Regulation of cellular iron metabolism

Jian Wang, Kostas Pantopoulos, Jian Wang, Kostas Pantopoulos

Abstract

Iron is an essential but potentially hazardous biometal. Mammalian cells require sufficient amounts of iron to satisfy metabolic needs or to accomplish specialized functions. Iron is delivered to tissues by circulating transferrin, a transporter that captures iron released into the plasma mainly from intestinal enterocytes or reticuloendothelial macrophages. The binding of iron-laden transferrin to the cell-surface transferrin receptor 1 results in endocytosis and uptake of the metal cargo. Internalized iron is transported to mitochondria for the synthesis of haem or iron-sulfur clusters, which are integral parts of several metalloproteins, and excess iron is stored and detoxified in cytosolic ferritin. Iron metabolism is controlled at different levels and by diverse mechanisms. The present review summarizes basic concepts of iron transport, use and storage and focuses on the IRE (iron-responsive element)/IRP (iron-regulatory protein) system, a well known post-transcriptional regulatory circuit that not only maintains iron homoeostasis in various cell types, but also contributes to systemic iron balance.

Figures

Figure 1. Hormonal regulation of iron efflux…
Figure 1. Hormonal regulation of iron efflux from duodenal enterocytes and reticuloendothelial macrophages by hepcidin
Enterocytes absorb inorganic or haem iron from the diet and macrophages phagocytose iron-loaded senescent red blood cells, or acquire iron by other mechanisms (see the main text). Both cell types release Fe2+ into the plasma via ferroportin (Fpn), which is incorporated into apo-Tf following oxidation to Fe3+ via hephaestin (Heph) or ceruloplasmin (Cp). Hepatocytes generate the iron-regulatory hormone hepcidin in response to high iron or inflammatory signals, which inhibits the efflux of iron via ferroportin and promotes its retention within enterocytes and macrophages.
Figure 2. Cellular iron uptake via the…
Figure 2. Cellular iron uptake via the Tf cycle
Iron-loaded holo-Tf binds to TfR1 on the cell surface and the complex undergoes endocytosis via clathrin-coated pits. A proton pump acidifies the endosome, resulting in the release of Fe3+, which is subsequently reduced to Fe2+ by Steap3 and transported across the endosomal membrane to the cytosol by DMT1. Internalized iron is directed to mitochondria via mitoferrin for metabolic utilization (such as synthesis of haem and ISCs), and excess iron is stored in ferritin. A cytosolic fraction of redox-active intracellular iron constitutes the LIP. The apo-Tf–TfR1 complex is recycled to the cell surface, where apo-Tf is released to capture plasma Fe3+.
Figure 3. Typical IRE motif
Figure 3. Typical IRE motif
A typical IRE motif consists of a hexanucleotide loop with the sequence 5′-CAGUGH-3′ (H could be A, C, or U) and a stem, interrupted by a bulge with an unpaired C residue (left) or an asymmetric tetranucleotide bulge (right); the latter is characteristic of ferritin IRE. Base-pairing between C1 and G5 of the loop is functionally important.
Figure 4. Post-transcriptional control of cellular pathways…
Figure 4. Post-transcriptional control of cellular pathways by the IRE–IRP regulatory system
Translational-type IRE–IRP interactions in the 5′UTR modulate the expression of the mRNAs encoding H- and L-ferritin, ALAS2, m-aconitase, ferroportin, HIF-2α, β-APP and α-synuclein, which in turn control iron storage, erythroid iron utilization, energy homoeostasis, iron efflux, hypoxic responses and neurological pathways respectively. Conversely, IRE–IRP interactions in the 3′UTR stabilize the mRNAs encoding TfR1, DMT1, Cdc14A and MRCKα, which are involved in iron uptake, iron transport, the cell cycle and cytoskeletal remodelling respectively. Note that the regulation of DMT1, Cdc14A and MRCKα may require additional factors, and that the IREs in Cdc14A and MRCKα mRNAs are not phylogenetically conserved.
Figure 5. Crystal structure of IRP1
Figure 5. Crystal structure of IRP1
(A) c-Aconitase form (PDB code 2B3X); (B) IRE-binding form (PDB code 2IPY). A three-dimensional structure of this Figure is available at http://www.BiochemJ.org/bj/434/0365/bj4340365add.htm.
