Dietary Alteration of the Gut Microbiome and Its Impact on Weight and Fat Mass: A Systematic Review and Meta-Analysis

George Kunnackal John, Lin Wang, Julie Nanavati, Claire Twose, Rajdeep Singh, Gerard Mullin, George Kunnackal John, Lin Wang, Julie Nanavati, Claire Twose, Rajdeep Singh, Gerard Mullin

Abstract

Dietary alteration of the gut microbiome is an important target in the treatment of obesity. Animal and human studies have shown bidirectional weight modulation based on the probiotic formulation used. In this study, we systematically reviewed the literature and performed a meta-analysis to assess the impact of prebiotics, probiotics and synbiotics on body weight, body mass index (BMI) and fat mass in adult human subjects. We searched Medline (PubMed), Embase, the Cochrane Library and the Web of Science to identify 4721 articles, of which 41 were subjected to full-text screening, yielding 21 included studies with 33 study arms. Probiotic use was associated with significant decreases in BMI, weight and fat mass. Studies of subjects consuming prebiotics demonstrated a significant reduction in body weight, whereas synbiotics did not show an effect. Overall, when the utilization of gut microbiome-modulating dietary agents (prebiotic/probiotic/synbiotic) was compared to placebo, there were significant decreases in BMI, weight and fat mass. In summary, dietary agents for the modulation of the gut microbiome are essential tools in the treatment of obesity and can lead to significant decreases in BMI, weight and fat mass. Further studies are needed to identify the ideal dose and duration of supplementation and to assess the durability of this effect.

Keywords: gut microbiome; obesity treatment; probiotics; weight loss.

Conflict of interest statement

The authors declare no conflict of interest.

Figures

Figure 1
Figure 1
Influence of the gut microbiome on obesity. The figure depicts the bidirectional influence of gut health on obesity via alterations in the microbiome. SCFA: short-chain fatty acid; IgA: immunoglobulin A; GLP-1: glucagon-like peptide-1; HPA: hypothalamic–pituitary–adrenal (axis).
Figure 2
Figure 2
Study flow diagram.
Figure 3
Figure 3
Forest plot of effect of any dietary modulation agent (prebiotic/probiotic/synbiotic) on: (A) body mass index (BMI); (B) body weight; (C) fat mass. Data synthesis using the random effects model for the mean differences amongst the included randomized controlled trials comparing all gut microbiome-modulating interventions (prebiotics/probiotics/synbiotics) vs. placebo showed significant differences for BMI in 19 studies (A) (overall mean difference (MD) = −0.28 (95% CI −0.43, −0.14), p < 0.001), body weight reduction in 18 studies (B) (MD = −0.64 kg (95% CI −1.03, −0.26), p < 0.001) and fat mass in 11 studies (C) (MD = −0.60 kg (95% CI −1.05, −0.16), p < 0.001). CI: Confidence intervals. SD: Standard deviation.
Figure 4
Figure 4
Forest plot of effect of probiotics on: (A) BMI; (B) body weight; (C) fat mass. Data synthesis using the random effects model for the mean differences amongst the included randomized controlled trials comparing probiotics vs. placebo showed significant differences for BMI in 14 study arms (A) (overall MD = −0.33 (95% CI −0.47, −0.18), p < 0.001), body weight reduction in 13 study arms (B) (MD = −0.65 kg (95% CI −1.12, −0.18), p < 0.01) and fat mass in 8 study arms (C) (MD = −0.94 kg (95% CI −1.17, −0.72), p < 0.001).
Figure 5
Figure 5
Forest plot of effect of prebiotics on: (A) BMI; (B) body weight; (C) fat mass. Data synthesis using the random effects model for the mean differences in body mass index (BMI), body weight and fat mass for the included randomized controlled trials of prebiotics versus placebo. Prebiotics intervention was found to trend towards a reduction in BMI in five studies with a MD = −0.27 ((95% CI −0.56, 0.02), p = 0.07) (Figure 5A), while the reduction in body weight in five studies was significant (MD = −0.90 kg (95% CI −1.77, −0.02), p = 0.04), Figure 5B. The prebiotics did not change the fat mass when compared to the placebo in three clinical trials, Figure 5C.
Figure 6
Figure 6
Forest plot of effect of synbiotics on: (A) BMI; (B) body weight. Data synthesis using the random effects model for the mean differences in BMI and body weight for the included randomized controlled trials of synbiotics versus placebo. There was no significant reduction in BMI or body weight in the three studies (Figure 6A,B).
Figure 7
Figure 7
Risk of bias assessment. (A) Details of included studies; (B) overall summary.

