119-2
    1. Maloney S. K., Mitchell D., Mitchell G., Fuller A. (2007). Absence of selective brain cooling in unrestrained baboons exposed to heat. Am. J. Physiol. Regul. Integr. Comp. Physiol. 292, R2059–R2067 10.1152/ajpregu.00809.2006
    1. Mariak Z., White M. D., Lewko J., Lyson T., Piekarski P. (1999). Direct cooling of the human brain by heat loss from the upper respiratory tract. J. Appl. Physiol. 87, 1609–1613
    1. Nielsen B., Nielsen M. (1962). Body temperature during work at different environmental temperatures. Acta Physiol. Scand. 56, 120–129 10.1111/j.1748-1716.1962.tb02489.x
    1. Nybo L., Secher N. H. (2011). Counterpoint: humans do not demonstrate selective brain cooling during hyperthermia. J. Appl. Physiol. 110, 571–573 10.1152/japplphysiol.00992.2010a
    1. Nybo L., Secher N. H., Nielsen B. (2002). Inadequate heat release from the human brain during prolonged exercise with hyperthermia. J. Physiol. 545, 697–704 10.1113/jphysiol.2002.030023
    1. Piepgras A., Roth H., Schurer L., Tillmans R., Quintel M., Herrmann P., et al. (1998). Rapid active internal core cooling for induction of moderate hypothermia in head injury by use of an extracorporeal heat exchanger. Neurosurgery 42, 311–317 10.1097/00006123-199802000-00058
    1. Poli S., Purrucker J., Priglinger M., Diedler J., Sykora M., Popp E., et al. (2013). Induction of cooling with a passive head and neck cooling device: effects on brain temperature after stroke. Stroke 44, 708–713 10.1161/STROKEAHA.112.672923
    1. Poli S., Purrucker J., Priglinger M., Sykora M., Diedler J., Rupp A., et al. (2014). Safety evaluation of nasopharyngeal cooling (RhinoChill) in stroke patients: an observational study. Neurocrit. Care 20, 98–105 10.1007/s12028-013-9904-4
    1. Rasch W., Samson P., Cote J., Cabanac M. (1991). Heat loss from the human head during exercise. J. Appl. Physiol. 71, 590–595
    1. Rasmussen P., Dawson E. A., Nybo L., van Lieshout J. J., Secher N. H., Gjedde A. (2006). Capillary-oxygenation-level-dependent near-infrared spectrometry in frontal lobe of humans. J. Cereb. Blood Flow Metab. 27, 1082–1093 10.1038/sj.jcbfm.9600416
    1. Serrador J. M., Picot P. A., Rutt B. K., Shoemaker J. K., Bondar R. L. (2000). MRI measures of middle cerebral artery diameter in conscious humans during simulated orthostasis. Stroke 31, 1672–1678 10.1161/01.STR.31.7.1672
    1. Springborg J. B., Springborg K. K., Romner B. (2013). First clinical experience with intranasal cooling for hyperthermia in brain-injured patients. Neurocrit. Care 18, 400–405 10.1007/s12028-012-9806-x
    1. Testori C., Holzer M., Sterz F., Stratil P., Hartner Z., Moscato F., et al. (2013). Rapid induction of mild therapeutic hypothermia by extracorporeal veno-venous blood cooling in humans. Resuscitation 84, 1051–1055 10.1016/j.resuscitation.2013.03.013
    1. Valdueza J. M., Draganski B., Hoffmann O., Dirnagl U., Einhaupl K. M. (1999). Analysis of CO2 vasomotor reactivity and vessel diameter changes by simultaneous venous and arterial Doppler recordings. Stroke 30, 81–86 10.1161/01.STR.30.1.81
    1. White M. D., Greiner J. G., McDonald P. L. (2010). Point: counterpoint “Humans do/do not demonstrate selective brain cooling during hyperthermia.” J. Appl. Physiol. 110, 569–571 10.1152/japplphysiol.00992.2010

Source: PubMed

3
Předplatit