Figure 6. Under physiological conditions, IRP1 is…
Figure 6. Under physiological conditions, IRP1 is regulated by a reversible ISC switch
Iron deficiency promotes ISC disassembly and a conformational rearrangement, resulting in the conversion of IRP1 from c-aconitase to an IRE-binding protein. The ISC is regenerated in iron-replete cells. Hypoxia favours maintenance of the ISC, whereas H2O2 or NO promote its disassembly. When the ISC-biogenesis pathway is not operational, iron leads to ubiquitination of apo-IRP1 by the FBXL5 E3 ligase complex (including Skp1, Cul1 and Rbx1), resulting in proteasomal degradation.
Figure 7. Iron and oxygen-dependent regulation of…
Figure 7. Iron and oxygen-dependent regulation of IRP2 stability by FBXL5
IRP2 is stable in iron deficient and/or hypoxic cells; under these conditions, FBXL5 undergoes ubiquitination and proteasomal degradation. An increase in iron and oxygen levels stabilizes FBXL5 by formation of an Fe–O–Fe centre in its haemerythrin domain, triggering the assembly of an E3 ubiquitin ligase complex together with Skp1, Cul1 and Rbx1. This complex ubiquitinates (Ub) IRP2, leading to its recognition by the proteasome and its degradation.

References

    1. Aisen P., Enns C., Wessling-Resnick M. Chemistry and biology of eukaryotic iron metabolism. Int. J. Biochem. Cell Biol. 2001;33:940–959.
    1. Koppenol W. H. The centennial of the Fenton reaction. Free Radical Biol. Med. 1993;15:645–651.
    1. Galaris D., Pantopoulos K. Oxidative stress and iron homeostasis: mechanistic and health aspects. Crit. Rev. Clin. Lab. Sci. 2008;45:1–23.
    1. Kell D. B. Iron behaving badly: inappropriate iron chelation as a major contributor to the aetiology of vascular and other progressive inflammatory and degenerative diseases. BMC Med. Genomics. 2009;2:2.
    1. De Domenico I., McVey Ward D., Kaplan J. Regulation of iron acquisition and storage: consequences for iron-linked disorders. Nat. Rev. Mol. Cell Biol. 2008;9:72–81.
    1. Hentze M. W., Muckenthaler M. U., Galy B., Camaschella C. Two to tango: regulation of mammalian iron metabolism. Cell. 2010;142:24–38.
    1. Andrews N. C. Forging a field: the golden age of iron biology. Blood. 2008;112:219–230.
    1. Andrews N. C. Disorders of iron metabolism. N. Engl. J. Med. 1999;341:1986–1995.
    1. Olsson K. S., Norrby A. Comment to: Hepcidin: from discovery to differential diagnosis. Haematologica 2008; 93:90–7. Haematologica. 2008;93:e51.
    1. Yeh K. Y., Yeh M., Mims L., Glass J. Iron feeding induces ferroportin 1 and hephaestin migration and interaction in rat duodenal epithelium. Am. J. Physiol. Gastrointest. Liver Physiol. 2009;296:G55–G65.
    1. Donovan A., Lima C. A., Pinkus J. L., Pinkus G. S., Zon L. I., Robine S., Andrews N. C. The iron exporter ferroportin/Slc40a1 is essential for iron homeostasis. Cell Metab. 2005;1:191–200.
    1. Nemeth E., Ganz T. The role of hepcidin in iron metabolism. Acta Haematol. 2009;122:78–86.
    1. Lee P. L., Beutler E. Regulation of hepcidin and iron-overload disease. Annu. Rev. Pathol. 2009;4:489–515.
    1. Weiss G., Goodnough L. T. Anemia of chronic disease. N. Engl. J. Med. 2005;352:1011–1023.
    1. Finberg K. E. Iron-refractory iron deficiency anemia. Semin. Hematol. 2009;46:378–386.
    1. Courselaud B., Pigeon C., Inoue Y., Inoue J., Gonzalez F. J., Leroyer P., Gilot D., Boudjema K., Guguen-Guillouzo C., Brissot P., et al. C/EBPα regulates hepatic transcription of hepcidin, an antimicrobial peptide and regulator of iron metabolism. Cross-talk between C/EBP pathway and iron metabolism. J. Biol. Chem. 2002;277:41163–41170.
