Efficacy and safety of exogenous ketone bodies for preventive treatment of migraine: A study protocol for a single-centred, randomised, placebo-controlled, double-blind crossover trial

Elena Gross, Niveditha Putananickal, Anna-Lena Orsini, Simone Schmidt, Deborah R Vogt, Sven Cichon, Peter Sandor, Dirk Fischer, Elena Gross, Niveditha Putananickal, Anna-Lena Orsini, Simone Schmidt, Deborah R Vogt, Sven Cichon, Peter Sandor, Dirk Fischer

Abstract

Background: Currently available prophylactic migraine treatment options are limited and are associated with many, often intolerable, side-effects. Various lines of research suggest that abnormalities in energy metabolism are likely to be part of migraine pathophysiology. Previously, a ketogenic diet (KD) has been reported to lead to a drastic reduction in migraine frequency. An alternative method to a strict KD is inducing a mild nutritional ketosis (0.4-2 mmol/l) with exogenous ketogenic substances. The aim of this randomised, placebo-controlled, double-blind, crossover, single-centre trial is to demonstrate safety and superiority of beta-hydroxybutyrate (βHB) in mineral salt form over placebo in migraine prevention.

Methods/design: Forty-five episodic migraineurs (5-14 migraine days/months), with or without aura, aged between 18 and 65 years, will be recruited at headache clinics in Switzerland, Germany and Austria and via Internet announcements. After a 4-week baseline period, patients will be randomly allocated to one of the two trial arms and receive either the βHB mineral salt or placebo for 12 weeks. This will be followed by a 4-week wash-out period, a subsequent second baseline period and, finally, another 12-week intervention with the alternative treatment. Co-medication with triptans (10 days per months) or analgesics (14 days per months) is permitted. The primary outcome is the mean change from baseline in the number of migraine days (meeting International Classification of Headache Disorders version 3 criteria) during the last 4 weeks of intervention compared to placebo. Secondary endpoints include mean changes in headache days of any severity, acute migraine medication use, migraine intensity and migraine and headache-related disability. Exploratory outcomes are (in addition to routine laboratory analysis) genetic profiling and expression analysis, oxidative and nitrosative stress, as well as serum cytokine analysis, and blood βHB and glucose analysis (pharmacokinetics).

Discussion: A crossover design was chosen as it greatly improves statistical power and participation rates, without increasing costs. To our knowledge this is the first RCT using βHB salts worldwide. If proven effective and safe, βHB might not only offer a new prophylactic treatment option for migraine patients, but might additionally pave the way for clinical trials assessing its use in related diseases.

Trial registration: ClinicalTrials.gov, NCT03132233 . Registered on 27 April 2017.

Keywords: 3-Hydroxybutyrate; Beta-hydroxybutyrate; Clinical trial; Crossover; Exogenous ketone bodies; Ketosis; Migraine; Migraine prevention; Placebo-controlled; Randomised controlled trial.

Conflict of interest statement

Ethics approval and consent to participate

Ethics approval has been obtained from the local Ethics Committee (EKNZ 2015-304) and the National Swiss Drug Agency (2016DR2109).

Consent for publication

Not applicable.

Competing interests

The authors declare that they have no competing interests.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Figures

