Adipose-Derived Mesenchymal Stem Cells: Are They a Good Therapeutic Strategy for Osteoarthritis?

Elena Damia, Deborah Chicharro, Sergio Lopez, Belen Cuervo, Monica Rubio, Joaquin J Sopena, Jose Manuel Vilar, Jose Maria Carrillo, Elena Damia, Deborah Chicharro, Sergio Lopez, Belen Cuervo, Monica Rubio, Joaquin J Sopena, Jose Manuel Vilar, Jose Maria Carrillo

Abstract

Osteoarthritis (OA) is a major cause of disability in elderly population around the world. More than one-third of people over 65 years old shows either clinical or radiological evidence of OA. There is no effective treatment for this degenerative disease, due to the limited capacity for spontaneous cartilage regeneration. Regarding the use of regenerative therapies, it has been reported that one option to restore degenerated cartilage are adipose-derived mesenchymal stem cells (ASCs). The purpose of this review is to describe and compare the efficacy of ASCs versus other therapies in OA.

Methods: Recent studies have shown that ASCs exert paracrine effects protecting against degenerative changes in chondrocytes. According to the above, we have carried out a review of the literature using a combination of osteoarthritis, stem cells, and regenerative therapies as keywords.

Results: Conventional pharmacological therapies for OA treatment are considered before the surgical option, however, they do not stop the progression of the disease. Moreover, total joint replacement is not recommended for patients under 55 years, and high tibia osteotomy (HTO) is a viable solution to address lower limb malalignment with concomitant OA, but some complications have been described. In recent years, the use of mesenchymal stem cells (MSCs) as a treatment strategy for OA is increasing considerably, thanks to their capacity to improve symptoms together with joint functionality and, therefore, the patients’ quality of life.

Conclusions: ASC therapy has a positive effect on patients with OA, although there is limited evidence and little long-term follow-up.

Keywords: mesenchymal stem cells; osteoarthritis; regenerative medicine.

Conflict of interest statement

The authors declare no conflict of interest.

References

    1. Maldonado M., Nam J. The role of changes in extracellular matrix of cartilage in the presence of inflammation on the pathology of osteoarthritis. Biomed. Res. Int. 2013;2013:284873. doi: 10.1155/2013/284873.
    1. Fransen M., Bridgett L., March L., Hoy D., Penserga E., Brooks P. The epidemiology of osteoarthritis in Asia. Int. J. Rheum. Dis. 2011;14:113–121. doi: 10.1111/j.1756-185X.2011.01608.x.
    1. Orozco L., Munar A., Soler R., Alberca M., Soler F., Huguet M., Sentis J., Sanchez A., Garcia-Sancho J. Treatment of knee osteoarthritis with autologous mesenchymal stem cells: A pilot study. Transplantation. 2013;95:1535–1541. doi: 10.1097/TP.0b013e318291a2da.
    1. Van der Kraan P.M., van den Berg W.B. Chondrocyte hypertrophy and osteoarthritis: Role in initiation and progression of cartilage degeneration? Osteoarthr. Cartil. 2012;20:223–232. doi: 10.1016/j.joca.2011.12.003.
    1. Cross M., Smith E., Hoy D., Nolte S., Ackerman I., Fransen M., Bridgett L., Williams S., Guillemin F., Hill C.L., et al. The global burden of hip and knee osteoarthritis: Estimates from the global burden of disease 2010 study. Ann. Rheum. Dis. 2014;73:1323–1330. doi: 10.1136/annrheumdis-2013-204763.
    1. Goldring S.R., Goldring M.B. Changes in the osteochondral unit during osteoarthritis: Structure, function and cartilage-bone crosstalk. Nat. Rev. Rheumatol. 2016;12:632–644. doi: 10.1038/nrrheum.2016.148.
    1. Kotlarz H., Gunnarsson C.L., Fang H., Rizzo J.A. Insurer and out-of-pocket costs of osteoarthritis in the US: Evidence from national survey data. Arthrit. Rheumatol. 2009;60:3546–3553. doi: 10.1002/art.24984.
    1. Neogi T., Zhang Y. Epidemiology of osteoarthritis. Rheum. Dis. Clin. N. Am. 2013;39:1–19. doi: 10.1016/j.rdc.2012.10.004.