References

    1. BMI Classification. [(accessed on 9 September 2017)]; Available online: .
    1. Kivimaki M., Kuosma E., Ferrie J.E., Luukkonen R., Nyberg S.T., Alfredsson L., Batty G.D., Brunner E.J., Fransson E., Goldberg M., et al. Overweight, obesity, and risk of cardiometabolic multimorbidity: Pooled analysis of individual-level data for 120,813 adults from 16 cohort studies from the USA and Europe. Lancet Public Health. 2017;2:e277–e285. doi: 10.1016/S2468-2667(17)30074-9.
    1. McMillan D.C., Sattar N., Lean M., McArdle C.S. Obesity and cancer. BMJ. 2006;333:1109–1111. doi: 10.1136/bmj.39042.565035.BE1.
    1. Reilly J.J., Armstrong J., Dorosty A.R., Emmett P.M., Ness A., Rogers I., Steer C., Sherriff A. Early life risk factors for obesity in childhood: Cohort study. BMJ. 2005;330:1357. doi: 10.1136/bmj.38470.670903.E0.
    1. Baquero F., Nombela C. The microbiome as a human organ. Clin. Microbiol. Infect. 2012;18:2–4. doi: 10.1111/j.1469-0691.2012.03916.x.
    1. Okeke F., Roland B.C., Mullin G.E. The role of the gut microbiome in the pathogenesis and treatment of obesity. Glob. Adv. Health Med. 2014;3:44–57. doi: 10.7453/gahmj.2014.018.
    1. Flint A., Raben A., Astrup A., Holst J.J. Glucagon-like peptide 1 promotes satiety and suppresses energy intake in humans. J. Clin. Investig. 1998;101:515–520. doi: 10.1172/JCI990.
    1. Vinolo M.A.R., Rodrigues H.G., Nachbar R.T., Curi R. Regulation of inflammation by short chain fatty acids. Nutrients. 2011;3:858–876. doi: 10.3390/nu3100858.
    1. Ríos-Covián D., Ruas-Madiedo P., Margolles A., Gueimonde M., de los Reyes-Gavilán C.G., Salazar N. Intestinal short chain fatty acids and their link with diet and human health. Front. Microbiol. 2016;7:185. doi: 10.3389/fmicb.2016.00185.
    1. Mandard S., Zandbergen F., van Straten E., Wahli W., Kuipers F., Muller M., Kersten S. The fasting-induced adipose factor/angiopoietin-like protein 4 is physically associated with lipoproteins and governs plasma lipid levels and adiposity. J. Biol. Chem. 2006;281:934–944. doi: 10.1074/jbc.M506519200.
    1. Planer J.D., Peng Y., Kau A.L., Blanton L.V., Ndao I.M., Tarr P.I., Warner B.B., Gordon J.I. Development of the gut microbiota and mucosal IgA responses in twins and gnotobiotic mice. Nature. 2016;534:263–266. doi: 10.1038/nature17940.
    1. Everard A., Belzer C., Geurts L., Ouwerkerk J.P., Druart C., Bindels L.B., Guiot Y., Derrien M., Muccioli G.G., Delzenne N.M., et al. Cross-talk between Akkermansia muciniphila and intestinal epithelium controls diet-induced obesity. Proc. Natl. Acad. Sci. USA. 2013;110:9066–9071. doi: 10.1073/pnas.1219451110.
    1. Dao M.C., Everard A., Aron-Wisnewsky J., Sokolovska N., Prifti E., Verger E.O., Kayser B.D., Levenez F., Chilloux J., Hoyles L., et al. Akkermansia muciniphila and improved metabolic health during a dietary intervention in obesity: Relationship with gut microbiome richness and ecology. Gut. 2016;65:426–436. doi: 10.1136/gutjnl-2014-308778.
    1. Bäckhed F., Ding H., Wang T., Hooper L.V., Koh G.Y., Nagy A., Semenkovich C.F., Gordon J.I. The gut microbiota as an environmental factor that regulates fat storage. Proc. Natl. Acad. Sci. USA. 2004;101:15718–15723. doi: 10.1073/pnas.0407076101.
    1. Nieuwdorp M., Gilijamse P.W., Pai N., Kaplan L.M. Role of the microbiome in energy regulation and metabolism. Gastroenterology. 2014;146:1525–1533. doi: 10.1053/j.gastro.2014.02.008.