    1. Kautz L., Meynard D., Monnier A., Darnaud V., Bouvet R., Wang R. H., Deng C., Vaulont S., Mosser J., Coppin H., Roth M. P. Iron regulates phosphorylation of Smad1/5/8 and gene expression of Bmp6, Smad7, Id1, and Atoh8 in the mouse liver. Blood. 2008;112:1503–1509.
    1. Arndt S., Maegdefrau U., Dorn C., Schardt K., Hellerbrand C., Bosserhoff A. K. Iron-induced expression of bone morphogenic protein 6 in intestinal cells is the main regulator of hepatic hepcidin expression in vivo. Gastroenterology. 2010;138:372–382.
    1. Meynard D., Kautz L., Darnaud V., Canonne-Hergaux F., Coppin H., Roth M. P. Lack of the bone morphogenetic protein BMP6 induces massive iron overload. Nat. Genet. 2009;41:478–481.
    1. Andriopoulos B., Jr, Corradini E., Xia Y., Faasse S. A., Chen S., Grgurevic L., Knutson M. D., Pietrangelo A., Vukicevic S., Lin H. Y., Babitt J. L. BMP6 is a key endogenous regulator of hepcidin expression and iron metabolism. Nat. Genet. 2009;41:482–487.
    1. Wang R. H., Li C., Xu X., Zheng Y., Xiao C., Zerfas P., Cooperman S., Eckhaus M., Rouault T., Mishra L., Deng C. X. A role of SMAD4 in iron metabolism through the positive regulation of hepcidin expression. Cell Metab. 2005;2:399–409.
    1. Gao J., Chen J., Kramer M., Tsukamoto H., Zhang A. S., Enns C. A. Interaction of the hereditary hemochromatosis protein HFE with transferrin receptor 2 is required for transferrin-induced hepcidin expression. Cell Metab. 2009;9:217–227.
    1. Ramey G., Deschemin J. C., Vaulont S. Cross-talk between the mitogen activated protein kinase and bone morphogenetic protein/hemojuvelin pathways is required for the induction of hepcidin by holotransferrin in primary mouse hepatocytes. Haematologica. 2009;94:765–772.
    1. Silvestri L., Pagani A., Nai A., De Domenico I., Kaplan J., Camaschella C. The serine protease matriptase-2 (TMPRSS6) inhibits hepcidin activation by cleaving membrane hemojuvelin. Cell Metab. 2008;8:502–511.
    1. Fleming R. E. Iron and inflammation: cross-talk between pathways regulating hepcidin. J. Mol. Med. 2008;86:491–494.
    1. Matak P., Chaston T. B., Chung B., Srai S. K., McKie A. T., Sharp P. A. Activated macrophages induce hepcidin expression in HuH7 hepatoma cells. Haematologica. 2009;94:773–780.
    1. Vecchi C., Montosi G., Zhang K., Lamberti I., Duncan S. A., Kaufman R. J., Pietrangelo A. ER stress controls iron metabolism through induction of hepcidin. Science. 2009;325:877–880.
    1. Oliveira S. J., Pinto J. P., Picarote G., Costa V. M., Carvalho F., Rangel M., de Sousa M., de Almeida S. F. ER stress-inducible factor CHOP affects the expression of hepcidin by modulating C/EBPα activity. PLoS ONE. 2009;4:e6618.
    1. Peyssonnaux C., Zinkernagel A. S., Datta V., Lauth X., Johnson R. S., Nizet V. TLR4-dependent hepcidin expression by myeloid cells in response to bacterial pathogens. Blood. 2006;107:3727–3732.
    1. Koening C. L., Miller J. C., Nelson J. M., Ward D. M., Kushner J. P., Bockenstedt L. K., Weis J. J., Kaplan J., De Domenico I. Toll-like receptors mediate induction of hepcidin in mice infected with Borrelia burgdorferi. Blood. 2009;114:1913–1918.