    1. Glyn-Jones S., Palmer A.J., Agricola R., Price A.J., Vincent T.L., Weinans H., Carr A.J. Osteoarthritis. Lancet. 2015;386:376–387. doi: 10.1016/S0140-6736(14)60802-3.
    1. Jo C.H., Chai J.W., Jeong E.C., Oh S., Shin J.S., Shim H., Yoon K.S. Intra-articular Injection of Mesenchymal Stem Cells for the Treatment of Osteoarthritis of the Knee: A 2-Year Follow-up Study. Am. J. Sports Med. 2017;45:2774–2783. doi: 10.1177/0363546517716641.
    1. Martin J.A., Brown T., Heiner A., Buckwalter J.A. Post-traumatic osteoarthritis: The role of accelerated chondrocyte senescence. Biorheology. 2004;41:479–491.
    1. Rahmati M., Nalesso G., Mobasheri A., Mozafari M. Aging and osteoarthritis: Central role of the extracellular matrix. Ageing Res. Rev. 2017;40:20–30. doi: 10.1016/j.arr.2017.07.004.
    1. Puljak L., Marin A., Vrdoljak D., Markotic F., Utrobicic A., Tugwell P. Celecoxib for osteoarthritis. Cochrane Database Syst. Rev. 2017;5:CD009865. doi: 10.1002/14651858.CD009865.pub2.
    1. De Lange-Brokaar B.J., Ioan-Facsinay A., Yusuf E., Visser A.W., Kroon H.M., van Osch G.J., Zuurmond A.M., Stojanovic-Susulic V., Bloem J.L., Nelissen R.G., et al. Association of pain in knee osteoarthritis with distinct patterns of synovitis. Arthrit. Rheumatol. 2015;67:733–740. doi: 10.1002/art.38965.
    1. Garay-Mendoza D., Villarreal-Martinez L., Garza-Bedolla A., Perez-Garza D.M., Acosta-Olivo C., Vilchez-Cavazos F., Diaz-Hutchinson C., Gomez-Almaguer D., Jaime-Perez J.C., Mancias-Guerra C. The effect of intra-articular injection of autologous bone marrow stem cells on pain and knee function in patients with osteoarthritis. Int. J. Rheum. Dis. 2018;21:140–147. doi: 10.1111/1756-185X.13139.
    1. Wehling P., Evans C., Wehling J., Maixner W. Effectiveness of intra-articular therapies in osteoarthritis: A literature review. Ther. Adv. Musculoskelet. Dis. 2017;9:183–196. doi: 10.1177/1759720X17712695.
    1. Sakata K., Furumatsu T., Abe N., Miyazawa S., Sakoma Y., Ozaki T. Histological analysis of failed cartilage repair after marrow stimulation for the treatment of large cartilage defect in medial compartmental osteoarthritis of the knee. Acta Med. Okayama. 2013;67:65–74.
    1. Vinatier C., Guicheux J. Cartilage tissue engineering: From biomaterials and stem cells to osteoarthritis treatments. Ann. Phys. Rehabil. Med. 2016;59:139–144. doi: 10.1016/j.rehab.2016.03.002.
    1. Platas J., Guillen M.I., Perez Del Caz M.D., Gomar F., Castejon M.A., Mirabet V., Alcaraz M.J. Paracrine effects of human adipose-derived mesenchymal stem cells in inflammatory stress-induced senescence features of osteoarthritic chondrocytes. Aging. 2016;8:1703–1717. doi: 10.18632/aging.101007.
    1. Meirelles Lda S., Fontes A.M., Covas D.T., Caplan A.I. Mechanisms involved in the therapeutic properties of mesenchymal stem cells. Cytokine Growth Factor Rev. 2009;20:419–427. doi: 10.1016/j.cytogfr.2009.10.002.
    1. Zuk P.A., Zhu M., Mizuno H., Huang J., Futrell J.W., Katz A.J., Benhaim P., Lorenz H.P., Hedrick M.H. Multilineage cells from human adipose tissue: Implications for cell-based therapies. Tissue Eng. 2001;7:211–228. doi: 10.1089/107632701300062859.
    1. Wang H., Yan X., Jiang Y., Wang Z., Li Y., Shao Q. The human umbilical cord stem cells improve the viability of OA degenerated chondrocytes. Mol. Med. Rep. 2018;17:4474–4482. doi: 10.3892/mmr.2018.8413.