Fig. 1
Fig. 1
Flowchart of study design, including timing of measurements and procedures. V = visit
Fig. 2
Fig. 2
Detailed study schedule. 1Blood pressure, heart rate, weight and height. 2Pen and paper headache dairy. 3Migraine Disability Questionnaire (Migraine Disability Assessment (MIDAS)) and Headache Impact Test (HIT), German versions, standard questionnaires for assessing the extent of migraine-related disability. 4Blood beta-hydroxybutyrate and glucose levels, measured with a portable ketone meter (precision xtra by Abbot). 5Routine laboratory (renal and liver function tests, electrolytes, full blood count, C-reactive protein, serum cholesterol, triglycerides, serum proteins, albumin, glucose, Hba1c, insulin, cortisol, lactate, TSH, FT4 and FT4). 6Blood draw (1 × EDTA, 1 × PAXgene) at each time point for genetic profiling and gene expression analysis using microarrays. 7Blood draw at each time point for oxidative and nitrosative stress markers (malondialdehyde (MDA), carbonylated proteins, nitrite, nitrotyrosine) and serum cytokine measurements (including, but not limited to, IFN-γ, IL-1β, IL-2, IL-4, IL-5, IL-6, IL-10, MCP-1, TNF-α, TNF-β, TGF-β1). V = visit
Fig. 3
Fig. 3
Sensitivity of sample size with regard to expected difference in reduction in number of migraine days per 4 weeks of IMP compared to placebo. Example given, based on an effect size of 2 and a statistical power of 90%. The curves are smoothed and are for illustrative purposes only