    1. Pak M., Lopez M. A., Gabayan V., Ganz T., Rivera S. Suppression of hepcidin during anemia requires erythropoietic activity. Blood. 2006;108:3730–3735.
    1. Tanno T., Bhanu N. V., Oneal P. A., Goh S. H., Staker P., Lee Y. T., Moroney J. W., Reed C. H., Luban N. L., Wang R. H., et al. High levels of GDF15 in thalassemia suppress expression of the iron regulatory protein hepcidin. Nat. Med. 2007;13:1096–1101.
    1. Tanno T., Porayette P., Sripichai O., Noh S. J., Byrnes C., Bhupatiraju A., Lee Y. T., Goodnough J. B., Harandi O., Ganz T., et al. Identification of TWSG1 as a second novel erythroid regulator of hepcidin expression in murine and human cells. Blood. 2009;114:181–186.
    1. Pinto J. P., Ribeiro S., Pontes H., Thowfeequ S., Tosh D., Carvalho F., Porto G. Erythropoietin mediates hepcidin expression in hepatocytes through EPOR signaling and regulation of C/EBPα. Blood. 2008;111:5727–5733.
    1. Volke M., Gale D. P., Maegdefrau U., Schley G., Klanke B., Bosserhoff A. K., Maxwell P. H., Eckardt K. U., Warnecke C. Evidence for a lack of a direct transcriptional suppression of the iron regulatory peptide hepcidin by hypoxia-inducible factors. PLoS ONE. 2009;4:e7875.
    1. Miura K., Taura K., Kodama Y., Schnabl B., Brenner D. A. Hepatitis C virus-induced oxidative stress suppresses hepcidin expression through increased histone deacetylase activity. Hepatology. 2008;48:1420–1429.
    1. Ludwiczek S., Aigner E., Theurl I., Weiss G. Cytokine-mediated regulation of iron transport in human monocytic cells. Blood. 2003;101:4148–4154.
    1. Vanoaica L., Darshan D., Richman L., Schumann K., Kuhn L. C. Intestinal ferritin H is required for an accurate control of iron absorption. Cell Metab. 2010;12:273–282.
    1. Shah Y. M., Matsubara T., Ito S., Yim S. H., Gonzalez F. J. Intestinal hypoxia-inducible transcription factors are essential for iron absorption following iron deficiency. Cell Metab. 2009;9:152–164.
    1. Mastrogiannaki M., Matak P., Keith B., Simon M. C., Vaulont S., Peyssonnaux C. HIF-2α, but not HIF-1α, promotes iron absorption in mice. J. Clin. Invest. 2009;119:1159–1166.
    1. Ponka P., Beaumont C., Richardson D. R. Function and regulation of transferrin and ferritin. Semin. Hematol. 1998;35:35–54.
    1. Ohgami R. S., Campagna D. R., Greer E. L., Antiochos B., McDonald A., Chen J., Sharp J. J., Fujiwara Y., Barker J. E., Fleming M. D. Identification of a ferrireductase required for efficient transferrin-dependent iron uptake in erythroid cells. Nat. Genet. 2005;37:1264–1269.
    1. Richardson D. R., Lane D. J., Becker E. M., Huang M. L., Whitnall M., Rahmanto Y. S., Sheftel A. D., Ponka P. Mitochondrial iron trafficking and the integration of iron metabolism between the mitochondrion and cytosol. Proc. Natl. Acad. Sci. U.S.A. 2010;107:10775–10782.
    1. Levy J. E., Jin O., Fujiwara Y., Kuo F., Andrews N. C. Transferrin receptor is necessary for development of erythrocytes and the nervous system. Nat. Genet. 1999;21:396–399.
    1. Trenor C. C., Campagna D. R., Sellers V. M., Andrews N. C., Fleming M. D. The molecular defect in hypotransferrinemic mice. Blood. 2000;96:1113–1118.
    1. Gunshin H., Fujiwara Y., Custodio A. O., Direnzo C., Robine S., Andrews N. C. Slc11a2 is required for intestinal iron absorption and erythropoiesis but dispensable in placenta and liver. J. Clin. Invest. 2005;115:1258–1266.