    1. Turnbaugh P.J., Ley R.E., Mahowald M.A., Magrini V., Mardis E.R., Gordon J.I. An obesity-associated gut microbiome with increased capacity for energy harvest. Nature. 2006;444:1027–1031. doi: 10.1038/nature05414.
    1. Ley R.E., Backhed F., Turnbaugh P., Lozupone C.A., Knight R.D., Gordon J.I. Obesity alters gut microbial ecology. Proc. Natl. Acad. Sci. USA. 2005;102:11070–11075. doi: 10.1073/pnas.0504978102.
    1. Den Besten G., van Eunen K., Groen A.K., Venema K., Reijngoud D.-J., Bakker B.M. The role of short-chain fatty acids in the interplay between diet, gut microbiota, and host energy metabolism. J. Lipid Res. 2013;54:2325–2340. doi: 10.1194/jlr.R036012.
    1. John G.K., Mullin G.E. The gut microbiome and obesity. Curr. Oncol. Rep. 2016;18:45. doi: 10.1007/s11912-016-0528-7.
    1. Ley R.E. Obesity and the human microbiome. Curr. Opin. Gastroenterol. 2010;26:5–11. doi: 10.1097/MOG.0b013e328333d751.
    1. Turnbaugh P.J., Hamady M., Yatsunenko T., Cantarel B.L., Duncan A., Ley R.E., Sogin M.L., Jones W.J., Roe B.A., Affourtit J.P., et al. A core gut microbiome in obese and lean twins. Nature. 2009;457:480–484. doi: 10.1038/nature07540.
    1. Park S., Bae J.H. Probiotics for weight loss: A systematic review and meta-analysis. Nutr. Res. 2015;35:566–575. doi: 10.1016/j.nutres.2015.05.008.
    1. Dahiya D.K., Renuka, Puniya M., Shandilya U.K., Dhewa T., Kumar N., Kumar S., Puniya A.K., Shukla P. Gut microbiota modulation and its relationship with obesity using prebiotic fibers and probiotics: A review. Front. Microbiol. 2017;8:563. doi: 10.3389/fmicb.2017.00563.
    1. Zhang Q., Wu Y., Fei X. Effect of probiotics on body weight and body-mass index: A systematic review and meta-analysis of randomized, controlled trials. Int. J. Food Sci. Nutr. 2015;67:571–580. doi: 10.1080/09637486.2016.1181156.
    1. Dror T., Dickstein Y., Dubourg G., Paul M. Microbiota manipulation for weight change. Microb. Pathog. 2017;106:146–161. doi: 10.1016/j.micpath.2016.01.002.
    1. Brahe L.K., Astrup A., Larsen L.H. Can we prevent obesity-related metabolic diseases by dietary modulation of the gut microbiota? Adv. Nutr. 2016;7:90–101. doi: 10.3945/an.115.010587.
    1. Pineiro M., Asp N.-G., Reid G., Macfarlane S., Morelli L., Brunser O., Tuohy K. FAO Technical Meeting on Prebiotics. J. Clin. Gastroenterol. 2008;42:S156–S159. doi: 10.1097/MCG.0b013e31817f184e.
    1. Rowland I.R., Capurso L., Collins K., Cummings J., Delzenne N., Goulet O., Guarner F., Marteau P., Meier R. Current level of consensus on probiotic science-Report of an expert meeting—London, 23 November 2009. Gut Microbes. 2010;1:436–439. doi: 10.4161/gmic.1.6.13610.
    1. Million M., Angelakis E., Paul M., Armougom F., Leibovici L., Raoult D. Comparative meta-analysis of the effect of Lactobacillus species on weight gain in humans and animals. Microb. Pathog. 2012;53:100–108. doi: 10.1016/j.micpath.2012.05.007.
    1. Kellow N.J., Coughlan M.T., Reid C.M. Metabolic benefits of dietary prebiotics in human subjects: A systematic review of randomised controlled trials. Br. J. Nutr. 2014;111:1147–1161. doi: 10.1017/S0007114513003607.
    1. Mullin G., John G., Singh R., Nanavati J., Alammar N. Dietary alteration of the gut microbiome and its impact on weight: A systematic review and meta-analysis. [(accessed on 5 December 2017)]; PROSPERO 2017 CRD42017075883. Available online: .