    1. Kern S., Eichler H., Stoeve J., Kluter H., Bieback K. Comparative analysis of mesenchymal stem cells from bone marrow, umbilical cord blood, or adipose tissue. Stem. Cells. 2006;24:1294–1301. doi: 10.1634/stemcells.2005-0342.
    1. Dmitrieva R.I., Minullina I.R., Bilibina A.A., Tarasova O.V., Anisimov S.V., Zaritskey A.Y. Bone marrow- and subcutaneous adipose tissue-derived mesenchymal stem cells: Differences and similarities. Cell Cycle. 2012;11:377–383. doi: 10.4161/cc.11.2.18858.
    1. Chen H.T., Lee M.J., Chen C.H., Chuang S.C., Chang L.F., Ho M.L., Hung S.H., Fu Y.C., Wang Y.H., Wang H.I., et al. Proliferation and differentiation potential of human adipose-derived mesenchymal stem cells isolated from elderly patients with osteoporotic fractures. J. Cell. Mol. Med. 2012;16:582–593. doi: 10.1111/j.1582-4934.2011.01335.x.
    1. Murphy J.M., Fink D.J., Hunziker E.B., Barry F.P. Stem cell therapy in a caprine model of osteoarthritis. Arthrit. Rheum. 2003;48:3464–3474. doi: 10.1002/art.11365.
    1. Zhu Y., Liu T., Song K., Fan X., Ma X., Cui Z. Adipose-derived stem cell: A better stem cell than BMSC. Cell Biochem. Funct. 2008;26:664–675. doi: 10.1002/cbf.1488.
    1. Mirsaidi A., Kleinhans K.N., Rimann M., Tiaden A.N., Stauber M., Rudolph K.L., Richards P.J. Telomere length, telomerase activity and osteogenic differentiation are maintained in adipose-derived stromal cells from senile osteoporotic SAMP6 mice. J. Tissue Eng. Regen. Med. 2012;6:378–390. doi: 10.1002/term.440.
    1. Schaffler A., Buchler C. Concise review: Adipose tissue-derived stromal cells--basic and clinical implications for novel cell-based therapies. Stem Cells. 2007;25:818–827. doi: 10.1634/stemcells.2006-0589.
    1. Spasovski D., Spasovski V., Bascarevic Z., Stojiljkovic M., Vreca M., Andelkovic M., Pavlovic S. Intra-articular injection of autologous adipose-derived mesenchymal stem cells in the treatment of knee osteoarthritis. J. Gene Med. 2018;20:e3002. doi: 10.1002/jgm.3002.
    1. Cui G.H., Wang Y.Y., Li C.J., Shi C.H., Wang W.S. Efficacy of mesenchymal stem cells in treating patients with osteoarthritis of the knee: A meta-analysis. Exp. Ther. Med. 2016;12:3390–3400. doi: 10.3892/etm.2016.3791.
    1. Gupta P.K., Das A.K., Chullikana A., Majumdar A.S. Mesenchymal stem cells for cartilage repair in osteoarthritis. Stem Cell. Res. Ther. 2012;3:25. doi: 10.1186/scrt116.
    1. Hurley E.T., Yasui Y., Gianakos A.L., Seow D., Shimozono Y., Kerkhoffs G., Kennedy J.G. Limited evidence for adipose-derived stem cell therapy on the treatment of osteoarthritis. Knee Surg. Sports Traumatol. Arthrosc. 2018 doi: 10.1007/s00167-018-4955-x.
    1. Smith E., Hoy D.G., Cross M., Vos T., Naghavi M., Buchbinder R., Woolf A.D., March L. The global burden of other musculoskeletal disorders: Estimates from the Global Burden of Disease 2010 study. Ann. Rheum. Dis. 2014;73:1462–1469. doi: 10.1136/annrheumdis-2013-204680.
    1. Freitag J., Li D., Wickham J., Shah K., Tenen A. Effect of autologous adipose-derived mesenchymal stem cell therapy in the treatment of a post-traumatic chondral defect of the knee. BMJ Case Rep. 2017;2017:bcr-2017. doi: 10.1136/bcr-2017-220852.
    1. Mirza Y.H., Oussedik S. Is there a role for stem cells in treating articular injury? Br. J. Hosp. Med. 2017;78:372–377. doi: 10.12968/hmed.2017.78.7.372.