    1. Fleming M. D., Trenor C. C. I., Su M. A., Foernzler D., Beier D. R., Dietrich W. F., Andrews N. C. Microcytic anaemia mice have a mutation in Nramp2, a candidate iron transporter gene. Nat. Genet. 1997;16:383–386.
    1. Fleming M. D., Romano M. A., Su M. A., Garrick L. M., Garrick M. D., Andrews N. C. Nramp2 is mutated in the anemic Belgrade (b) rat: evidence of a role for Nramp2 in endosomal iron transport. Proc. Natl. Acad. Sci. U.S.A. 1998;95:1148–1153.
    1. Kristiansen M., Graversen J. H., Jacobsen C., Sonne O., Hoffman H. J., Law S. K., Moestrup S. K. Identification of the haemoglobin scavenger receptor. Nature. 2001;409:198–201.
    1. Hvidberg V., Maniecki M. B., Jacobsen C., Hojrup P., Moller H. J., Moestrup S. K. Identification of the receptor scavenging hemopexin-heme complexes. Blood. 2005;106:2572–2579.
    1. Soe-Lin S., Apte S. S., Andriopoulos B., Jr., Andrews M. C., Schranzhofer M., Kahawita T., Garcia-Santos D., Ponka P. Nramp1 promotes efficient macrophage recycling of iron following erythrophagocytosis in vivo. Proc. Natl. Acad. Sci. U.S.A. 2009;106:5960–5965.
    1. Zecca L., Youdim M. B., Riederer P., Connor J. R., Crichton R. R. Iron, brain ageing and neurodegenerative disorders. Nat. Rev. Neurosci. 2004;5:863–873.
    1. Rouault T. A., Zhang D. L., Jeong S. Y. Brain iron homeostasis, the choroid plexus, and localization of iron transport proteins. Metab. Brain Dis. 2009;24:673–684.
    1. Jeong S. Y., David S. Glycosylphosphatidylinositol-anchored ceruloplasmin is required for iron efflux from cells in the central nervous system. J. Biol. Chem. 2003;278:27144–27148.
    1. Duce J. A., Tsatsanis A., Cater M. A., James S. A., Robb E., Wikhe K., Leong S. L., Perez K., Johanssen T., Greenough M. A., et al. Iron-export ferroxidase activity of β-amyloid precursor protein is inhibited by zinc in Alzheimer's disease. Cell. 2010;142:857–867.
    1. Smith C. P., Thevenod F. Iron transport and the kidney. Biochim. Biophys. Acta. 2009;1790:724–730.
    1. Kozyraki R., Fyfe J., Verroust P. J., Jacobsen C., Dautry-Varsat A., Gburek J., Willnow T. E., Christensen E. I., Moestrup S. K. Megalin-dependent cubilin-mediated endocytosis is a major pathway for the apical uptake of transferrin in polarized epithelia. Proc. Natl. Acad. Sci. U.S.A. 2001;98:12491–12496.
    1. Goetz D. H., Holmes M. A., Borregaard N., Bluhm M. E., Raymond K. N., Strong R. K. The neutrophil lipocalin NGAL is a bacteriostatic agent that interferes with siderophore-mediated iron acquisition. Mol. Cell. 2002;10:1033–1043.
    1. Yang J., Goetz D., Li J. Y., Wang W., Mori K., Setlik D., Du T., Erdjument-Bromage H., Tempst P., Strong R., Barasch J. An iron delivery pathway mediated by a lipocalin. Mol. Cell. 2002;10:1045–1056.
    1. Mori K., Lee H. T., Rapoport D., Drexler I. R., Foster K., Yang J., Schmidt-Ott K. M., Chen X., Li J. Y., Weiss S., et al. Endocytic delivery of lipocalin–siderophore–iron complex rescues the kidney from ischemia-reperfusion injury. J. Clin. Invest. 2005;115:610–621.
    1. Devireddy L. R., Gazin C., Zhu X., Green M. R. A cell-surface receptor for lipocalin 24p3 selectively mediates apoptosis and iron uptake. Cell. 2005;123:1293–1305.