References

    1. Stovner LJ, Hoff JM, Svalheim S, Gilhus NE. Neurological disorders in the Global Burden of Disease 2010 study. Acta Neurol Scand. 2014;129:1–6. doi: 10.1111/ane.12229.
    1. Stovner LJ, Hagen K. Prevalence, burden, and cost of headache disorders. Curr Opin Neurol. 2006;19:281–285. doi: 10.1097/01.wco.0000227039.16071.92.
    1. Olesen J, Gustavsson A, Svensson M, Wittchen H-U, Jönsson B. The economic cost of brain disorders in Europe. Eur J Neurol. 2012;19:155–162. doi: 10.1111/j.1468-1331.2011.03590.x.
    1. Sándor PS, Di Clemente L, Coppola G, Saenger U, Fumal A, Magis D, et al. Efficacy of coenzyme Q10 in migraine prophylaxis: a randomized controlled trial. Neurology. 2005;64:713–715. doi: 10.1212/01.WNL.0000151975.03598.ED.
    1. Sándor PS, Dydak U, Schoenen J, Kollias SS, Hess K, Boesiger P, et al. MR-spectroscopic imaging during visual stimulation in subgroups of migraine with aura. Cephalalgia. 2005;25:507–518. doi: 10.1111/j.1468-2982.2005.00900.x.
    1. Sparaco M, Feleppa M, Lipton RB, Rapoport AM, Bigal ME. Mitochondrial dysfunction and migraine: evidence and hypotheses. Cephalalgia. 2006;26:361–372. doi: 10.1111/j.1468-2982.2005.01059.x.
    1. Colombo B, Saraceno L, Comi G. Riboflavin and migraine: the bridge over troubled mitochondria. Neurol Sci. 2014;35(Suppl 1):141–144. doi: 10.1007/s10072-014-1755-z.
    1. Yorns WR, Hardison HH. Mitochondrial dysfunction in migraine. Semin Pediatr Neurol. 2013;20:188–193. doi: 10.1016/j.spen.2013.09.002.
    1. Schoenen J, Jacquy J, Lenaerts M. Effectiveness of high-dose riboflavin in migraine prophylaxis. A randomized controlled trial. Neurology. 1998;50:466–470. doi: 10.1212/WNL.50.2.466.
    1. Markley HG. CoEnzyme Q10 and riboflavin: the mitochondrial connection. Headache. 2012;52(Suppl 2):81–87. doi: 10.1111/j.1526-4610.2012.02233.x.
    1. Schoenen J, Lenaerts M, Bastings E. High-dose riboflavin as a prophylactic treatment of migraine: results of an open pilot study. Cephalalgia. 1994;14:328–329. doi: 10.1046/j.1468-2982.1994.1405328.x.
    1. Rozen T, Oshinsky M, Gebeline C, Bradley K, Young W, Shechter A, et al. Open label trial of coenzyme Q10 as a migraine preventive. Cephalalgia. 2002;22:137–141. doi: 10.1046/j.1468-2982.2002.00335.x.
    1. Okada H, Araga S, Takeshima T, Nakashima K. Plasma lactic acid and pyruvic acid levels in migraine and tension-type headache. Headache. 1998;38:39–42. doi: 10.1046/j.1526-4610.1998.3801039.x.
    1. Montagna P, Cortelli P, Monari L, Pierangeli G, Parchi P, Lodi R, et al. 31P-magnetic resonance spectroscopy in migraine without aura. Neurology. 1994;44:666–669. doi: 10.1212/WNL.44.4.666.
    1. Uncini A, Lodi R, Di Muzio A, Silvestri G, Servidei S, Lugaresi A, et al. Abnormal brain and muscle energy metabolism shown by 31P-MRS in familial hemiplegic migraine. J Neurol Sci. 1995;129:214–222. doi: 10.1016/0022-510X(94)00283-T.
    1. Barbiroli B, Montagna P, Cortelli P, Funicello R, Iotti S, Monari L, et al. Abnormal brain and muscle energy metabolism shown by 31P magnetic resonance spectroscopy in patients affected by migraine with aura. Neurology. 1992;42:1209–1214. doi: 10.1212/WNL.42.6.1209.
    1. Aurora SK, Wilkinson F. The brain is hyperexcitable in migraine. Cephalalgia. 2007;27:1442–1453. doi: 10.1111/j.1468-2982.2007.01502.x.
    1. Cestèle S, Scalmani P, Rusconi R, Terragni B, Franceschetti S, Mantegazza M. Self-limited hyperexcitability: functional effect of a familial hemiplegic migraine mutation of the Nav1.1 (SCN1A) Na+ channel. J Neurosci. 2008;28:7273–7283. doi: 10.1523/JNEUROSCI.4453-07.2008.