    1. Niemeyer P., Steinwachs M., Erggelet C., Kreuz P.C., Kraft N., Kostler W., Mehlhorn A., Sudkamp N.P. Autologous chondrocyte implantation for the treatment of retropatellar cartilage defects: Clinical results referred to defect localisation. Arch. Orthop. Trauma Surg. 2008;128:1223–1231. doi: 10.1007/s00402-007-0413-9.
    1. Meijer H., Reinecke J., Becker C., Tholen G., Wehling P. The production of anti-inflammatory cytokines in whole blood by physico-chemical induction. Inflamm. Res. 2003;52:404–407. doi: 10.1007/s00011-003-1197-1.
    1. Baltzer A.W., Moser C., Jansen S.A., Krauspe R. Autologous conditioned serum (Orthokine) is an effective treatment for knee osteoarthritis. Osteoarthr. Cartil. 2009;17:152–160. doi: 10.1016/j.joca.2008.06.014.
    1. Baselga Garcia-Escudero J., Miguel Hernandez Trillos P. Treatment of Osteoarthritis of the Knee with a Combination of Autologous Conditioned Serum and Physiotherapy: A Two-Year Observational Study. PLoS ONE. 2015;10:e0145551. doi: 10.1371/journal.pone.0145551.
    1. Anitua E., Sanchez M., Aguirre J.J., Prado R., Padilla S., Orive G. Efficacy and safety of plasma rich in growth factors intra-articular infiltrations in the treatment of knee osteoarthritis. Arthroscopy. 2014;30:1006–1017. doi: 10.1016/j.arthro.2014.05.021.
    1. Anitua E., Sanchez M., Orive G. Potential of endogenous regenerative technology for in situ regenerative medicine. Adv. Drug Deliv. Rev. 2010;62:741–752. doi: 10.1016/j.addr.2010.01.001.
    1. Raeissadat S.A., Rayegani S.M., Ahangar A.G., Abadi P.H., Mojgani P., Ahangar O.G. Efficacy of Intra-articular Injection of a Newly Developed Plasma Rich in Growth Factor (PRGF) Versus Hyaluronic Acid on Pain and Function of Patients with Knee Osteoarthritis: A Single-Blinded Randomized Clinical Trial. Clin. Med. Insights Arthritis Musculoskelet. Disord. 2017;10:1179544117733452. doi: 10.1177/1179544117733452.
    1. Li G., Fu N., Xie J., Fu Y., Deng S., Cun X., Wei X., Peng Q., Cai X., Lin Y. Poly(3-hydroxybutyrate-co-4-hydroxybutyrate) Based Electrospun 3D Scaffolds for Delivery of Autogeneic Chondrocytes and Adipose-Derived Stem Cells: Evaluation of Cartilage Defects in Rabbit. J. Biomed. Nanotechnol. 2015;11:105–116. doi: 10.1166/jbn.2015.2053.
    1. Scioli M.G., Bielli A., Gentile P., Cervelli V., Orlandi A. Combined treatment with platelet-rich plasma and insulin favours chondrogenic and osteogenic differentiation of human adipose-derived stem cells in three-dimensional collagen scaffolds. J. Tissue Eng. Regen. Med. 2017;11:2398–2410. doi: 10.1002/term.2139.
    1. Ikebe C., Suzuki K. Mesenchymal stem cells for regenerative therapy: Optimization of cell preparation protocols. Biomed. Res. Int. 2014;2014:951512. doi: 10.1155/2014/951512.
    1. Bashir J., Sherman A., Lee H., Kaplan L., Hare J.M. Mesenchymal stem cell therapies in the treatment of musculoskeletal diseases. PM R. 2014;6:61–69. doi: 10.1016/j.pmrj.2013.05.007.
    1. Pittenger M.F., Mackay A.M., Beck S.C., Jaiswal R.K., Douglas R., Mosca J.D., Moorman M.A., Simonetti D.W., Craig S., Marshak D.R. Multilineage potential of adult human mesenchymal stem cells. Science. 1999;284:143–147. doi: 10.1126/science.284.5411.143.
    1. Noth U., Steinert A.F., Tuan R.S. Technology insight: Adult mesenchymal stem cells for osteoarthritis therapy. Nat. Clin. Pract. Rheumatol. 2008;4:371–380. doi: 10.1038/ncprheum0816.