    1. Hvidberg V., Jacobsen C., Strong R. K., Cowland J. B., Moestrup S. K., Borregaard N. The endocytic receptor megalin binds the iron transporting neutrophil-gelatinase-associated lipocalin with high affinity and mediates its cellular uptake. FEBS Lett. 2005;579:773–777.
    1. Devireddy L. R., Hart D. O., Goetz D. H., Green M. R. A mammalian siderophore synthesized by an enzyme with a bacterial homolog involved in enterobactin production. Cell. 2010;141:1006–1017.
    1. Flo T. H., Smith K. D., Sato S., Rodriguez D. J., Holmes M. A., Strong R. K., Akira S., Aderem A. Lipocalin 2 mediates an innate immune response to bacterial infection by sequestrating iron. Nature. 2004;432:917–921.
    1. Breuer W., Hershko C., Cabantchik Z. I. The importance of non-transferrin bound iron in disorders of iron metabolism. Transfus. Sci. 2000;23:185–192.
    1. Hider R. C. Nature of nontransferrin-bound iron. Eur. J. Clin. Invest. 2002;32(Suppl. 1):50–54.
    1. Huang H., Akira S., Santos M. M. Is the iron donor lipocalin 2 implicated in the pathophysiology of hereditary hemochromatosis? Hepatology. 2009;49:1012–1016.
    1. Liuzzi J. P., Aydemir F., Nam H., Knutson M. D., Cousins R. J. Zip14 (Slc39a14) mediates non-transferrin-bound iron uptake into cells. Proc. Natl. Acad. Sci. U.S.A. 2006;103:13612–13617.
    1. Zhao N., Gao J., Enns C. A., Knutson M. D. ZRT/IRT-like protein 14 (ZIP14) promotes the cellular assimilation of iron from transferrin. J. Biol. Chem. 2010;285:32141–32150.
    1. Chen T. T., Li L., Chung D. H., Allen C. D., Torti S. V., Torti F. M., Cyster J. G., Chen C. Y., Brodsky F. M., Niemi E. C., et al. TIM-2 is expressed on B cells and in liver and kidney and is a receptor for H-ferritin endocytosis. J. Exp. Med. 2005;202:955–965.
    1. Li J. Y., Paragas N., Ned R. M., Qiu A., Viltard M., Leete T., Drexler I. R., Chen X., Sanna-Cherchi S., Mohammed F., et al. Scara5 is a ferritin receptor mediating non-transferrin iron delivery. Dev. Cell. 2009;16:35–46.
    1. Li L., Fang C. J., Ryan J. C., Niemi E. C., Lebron J. A., Bjorkman P. J., Arase H., Torti F. M., Torti S. V., Nakamura M. C., Seaman W. E. Binding and uptake of H-ferritin are mediated by human transferrin receptor-1. Proc. Natl. Acad. Sci. U.S.A. 2010;107:3505–3510.
    1. Muhlenhoff U., Molik S., Godoy J. R., Uzarska M. A., Richter N., Seubert A., Zhang Y., Stubbe J., Pierrel F., Herrero E., et al. Cytosolic monothiol glutaredoxins function in intracellular iron sensing and trafficking via their bound iron–sulfur cluster. Cell Metab. 2010;12:373–385.
    1. Shaw G. C., Cope J. J., Li L., Corson K., Hersey C., Ackermann G. E., Gwynn B., Lambert A. J., Wingert R. A., Traver D., et al. Mitoferrin is essential for erythroid iron assimilation. Nature. 2006;440:96–100.
    1. Chen W., Paradkar P. N., Li L., Pierce E. L., Langer N. B., Takahashi-Makise N., Hyde B. B., Shirihai O. S., Ward D. M., Kaplan J., Paw B. H. Abcb10 physically interacts with mitoferrin-1 (Slc25a37) to enhance its stability and function in the erythroid mitochondria. Proc. Natl. Acad. Sci. U.S.A. 2009;106:16263–16268.
    1. Paradkar P. N., Zumbrennen K. B., Paw B. H., Ward D. M., Kaplan J. Regulation of mitochondrial iron import through differential turnover of mitoferrin 1 and mitoferrin 2. Mol. Cell. Biol. 2009;29:1007–1016.