    1. Medline (PubMed) National Library of Medicine. [(accessed on 15 March 2018)]; Available online:
    1. Elsevier Embase. [(accessed on 15 March 2018)]; Available online: .
    1. Clarivate Analytics Web of Science. [(accessed on 15 March 2018)]; Available online: .
    1. Higgins J.P.T., Altman D.G., Gøtzsche P.C., Jüni P., Moher D., Oxman A.D., Savović J., Schulz K.F., Weeks L., Sterne J.A.C. The Cochrane Collaboration’s tool for assessing risk of bias in randomised trials. BMJ. 2011;343:d5928. doi: 10.1136/bmj.d5928.
    1. Higgins J.P.T., Green S. Cochrane Handbook for Systematic Reviews of Interventions. John Wiley & Sons; West Sussex, UK: 2011.
    1. Fu R., Vandermeer B.W., Shamliyan T.A., O’Neil M.E., Yazdi F., Fox S.H., Morton S.C. Methods Guide for Effectiveness and Comparative Effectiveness Reviews. Agency for Healthcare Research and Quality; Rockville, MD, USA: 2008. AHRQ methods for effective health carehandling continuous outcomes in quantitative synthesis.
    1. Fernandes R., Beserra B.T., Mocellin M.C., Kuntz M.G., da Rosa J.S., de Miranda R.C., Schreiber C.S., Frode T.S., Nunes E.A., Trindade E.B. Effects of prebiotic and synbiotic supplementation on inflammatory markers and anthropometric indices after Roux-en-Y gastric bypass: A randomized, triple-blind, placebo-controlled pilot study. J. Clin. Gastroenterol. 2016;50:208–217. doi: 10.1097/MCG.0000000000000328.
    1. Asemi Z., Zare Z., Shakeri H., Sabihi S., Esmaillzadeh A. Effect of multispecies probiotic supplements on metabolic profiles, hs-CRP, and oxidative stress in patients with Type 2 diabetes. Ann. Nutr. Metab. 2013;63:1–9. doi: 10.1159/000349922.
    1. Canfora E.E., van der Beek C.M., Hermes G.D.A., Goossens G.H., Jocken J.W.E., Holst J.J., van Eijk H.M., Venema K., Smidt H., Zoetendal E.G., et al. Supplementation of diet with galacto-oligosaccharides increases bifidobacteria, but not insulin sensitivity, in obese prediabetic individuals. J. Pharm. Pharmacol. 2017;153:87–97.e3. doi: 10.1053/j.gastro.2017.03.051.
    1. Gomes A.C., de Sousa R.G., Botelho P.B., Gomes T.L., Prada P.O., Mota J.F. The additional effects of a probiotic mix on abdominal adiposity and antioxidant status: A double-blind, randomized trial. Obesity. 2017;25:30–38. doi: 10.1002/oby.21671.
    1. Higashikawa F., Noda M., Awaya T., Danshiitsoodol N., Matoba Y., Kumagai T., Sugiyama M. Antiobesity effect of Pediococcus pentosaceus LP28 on overweight subjects: A randomized, double-blind, placebo-controlled clinical trial. Eur. J. Clin. Nutr. 2016;70:582–587. doi: 10.1038/ejcn.2016.17.
    1. Javadi L., Ghavami M., Khoshbaten M., Safaiyan A., Barzegari A., Gargari B.P. The potential role of probiotics or/and prebiotic on serum lipid profile and insulin resistance in alcoholic fatty liver disease: A double blind randomized clinical trial. Crescent J. Med. Biol. Sci. 2017;4:131–138.
    1. Jung S., Lee Y.J., Kim M., Kim M., Kwak J.H., Lee J.W., Ahn Y.T., Sim J.H., Lee J.H. Supplementation with two probiotic strains, Lactobacillus curvatus HY7601 and Lactobacillus plantarum KY1032, reduced body adiposity and Lp-PLA(2) activity in overweight subjects. J. Funct. Foods. 2015;19:744–752. doi: 10.1016/j.jff.2015.10.006.
    1. Jung S.P., Lee K.M., Kang J.H., Yun S.I., Park H.O., Moon Y., Kim J.Y. Effect of Lactobacillus gasseri BNR17 on overweight and obese adults: A randomized, double-blind clinical trial. Korean J. Fam. Med. 2013;34:80–89. doi: 10.4082/kjfm.2013.34.2.80.