    1. Munoz-Criado I., Meseguer-Ripolles J., Mellado-Lopez M., Alastrue-Agudo A., Griffeth R.J., Forteza-Vila J., Cugat R., Garcia M., Moreno-Manzano V. Human Suprapatellar Fat Pad-Derived Mesenchymal Stem Cells Induce Chondrogenesis and Cartilage Repair in a Model of Severe Osteoarthritis. Stem Cells Int. 2017;2017:4758930. doi: 10.1155/2017/4758930.
    1. Peng L., Jia Z., Yin X., Zhang X., Liu Y., Chen P., Ma K., Zhou C. Comparative analysis of mesenchymal stem cells from bone marrow, cartilage, and adipose tissue. Stem Cells Dev. 2008;17:761–773. doi: 10.1089/scd.2007.0217.
    1. Alvarez-Viejo M., Menendez-Menendez Y., Blanco-Gelaz M.A., Ferrero-Gutierrez A., Fernandez-Rodriguez M.A., Gala J., Otero-Hernandez J. Quantifying mesenchymal stem cells in the mononuclear cell fraction of bone marrow samples obtained for cell therapy. Transplant Proc. 2013;45:434–439. doi: 10.1016/j.transproceed.2012.05.091.
    1. Hass R., Kasper C., Bohm S., Jacobs R. Different populations and sources of human mesenchymal stem cells (MSC): A comparison of adult and neonatal tissue-derived MSC. Cell Commun. Signal. 2011;9:12. doi: 10.1186/1478-811X-9-12.
    1. Macrin D., Joseph J.P., Pillai A.A., Devi A. Eminent Sources of Adult Mesenchymal Stem Cells and Their Therapeutic Imminence. Stem Cell Rev. 2017;13:741–756. doi: 10.1007/s12015-017-9759-8.
    1. Feng C., Luo X., He N., Xia H., Lv X., Zhang X., Li D., Wang F., He J., Zhang L., et al. Efficacy and Persistence of Allogeneic Adipose-Derived Mesenchymal Stem Cells Combined with Hyaluronic Acid in Osteoarthritis After Intra-articular Injection in a Sheep Model. Tissue Eng. Part A. 2018;24:219–233. doi: 10.1089/ten.tea.2017.0039.
    1. Jevotovsky D.S., Alfonso A.R., Einhorn T.A., Chiu E.S. Osteoarthritis and stem cell therapy in humans: A systematic review. Osteoarthr. Cartil. 2018;26:711–729. doi: 10.1016/j.joca.2018.02.906.
    1. Pelttari K., Steck E., Richter W. The use of mesenchymal stem cells for chondrogenesis. Injury. 2008;39(Suppl. 1):S58–S65. doi: 10.1016/j.injury.2008.01.038.
    1. Caplan A.I. Why are MSCs therapeutic? New data: New insight. J. Pathol. 2009;217:318–324. doi: 10.1002/path.2469.
    1. Maumus M., Roussignol G., Toupet K., Penarier G., Bentz I., Teixeira S., Oustric D., Jung M., Lepage O., Steinberg R., et al. Utility of a Mouse Model of Osteoarthritis to Demonstrate Cartilage Protection by IFNgamma-Primed Equine Mesenchymal Stem Cells. Front. Immunol. 2016;7:392. doi: 10.3389/fimmu.2016.00392.
    1. Caplan A.I., Correa D. The MSC: An injury drugstore. Cell Stem Cell. 2011;9:11–15. doi: 10.1016/j.stem.2011.06.008.
    1. Longobardi L., O’Rear L., Aakula S., Johnstone B., Shimer K., Chytil A., Horton W.A., Moses H.L., Spagnoli A. Effect of IGF-I in the chondrogenesis of bone marrow mesenchymal stem cells in the presence or absence of TGF-beta signaling. J. Bone Min. Res. 2006;21:626–636. doi: 10.1359/jbmr.051213.
    1. Ozeki N., Muneta T., Koga H., Nakagawa Y., Mizuno M., Tsuji K., Mabuchi Y., Akazawa C., Kobayashi E., Matsumoto K., et al. Not single but periodic injections of synovial mesenchymal stem cells maintain viable cells in knees and inhibit osteoarthritis progression in rats. Osteoarthr. Cartil. 2016;24:1061–1070. doi: 10.1016/j.joca.2015.12.018.