    1. Lang E, Kaltenhäuser M, Neundörfer B, Seidler S. Hyperexcitability of the primary somatosensory cortex in migraine—a magnetoencephalographic study. Brain. 2004;127(Pt 11):2459–2469. doi: 10.1093/brain/awh295.
    1. Boulloche N, Denuelle M, Payoux P, Fabre N, Trotter Y, Géraud G. Photophobia in migraine: an interictal PET study of cortical hyperexcitability and its modulation by pain. J Neurol Neurosurg Psychiatry. 2010;81:978–984. doi: 10.1136/jnnp.2009.190223.
    1. Moulton EA, Becerra L, Maleki N, Pendse G, Tully S, Hargreaves R, et al. Painful heat reveals hyperexcitability of the temporal pole in interictal and ictal migraine States. Cereb Cortex. 2011;21:435–448. doi: 10.1093/cercor/bhq109.
    1. Pietrobon D, Striessnig J. Neurobiology of migraine. Nat Rev Neurosci. 2003;4:386–398. doi: 10.1038/nrn1102.
    1. Olesen J, Burstein R, Ashina M, Tfelt-Hansen P. Origin of pain in migraine: evidence for peripheral sensitisation. Lancet Neurol. 2009;8:679–690. doi: 10.1016/S1474-4422(09)70090-0.
    1. Levy D. Migraine pain and nociceptor activation—where do we stand? Headache. 2010;50:909–916. doi: 10.1111/j.1526-4610.2010.01670.x.
    1. Buse DC, Lipton RB. Global perspectives on the burden of episodic and chronic migraine. Cephalalgia. 2013;33:885–890. doi: 10.1177/0333102413477736.
    1. Sprenger T, Goadsby PJ. Migraine pathogenesis and state of pharmacological treatment options. BMC Med. 2009;7:71. doi: 10.1186/1741-7015-7-71.
    1. Bailey EE, Pfeifer HH, Thiele EA. The use of diet in the treatment of epilepsy. Epilepsy Behav. 2005;6:4–8. doi: 10.1016/j.yebeh.2004.10.006.
    1. Danial NN, Hartman AL, Stafstrom CE, Thio LL. How does the ketogenic diet work? Four potential mechanisms. J Child Neurol. 2013;28:1027–1033. doi: 10.1177/0883073813487598.
    1. Barañano KW, Hartman AL. The ketogenic diet: uses in epilepsy and other neurologic illnesses. Curr Treat Options Neurol. 2008;10:410–419. doi: 10.1007/s11940-008-0043-8.
    1. Stafstrom CE, Rho JM. The ketogenic diet as a treatment paradigm for diverse neurological disorders. Front Pharmacol. 2012;3:59. doi: 10.3389/fphar.2012.00059.
    1. Strahlman RS. Can ketosis help migraine sufferers? A case report. Headache. 2006;46:182. doi: 10.1111/j.1526-4610.2006.00321_5.x.
    1. Di Lorenzo C, Currà A, Sirianni G, Coppola G, Bracaglia M, Cardillo A, et al. Diet transiently improves migraine in two twin sisters: possible role of ketogenesis? Funct Neurol. 28:305–8 . Accessed 13 Jul 2014.
    1. Maggioni F, Margoni M, Zanchin G. Ketogenic diet in migraine treatment: a brief but ancient history. Cephalalgia. 2011;31:1150–1151. doi: 10.1177/0333102411412089.
    1. Schnabel TG. An experience with a ketogenic dietary in migraine. Ann Intern Med. 1928;2:341. doi: 10.7326/0003-4819-2-4-341.
    1. Di Lorenzo C, Coppola G, Sirianni G, Di Lorenzo G, Bracaglia M, Di Lenola D, et al. Migraine improvement during short lasting ketogenesis: a proof-of-concept study. Eur J Neurol. 2014. 10.1111/ene.12550.
    1. Lutas A, Yellen G. The ketogenic diet: metabolic influences on brain excitability and epilepsy. Trends Neurosci. 2013;36:32–40. doi: 10.1016/j.tins.2012.11.005.
    1. Nei M, Ngo L, Sirven JI, Sperling MR. Ketogenic diet in adolescents and adults with epilepsy. Seizure. 2014;23:439–442. doi: 10.1016/j.seizure.2014.02.015.
    1. Reid CA, Mullen S, Kim TH, Petrou S. Epilepsy, energy deficiency and new therapeutic approaches including diet. Pharmacol Ther. 2014;144:192–201. 10.1016/j.pharmthera.2014.06.001.
    1. de Almeida Rabello Oliveira M, da Rocha Ataíde T, de Oliveira SL, de Melo Lucena AL, de Lira CEPR, Soares AA, et al. Effects of short-term and long-term treatment with medium- and long-chain triglycerides ketogenic diet on cortical spreading depression in young rats. Neurosci Lett. 2008;434:66–70. doi: 10.1016/j.neulet.2008.01.032.