    1. Severance S., Hamza I. Trafficking of heme and porphyrins in metazoa. Chem. Rev. 2009;109:4596–4616.
    1. Ryter S. W., Tyrrell R. M. The heme synthesis and degradation pathways: role in oxidant sensitivity. Heme oxygenase has both pro- and antioxidant properties. Free Radical Biol. Med. 2000;28:289–309.
    1. Ponka P. Tissue-specific regulation of iron metabolism and heme synthesis: distinct control mechanisms in erythroid cells. Blood. 1997;89:1–25.
    1. Nilsson R., Schultz I. J., Pierce E. L., Soltis K. A., Naranuntarat A., Ward D. M., Baughman J. M., Paradkar P. N., Kingsley P. D., Culotta V. C., et al. Discovery of genes essential for heme biosynthesis through large-scale gene expression analysis. Cell Metab. 2009;10:119–130.
    1. Johnson D. C., Dean D. R., Smith A. D., Johnson M. K. Structure, function, and formation of biological iron–sulfur clusters. Annu. Rev. Biochem. 2005;74:247–281.
    1. Lill R. Function and biogenesis of iron–sulphur proteins. Nature. 2009;460:831–838.
    1. Ye H., Rouault T. A. Human iron–sulfur cluster assembly, cellular iron homeostasis, and disease. Biochemistry. 2010;49:4945–4956.
    1. Netz D. J., Pierik A. J., Stumpfig M., Muhlenhoff U., Lill R. The Cfd1–Nbp35 complex acts as a scaffold for iron–sulfur protein assembly in the yeast cytosol. Nat. Chem. Biol. 2007;3:278–286.
    1. Keel S. B., Doty R. T., Yang Z., Quigley J. G., Chen J., Knoblaugh S., Kingsley P. D., De Domenico I., Vaughn M. B., Kaplan J. A heme export protein is required for red blood cell differentiation and iron homeostasis. Science. 2008;319:825–828.
    1. Arosio P., Ingrassia R., Cavadini P. Ferritins: a family of molecules for iron storage, antioxidation and more. Biochim. Biophys. Acta. 2009;1790:589–599.
    1. Shi H., Bencze K. Z., Stemmler T. L., Philpott C. C. A cytosolic iron chaperone that delivers iron to ferritin. Science. 2008;320:1207–1210.
    1. Zhang Y., Mikhael M., Xu D., Li Y., Soe-Lin S., Ning B., Li W., Nie G., Zhao Y., Ponka P. Lysosomal proteolysis is the primary degradation pathway for cytosolic ferritin and cytosolic ferritin degradation is necessary for iron exit. Antioxid. Redox Signaling. 2010;13:999–1009.
    1. Takagi H., Shi D., Ha Y., Allewell N. M., Theil E. C. Localized unfolding at the junction of three ferritin subunits. A mechanism for iron release? J. Biol. Chem. 1998;273:18685–18688.
    1. Mikhael M., Sheftel A. D., Ponka P. Ferritin does not donate its iron for haem synthesis in macrophages. Biochem. J. 2010;429:463–471.
    1. De Domenico I., Vaughn M. B., Li L., Bagley D., Musci G., Ward D. M., Kaplan J. Ferroportin-mediated mobilization of ferritin iron precedes ferritin degradation by the proteasome. EMBO J. 2006;25:5396–5404.
    1. De Domenico I., Ward D. M., Kaplan J. Specific iron chelators determine the route of ferritin degradation. Blood. 2009;114:4546–4551.
    1. Ferreira C., Bucchini D., Martin M. E., Levi S., Arosio P., Grandchamp B., Beaumont C. Early embryonic lethality of H ferritin gene deletion in mice. J. Biol. Chem. 2000;275:3021–3024.
    1. Darshan D., Vanoaica L., Richman L., Beermann F., Kuhn L. C. Conditional deletion of ferritin H in mice induces loss of iron storage and liver damage. Hepatology. 2009;50:852–860.
    1. Levi S., Cozzi A., Arosio P. Neuroferritinopathy: a neurodegenerative disorder associated with L-ferritin mutation. Best Pract. Res. Clin. Haematol. 2005;18:265–276.