    1. Maumus M., Manferdini C., Toupet K., Peyrafitte J.A., Ferreira R., Facchini A., Gabusi E., Bourin P., Jorgensen C., Lisignoli G., et al. Adipose mesenchymal stem cells protect chondrocytes from degeneration associated with osteoarthritis. Stem Cell Res. 2013;11:834–844. doi: 10.1016/j.scr.2013.05.008.
    1. Almeida H.V., Cunniffe G.M., Vinardell T., Buckley C.T., O’Brien F.J., Kelly D.J. Coupling Freshly Isolated CD44+ Infrapatellar Fat Pad-Derived Stromal Cells with a TGF-β3 Eluting Cartilage ECM-Derived Scaffold as a Single-Stage Strategy for Promoting Chondrogenesis. Adv. Healthc. Mater. 2015;4:1043–1053. doi: 10.1002/adhm.201400687.
    1. Kang H., Peng J., Lu S., Liu S., Zhang L., Huang J., Sui X., Zhao B., Wang A., Xu W., et al. In vivo cartilage repair using adipose-derived stem cell-loaded decellularized cartilage ECM scaffolds. J. Tissue Eng. Regen. Med. 2014;8:442–453. doi: 10.1002/term.1538.
    1. Choi B., Kim S., Fan J., Kowalski T., Petrigliano F., Evseenko D., Lee M. Covalently conjugated transforming growth factor-β1 in modular chitosan hydrogels for the effective treatment of articular cartilage defects. Biomater. Sci. 2015;3:742–752. doi: 10.1039/C4BM00431K.
    1. Zhang K., Yan S., Li G., Cui L., Yin J. In-situ birth of MSCs multicellular spheroids in poly(l-glutamic acid)/chitosan scaffold for hyaline-like cartilage regeneration. Biomaterials. 2015;71:24–34. doi: 10.1016/j.biomaterials.2015.08.037.
    1. Sun Q., Zhang L., Xu T., Ying J., Xia B., Jing H., Tong P. Combined use of adipose derived stem cells and TGF-β3 microspheres promotes articular cartilage regeneration in vivo. Biotech. Histochem. 2018;93:168–176. doi: 10.1080/10520295.2017.1401663.
    1. Desance M., Contentin R., Bertoni L., Gomez-Leduc T., Branly T., Jacquet S., Betsch J.M., Batho A., Legendre F., Audigie F., et al. Chondrogenic Differentiation of Defined Equine Mesenchymal Stem Cells Derived from Umbilical Cord Blood for Use in Cartilage Repair Therapy. Int. J. Mol. Sci. 2018;19:537. doi: 10.3390/ijms19020537.
    1. Abbas M. Combination of bone marrow mesenchymal stem cells and cartilage fragments contribute to enhanced repair of osteochondral defects. Bioinformation. 2017;13:196–201. doi: 10.6026/97320630013196.
    1. Murphy M.P., Buckley C., Sugrue C., Carr E., O’Reilly A., O’Neill S., Carroll S.M. ASCOT: Autologous Bone Marrow Stem Cell Use for Osteoarthritis of the Thumb-First Carpometacarpal Joint. Plast. Reconstr. Surg. Glob. Open. 2017;5:e1486. doi: 10.1097/GOX.0000000000001486.
    1. Pers Y.M., Rackwitz L., Ferreira R., Pullig O., Delfour C., Barry F., Sensebe L., Casteilla L., Fleury S., Bourin P., et al. Adipose Mesenchymal Stromal Cell-Based Therapy for Severe Osteoarthritis of the Knee: A Phase I Dose-Escalation Trial. Stem Cells Transl. Med. 2016;5:847–856. doi: 10.5966/sctm.2015-0245.
    1. Al-Najar M., Khalil H., Al-Ajlouni J., Al-Antary E., Hamdan M., Rahmeh R., Alhattab D., Samara O., Yasin M., Abdullah A.A., et al. Intra-articular injection of expanded autologous bone marrow mesenchymal cells in moderate and severe knee osteoarthritis is safe: A phase I/II study. J. Orthop. Surg. Res. 2017;12:190. doi: 10.1186/s13018-017-0689-6.
    1. Jo C.H., Lee Y.G., Shin W.H., Kim H., Chai J.W., Jeong E.C., Kim J.E., Shim H., Shin J.S., Shin I.S., et al. Intra-articular injection of mesenchymal stem cells for the treatment of osteoarthritis of the knee: A proof-of-concept clinical trial. Stem Cells. 2014;32:1254–1266. doi: 10.1002/stem.1634.