    1. Kadooka Y., Sato M., Imaizumi K., Ogawa A., Ikuyama K., Akai Y., Okano M., Kagoshima M., Tsuchida T. Regulation of abdominal adiposity by probiotics (Lactobacillus gasseri SBT2055) in adults with obese tendencies in a randomized controlled trial. Eur. J. Clin. Nutr. 2010;64:636–643. doi: 10.1038/ejcn.2010.19.
    1. Kadooka Y., Sato M., Ogawa A., Miyoshi M., Uenishi H., Ogawa H., Ikuyama K., Kagoshima M., Tsuchida T. Effect of Lactobacillus gasseri SBT2055 in fermented milk on abdominal adiposity in adults in a randomised controlled trial. Br. J. Nutr. 2013;110:1696–1703. doi: 10.1017/S0007114513001037.
    1. Kim M., Kim M., Kang M., Yoo H.J., Kim M.S., Ahn Y.T., Sim J.H., Jee S.H., Lee J.H. Effects of weight loss using supplementation with Lactobacillus strains on body fat and medium-chain acylcarnitines in overweight individuals. Food Funct. 2017;8:250–261. doi: 10.1039/C6FO00993J.
    1. Lambert J.E., Parnell J.A., Tunnicliffe J.M., Han J., Sturzenegger T., Reimer R.A. Consuming yellow pea fiber reduces voluntary energy intake and body fat in overweight/obese adults in a 12-week randomized controlled trial. Clin. Nutr. 2017;36:126–133. doi: 10.1016/j.clnu.2015.12.016.
    1. Leber B., Tripolt N.J., Blattl D., Eder M., Wascher T.C., Pieber T.R., Stauber R., Sourij H., Oettl K., Stadlbauer V. The influence of probiotic supplementation on gut permeability in patients with metabolic syndrome: An open label, randomized pilot study. Eur. J. Clin. Nutr. 2012;66:1110–1115. doi: 10.1038/ejcn.2012.103.
    1. Madjd A., Taylor M.A., Mousavi N., Delavari A., Malekzadeh R., Macdonald I.A., Farshchi H.R. Comparison of the effect of daily consumption of probiotic compared with low-fat conventional yogurt on weight loss in healthy obese women following an energy-restricted diet: A randomized controlled trial. Am. J. Clin. Nutr. 2016;103:323–329. doi: 10.3945/ajcn.115.120170.
    1. Minami J., Kondo S., Yanagisawa N., Odamaki T., Xiao J.Z., Abe F., Nakajima S., Hamamoto Y., Saitoh S., Shimoda T. Oral administration of Bifidobacterium breve B-3 modifies metabolic functions in adults with obese tendencies in a randomised controlled trial. J. Nutr. Sci. 2015;4:e17. doi: 10.1017/jns.2015.5.
    1. Rabiei S., Shakerhosseini R., Saadat N. The effects of symbiotic therapy on anthropometric measures, body composition and blood pressure in patient with metabolic syndrome: A triple blind RCT. Med. J. Islam. Repub. Iran. 2015;29:213.
    1. Reimer R.A., Willis H.J., Tunnicliffe J.M., Park H., Madsen K.L., Soto-Vaca A. Inulin-type fructans and whey protein both modulate appetite but only fructans alter gut microbiota in adults with overweight/obesity: A randomized controlled trial. Mol. Nutr. Food Res. 2017;61 doi: 10.1002/mnfr.201700484.
    1. Sanchez M., Darimont C., Drapeau V., Emady-Azar S., Philippe L., Ammon-Zuffrey C., Doré J., Tremblay A. Effect of Lactobacillus rhamnosus CGMCC1.3724 supplementation on weight loss and maintenance in obese men and women. Can. J. Diabetes. 2013;37:S269. doi: 10.1016/j.jcjd.2013.03.270.
    1. Sharafedtinov K.K., Plotnikova O.A., Alexeeva R.I., Sentsova T.B., Songisepp E., Stsepetova J., Smidt I., Mikelsaar M. Hypocaloric diet supplemented with probiotic cheese improves body mass index and blood pressure indices of obese hypertensive patients—A randomized double-blind placebo-controlled pilot study. Nutr. J. 2013;12:138. doi: 10.1186/1475-2891-12-138.