    1. Henderson ST, Vogel JL, Barr LJ, Garvin F, Jones JJ, Costantini LC. Study of the ketogenic agent AC-1202 in mild to moderate Alzheimer’s disease: a randomized, double-blind, placebo-controlled, multicenter trial. Nutr Metab (Lond) 2009;6:31. doi: 10.1186/1743-7075-6-31.
    1. Klepper J, Leiendecker B, Riemann E, Baumeister FA. The ketogenic diet in German-speaking countries: update 2003. Klin Pädiatrie. 216:277–85. 10.1055/s-2004-44906.
    1. Paoli A, Bianco A, Damiani E, Bosco G. Ketogenic diet in neuromuscular and neurodegenerative diseases. Biomed Res Int. 2014;2014:474296. doi: 10.1155/2014/474296.
    1. Freeman JM, Kossoff EH. Ketosis and the ketogenic diet, 2010: advances in treating epilepsy and other disorders. Adv Pediatr Infect Dis. 2010;57:315–329. doi: 10.1016/j.yapd.2010.08.003.
    1. Liu YC, Wang H-S. Medium-chain triglyceride ketogenic diet, an effective treatment for drug-resistant epilepsy and a comparison with other ketogenic diets. Biom J. 36:9–15. 10.4103/2319-4170.107154.
    1. Valayannopoulos V, Bajolle F, Arnoux J-B, Dubois S, Sannier N, Baussan C, et al. Successful treatment of severe cardiomyopathy in glycogen storage disease type III with D,L-3-hydroxybutyrate, ketogenic and high-protein diet. Pediatr Res. 2011;70:638–641. doi: 10.1203/PDR.0b013e318232154f.
    1. Clarke K, Tchabanenko K, Pawlosky R, Carter E, Todd King M, Musa-Veloso K, et al. Kinetics, safety and tolerability of (R)-3-hydroxybutyl (R)-3-hydroxybutyrate in healthy adult subjects. Regul Toxicol Pharmacol. 2012;63:401–408. doi: 10.1016/j.yrtph.2012.04.008.
    1. Kossoff EH, Cervenka MC, Henry BJ, Haney CA, Turner Z. A decade of the modified Atkins diet (2003–2013): results, insights, and future directions. Epilepsy Behav. 2013;29:437–442. doi: 10.1016/j.yebeh.2013.09.032.
    1. Newport MT, VanItallie TB, Kashiwaya Y, King MT, Veech RL. A new way to produce hyperketonemia: use of ketone ester in a case of Alzheimer’s disease. Alzheimers Dement. 2015;11:99–103. doi: 10.1016/j.jalz.2014.01.006.
    1. Gautschi M, Weisstanner C, Slotboom J, Nava E, Zürcher T, Nuoffer J-M. Highly efficient ketone body treatment in multiple acyl-CoA dehydrogenase deficiency-related leukodystrophy. Pediatr Res. 2015;77:91–98. doi: 10.1038/pr.2014.154.
    1. Chioléro R, Mavrocordatos P, Burnier P, Cayeux MC, Schindler C, Jéquier E, et al. Effects of infused sodium acetate, sodium lactate, and sodium beta-hydroxybutyrate on energy expenditure and substrate oxidation rates in lean humans. Am J Clin Nutr. 1993;58:608–613. doi: 10.1093/ajcn/58.5.608.
    1. Stubbs BJ, Cox PJ, Evans RD, Santer P, Miller JJ, Faull OK, et al. On the metabolism of exogenous ketones in humans. Front Physiol. 2017;8:848. doi: 10.3389/fphys.2017.00848.
    1. Van Hove JLK, Grünewald S, Jaeken J, Demaerel P, Declercq PE, Bourdoux P, et al. D,L-3-hydroxybutyrate treatment of multiple acyl-CoA dehydrogenase deficiency (MADD) Lancet. 2003;361:1433–1435. doi: 10.1016/S0140-6736(03)13105-4.
    1. Laffel L. Ketone bodies: a review of physiology, pathophysiology and application of monitoring to diabetes. Diabetes Metab Res Rev. 1999;15:412–426. doi: 10.1002/(SICI)1520-7560(199911/12)15:6<412::AID-DMRR72>;2-8.
    1. Féry F, Balasse EO. Effect of exercise on the disposal of infused ketone bodies in humans. J Clin Endocrinol Metab. 1988;67:245–250. doi: 10.1210/jcem-67-2-245.
    1. Blomqvist G, Alvarsson M, Grill V, Von Heijne G, Ingvar M, Thorell JO, et al. Effect of acute hyperketonemia on the cerebral uptake of ketone bodies in nondiabetic subjects and IDDM patients. Am J Physiol Endocrinol Metab. 2002;283:E20–E28. doi: 10.1152/ajpendo.00294.2001.