    1. Wu Y., Gong Z., Li J., Meng Q., Fang W., Long X. The pilot study of fibrin with temporomandibular joint derived synovial stem cells in repairing TMJ disc perforation. Biomed. Res. Int. 2014;2014:454021. doi: 10.1155/2014/454021.
    1. Cui D., Li H., Xu X., Ye L., Zhou X., Zheng L., Zhou Y. Mesenchymal Stem Cells for Cartilage Regeneration of TMJ Osteoarthritis. Stem Cells Int. 2017;2017:5979741. doi: 10.1155/2017/5979741.
    1. Yang C., Robbins P.D. Immunosuppressive exosomes: A new approach for treating arthritis. Int. J. Rheumatol. 2012;2012:573528. doi: 10.1155/2012/573528.
    1. Toh W.S., Lai R.C., Hui J.H.P., Lim S.K. MSC exosome as a cell-free MSC therapy for cartilage regeneration: Implications for osteoarthritis treatment. Semin. Cell Dev. Biol. 2017;67:56–64. doi: 10.1016/j.semcdb.2016.11.008.
    1. Zhang S., Chu W.C., Lai R.C., Lim S.K., Hui J.H., Toh W.S. Exosomes derived from human embryonic mesenchymal stem cells promote osteochondral regeneration. Osteoarthr. Cartil. 2016;24:2135–2140. doi: 10.1016/j.joca.2016.06.022.
    1. McIntosh K.R., Frazier T., Rowan B.G., Gimble J.M. Evolution and future prospects of adipose-derived immunomodulatory cell therapeutics. Expert Rev. Clin. Immunol. 2013;9:175–184. doi: 10.1586/eci.12.96.
    1. Baer P.C. Adipose-derived mesenchymal stromal/stem cells: An update on their phenotype in vivo and in vitro. World J. Stem. Cells. 2014;6:256–265. doi: 10.4252/wjsc.v6.i3.256.
    1. Li J., Wong W.H., Chan S., Chim J.C., Cheung K.M., Lee T.L., Au W.Y., Ha S.Y., Lie A.K., Lau Y.L., et al. Factors affecting mesenchymal stromal cells yield from bone marrow aspiration. Chin. J. Cancer Res. 2011;23:43–48. doi: 10.1007/s11670-011-0043-1.
    1. Ding D.C., Chang Y.H., Shyu W.C., Lin S.Z. Human umbilical cord mesenchymal stem cells: A new era for stem cell therapy. Cell Transpl. 2015;24:339–347. doi: 10.3727/096368915X686841.
    1. Tangchitphisut P., Srikaew N., Numhom S., Tangprasittipap A., Woratanarat P., Wongsak S., Kijkunasathian C., Hongeng S., Murray I.R., Tawonsawatruk T. Infrapatellar Fat Pad: An Alternative Source of Adipose-Derived Mesenchymal Stem Cells. Arthritis. 2016;2016:4019873. doi: 10.1155/2016/4019873.
    1. Hindle P., Khan N., Biant L., Peault B. The Infrapatellar Fat Pad as a Source of Perivascular Stem Cells with Increased Chondrogenic Potential for Regenerative Medicine. Stem Cells Transl. Med. 2017;6:77–87. doi: 10.5966/sctm.2016-0040.
    1. Yun S., Ku S.K., Kwon Y.S. Adipose-derived mesenchymal stem cells and platelet-rich plasma synergistically ameliorate the surgical-induced osteoarthritis in Beagle dogs. J. Orthop. Surg. Res. 2016;11:9. doi: 10.1186/s13018-016-0342-9.
    1. Song Y., Du H., Dai C., Zhang L., Li S., Hunter D.J., Lu L., Bao C. Human adipose-derived mesenchymal stem cells for osteoarthritis: A pilot study with long-term follow-up and repeated injections. Regen. Med. 2018;13:295–307. doi: 10.2217/rme-2017-0152.
    1. Wakitani S., Imoto K., Yamamoto T., Saito M., Murata N., Yoneda M. Human autologous culture expanded bone marrow mesenchymal cell transplantation for repair of cartilage defects in osteoarthritic knees. Osteoarthr. Cartil. 2002;10:199–206. doi: 10.1053/joca.2001.0504.