    1. Stenman L.K., Lehtinen M.J., Meland N., Christensen J.E., Yeung N., Saarinen M.T., Courtney M., Burcelin R., Lahdeaho M.L., Linros J., et al. Probiotic with or without fiber controls body fat mass, associated with serum zonulin, in overweight and obese adults-randomized controlled trial. PLoS ONE. 2016;13:190–200. doi: 10.1016/j.ebiom.2016.10.036.
    1. Zarrati M., Salehi E., Nourijelyani K., Mofid V., Zadeh M.J., Najafi F., Ghaflati Z., Bidad K., Chamari M., Karimi M., et al. Effects of probiotic yogurt on fat distribution and gene expression of proinflammatory factors in peripheral blood mononuclear cells in overweight and obese people with or without weight-loss diet. J. Am. Coll. Nutr. 2014;33:417–425. doi: 10.1080/07315724.2013.874937.
    1. Jones S.E., Versalovic J. Probiotic Lactobacillus reuteri biofilms produce antimicrobial and anti-inflammatory factors. BMC Microbiol. 2009;9:35. doi: 10.1186/1471-2180-9-35.
    1. Madsen K., Cornish A., Soper P., McKaigney C., Jijon H., Yachimec C., Doyle J., Jewell L., De Simone C. Probiotic bacteria enhance murine and human intestinal epithelial barrier function. Gastroenterology. 2001;121:580–591. doi: 10.1053/gast.2001.27224.
    1. He M., Shi B. Gut microbiota as a potential target of metabolic syndrome: The role of probiotics and prebiotics. Cell Biosci. 2017;7:54. doi: 10.1186/s13578-017-0183-1.
    1. Cani P.D., Amar J., Iglesias M.A., Poggi M., Knauf C., Bastelica D., Neyrinck A.M., Fava F., Tuohy K.M., Chabo C. Metabolic endotoxemia initiates obesity and insulin resistance. Diabetes. 2007;56:1761–1772. doi: 10.2337/db06-1491.
    1. Begley M., Hill C., Gahan C.G. Bile salt hydrolase activity in probiotics. Appl. Environ. Microbiol. 2006;72:1729–1738. doi: 10.1128/AEM.72.3.1729-1738.2006.
    1. Topping D.L., Clifton P.M. Short-chain fatty acids and human colonic function: Roles of resistant starch and nonstarch polysaccharides. Physiol. Rev. 2001;81:1031–1064. doi: 10.1152/physrev.2001.81.3.1031.
    1. Willemsen L.E.M., Koetsier M.A., van Deventer S.J.H., van Tol E.A.F. Short chain fatty acids stimulate epithelial mucin 2 expression through differential effects on prostaglandin E(1) and E(2) production by intestinal myofibroblasts. Gut. 2003;52:1442–1447. doi: 10.1136/gut.52.10.1442.
    1. Wong J.M.W., de Souza R., Kendall C.W.C., Emam A., Jenkins D.J.A. Colonic health: Fermentation and short chain fatty acids. J. Clin. Gastroenterol. 2006;40:235–243. doi: 10.1097/00004836-200603000-00015.
    1. Cani P.D., Bibiloni R., Knauf C., Waget A., Neyrinck A.M., Delzenne N.M., Burcelin R. Changes in gut microbiota control metabolic endotoxemia-induced inflammation in high-fat diet-induced obesity and diabetes in mice. Diabetes. 2008;57:1470–1481. doi: 10.2337/db07-1403.
    1. Ley R.E., Turnbaugh P.J., Klein S., Gordon J.I. Microbial ecology: Human gut microbes associated with obesity. Nature. 2006;444:1022–1023. doi: 10.1038/4441022a.
    1. Turnbaugh P.J., Backhed F., Fulton L., Gordon J.I. Diet-induced obesity is linked to marked but reversible alterations in the mouse distal gut microbiome. Cell Host Microbe. 2008;3:213–223. doi: 10.1016/j.chom.2008.02.015.
    1. Million M., Raoult D. The role of the manipulation of the gut microbiota in obesity. Curr. Infect. Dis. Rep. 2013;15:25–30. doi: 10.1007/s11908-012-0301-5.

Source: PubMed

3
Předplatit