    1. Plecko B, Stoeckler-Ipsiroglu S, Schober E, Harrer G, Mlynarik V, Gruber S, et al. Oral β-hydroxybutyrate supplementation in two patients with hyperinsulinemic hypoglycemia: monitoring of β-hydroxybutyrate levels in blood and cerebrospinal fluid, and in the brain by in vivo magnetic resonance spectroscopy. Pediatr Res. 2002;52:301–306. doi: 10.1203/00006450-200208000-00025.
    1. Courchesne-Loyer A, Fortier M, Tremblay-Mercier J, Chouinard-Watkins R, Roy M, Nugent S, et al. Stimulation of mild, sustained ketonemia by medium-chain triacylglycerols in healthy humans: estimated potential contribution to brain energy metabolism. Nutrition. 2013;29:635–640. doi: 10.1016/j.nut.2012.09.009.
    1. Chinaza Godswill A. Sugar alcohols: chemistry, production, health concerns and nutritional importance of mannitol, sorbitol, xylitol, and erythritol. Int J Adv Acad Res | Sci Technol Eng. 2017;3:2488–9849.
    1. Bigal ME, Rapoport AM, Lipton RB, Tepper SJ, Sheftell FD. Assessment of migraine disability using the Migraine Disability Assessment (MIDAS) questionnaire: a comparison of chronic migraine with episodic migraine. Headache. 2003;43:336–342. doi: 10.1046/j.1526-4610.2003.03068.x.
    1. Benz T, Lehmann S, Gantenbein AR, Sandor PS, Stewart WF, Elfering A, et al. Translation, cross-cultural adaptation and reliability of the German version of the migraine disability assessment (MIDAS) questionnaire. Health Qual Life Outcomes. 2018;16:42. doi: 10.1186/s12955-018-0871-5.
    1. Stewart WF, Lipton RB, Kolodner K. Migraine Disability Assessment (MIDAS) score: relation to headache frequency, pain intensity, and headache symptoms. Headache. 2003;43:258–265. doi: 10.1046/j.1526-4610.2003.03050.x.
    1. Yang M, Rendas-Baum R, Varon SF, Kosinski M. Validation of the Headache Impact Test (HIT-6™) across episodic and chronic migraine. Cephalalgia. 2011;31:357–367. doi: 10.1177/0333102410379890.
    1. Martin M, Blaisdell B, Kwong JW, Bjorner JB. The Short-Form Headache Impact Test (HIT-6) was psychometrically equivalent in nine languages. J Clin Epidemiol. 2004;57:1271–1278. doi: 10.1016/j.jclinepi.2004.05.004.
    1. Bigal ME, Dodick DW, Rapoport AM, Silberstein SD, Ma Y, Yang R, et al. Safety, tolerability, and efficacy of TEV-48125 for preventive treatment of high-frequency episodic migraine: a multicentre, randomised, double-blind, placebo-controlled, phase 2b study. Lancet Neurol. 2015;14:1081–1090. doi: 10.1016/S1474-4422(15)00249-5.
    1. Gross E, Fischer D. Migraine prevention and treatment. 2018. . Accessed 20 Oct 2018.
    1. National Cancer Institute (2017) Common Terminology Criteria for Adverse Events (CTCAE) v5.0. .
    1. Lewis JA. Migraine trials: crossover or parallel group? Neuroepidemiology. 1987;6:198–208. doi: 10.1159/000110120.
    1. Silberstein S, Tfelt-Hansen P, Dodick D, Limmroth V, Lipton R, Pascual J, et al. Guidelines for controlled trials of prophylactic treatment of chronic migraine in adults. Cephalalgia. 2008;28:484–495. doi: 10.1111/j.1468-2982.2008.01555.x.
    1. Lipton RB, Silberstein SD. Episodic and chronic migraine headache: breaking down barriers to optimal treatment and prevention. Headache. 2015;55(Suppl 2):103–122. doi: 10.1111/head.12505_2.
    1. Diener H-C, Agosti R, Allais G, Bergmans P, Bussone G, Davies B, et al. Cessation versus continuation of 6-month migraine preventive therapy with topiramate (PROMPT): a randomised, double-blind, placebo-controlled trial. Lancet Neurol. 2007;6:1054–1062. doi: 10.1016/S1474-4422(07)70272-7.

Source: PubMed

3
Předplatit