    1. Kuroda R., Ishida K., Matsumoto T., Akisue T., Fujioka H., Mizuno K., Ohgushi H., Wakitani S., Kurosaka M. Treatment of a full-thickness articular cartilage defect in the femoral condyle of an athlete with autologous bone-marrow stromal cells. Osteoarthr. Cartil. 2007;15:226–231. doi: 10.1016/j.joca.2006.08.008.
    1. Orozco L., Munar A., Soler R., Alberca M., Soler F., Huguet M., Sentis J., Sanchez A., Garcia-Sancho J. Treatment of knee osteoarthritis with autologous mesenchymal stem cells: Two-year follow-up results. Transplantation. 2014;97:e66–e68. doi: 10.1097/TP.0000000000000167.
    1. Zhang Q., Chen Y., Wang Q., Fang C., Sun Y., Yuan T., Wang Y., Bao R., Zhao N. Effect of bone marrow-derived stem cells on chondrocytes from patients with osteoarthritis. Mol. Med. Rep. 2016;13:1795–1800. doi: 10.3892/mmr.2015.4720.
    1. Davatchi F., Sadeghi Abdollahi B., Mohyeddin M., Nikbin B. Mesenchymal stem cell therapy for knee osteoarthritis: 5 years follow-up of three patients. Int. J. Rheum. Dis. 2016;19:219–225. doi: 10.1111/1756-185X.12670.
    1. Wu L., Prins H.J., Helder M.N., van Blitterswijk C.A., Karperien M. Trophic effects of mesenchymal stem cells in chondrocyte co-cultures are independent of culture conditions and cell sources. Tissue Eng. Part A. 2012;18:1542–1551. doi: 10.1089/ten.tea.2011.0715.
    1. Meretoja V.V., Dahlin R.L., Kasper F.K., Mikos A.G. Enhanced chondrogenesis in co-cultures with articular chondrocytes and mesenchymal stem cells. Biomaterials. 2012;33:6362–6369. doi: 10.1016/j.biomaterials.2012.05.042.
    1. Zheng P., Ju L., Jiang B., Chen L., Dong Z., Jiang L., Wang R., Lou Y. Chondrogenic differentiation of human umbilical cord bloodderived mesenchymal stem cells by coculture with rabbit chondrocytes. Mol. Med. Rep. 2013;8:1169–1182. doi: 10.3892/mmr.2013.1637.
    1. Zhu Y., Guan Y.M., Huang H.L., Wang Q.S. Human umbilical cord blood mesenchymal stem cell transplantation suppresses inflammatory responses and neuronal apoptosis during early stage of focal cerebral ischemia in rabbits. Acta Pharmacol. Sin. 2014;35:585–591. doi: 10.1038/aps.2014.9.
    1. Min F., Gao F., Li Q., Liu Z. Therapeutic effect of human umbilical cord mesenchymal stem cells modified by angiotensin-converting enzyme 2 gene on bleomycin-induced lung fibrosis injury. Mol. Med. Rep. 2015;11:2387–2396. doi: 10.3892/mmr.2014.3025.
    1. Chapman V., Markides H., Sagar D.R., Xu L., Burston J.J., Mapp P., Kay A., Morris R.H., Kehoe O., El Haj A.J. Therapeutic Benefit for Late, but Not Early, Passage Mesenchymal Stem Cells on Pain Behaviour in an Animal Model of Osteoarthritis. Stem Cells Int. 2017;2017:2905104. doi: 10.1155/2017/2905104.
    1. Akamatsu Y., Koshino T., Saito T., Wada J. Changes in osteosclerosis of the osteoarthritic knee after high tibial osteotomy. Clin. Orthop. Relat. Res. 1997:207–214. doi: 10.1097/00003086-199701000-00027.
    1. Sabzevari S., Ebrahimpour A., Roudi M.K., Kachooei A.R. High Tibial Osteotomy: A Systematic Review and Current Concept. Arch. Bone Jt. Surg. 2016;4:204–212.
    1. Martin R., Birmingham T.B., Willits K., Litchfield R., Lebel M.E., Giffin J.R. Adverse event rates and classifications in medial opening wedge high tibial osteotomy. Am. J. Sports Med. 2014;42:1118–1126. doi: 10.1177/0363546514525929.

Source: PubMed

3
Předplatit