    1. Levi S., Arosio P. Mitochondrial ferritin. Int. J. Biochem. Cell Biol. 2004;36:1887–1889.
    1. Cazzola M., Invernizzi R., Bergamaschi G., Levi S., Corsi B., Travaglino E., Rolandi V., Biasiotto G., Drysdale J., Arosio P. Mitochondrial ferritin expression in erythroid cells from patients with sideroblastic anemia. Blood. 2003;101:1996–2000.
    1. Cohen L. A., Gutierrez L., Weiss A., Leichtmann-Bardoogo Y., Zhang D. L., Crooks D. R., Sougrat R., Morgenstern A., Galy B., Hentze M. W., et al. Serum ferritin is derived primarily from macrophages through a nonclassical secretory pathway. Blood. 2010;116:1574–1584.
    1. Breuer W., Shvartsman M., Cabantchik Z. I. Intracellular labile iron. Int. J. Biochem. Cell Biol. 2008;40:350–354.
    1. Petrat F., de Groot H., Sustmann R., Rauen U. The chelatable iron pool in living cells: a methodically defined quantity. Biol. Chem. 2002;383:489–502.
    1. Rauen U., Springer A., Weisheit D., Petrat F., Korth H. G., de Groot H., Sustmann R. Assessment of chelatable mitochondrial iron by using mitochondrion-selective fluorescent iron indicators with different iron-binding affinities. ChemBioChem. 2007;8:341–352.
    1. Epsztejn S., Glickstein H., Picard V., Slotki I. N., Breuer W., Beaumont C., Cabantchik Z. I. H-Ferritin subunit overexpression in erythroid cells reduces the oxidative stress response and induces multidrug resistance properties. Blood. 1999;94:3593–3603.
    1. Kaur D., Yantiri F., Rajagopalan S., Kumar J., Mo J. Q., Boonplueang R., Viswanath V., Jacobs R., Yang L., Beal M. F., et al. Genetic or pharmacological iron chelation prevents MPTP-induced neurotoxicity in vivo: a novel therapy for Parkinson's disease. Neuron. 2003;37:899–909.
    1. Kaur D., Rajagopalan S., Andersen J. K. Chronic expression of H-ferritin in dopaminergic midbrain neurons results in an age-related expansion of the labile iron pool and subsequent neurodegeneration: implications for Parkinson's disease. Brain Res. 2009;1297:17–22.
    1. Rouault T. A. The role of iron regulatory proteins in mammalian iron homeostasis and disease. Nat. Chem. Biol. 2006;2:406–414.
    1. Recalcati S., Minotti G., Cairo G. Iron regulatory proteins: from molecular mechanisms to drug development. Antioxid. Redox Signaling. 2010;13:1593–1616.
    1. Wallander M. L., Leibold E. A., Eisenstein R. S. Molecular control of vertebrate iron homeostasis by iron regulatory proteins. Biochim. Biophys. Acta. 2006;1763:668–689.
    1. Piccinelli P., Samuelsson T. Evolution of the iron-responsive element. RNA. 2007;13:952–966.
    1. Roetto A., Bosio S., Gramaglia E., Barilaro M. R., Zecchina G., Camaschella C. Pathogenesis of hyperferritinemia cataract syndrome. Blood Cells Mol. Dis. 2002;29:532–535.
    1. Schranzhofer M., Schifrer M., Cabrera J. A., Kopp S., Chiba P., Beug H., Mullner E. W. Remodeling the regulation of iron metabolism during erythroid differentiation to ensure efficient heme biosynthesis. Blood. 2006;107:4159–4167.
    1. Lok C. N., Ponka P. Identification of an erythroid active element in the transferrin receptor gene. J. Biol. Chem. 2000;275:24185–24190.
    1. Torti F. M., Torti S. V. Regulation of ferritin genes and protein. Blood. 2002;99:3505–3516.
    1. Ponka P., Lok C. N. The transferrin receptor: role in health and disease. Int. J. Biochem. Cell Biol. 1999;31:1111–1137.
    1. Wingert R. A., Galloway J. L., Barut B., Foott H., Fraenkel P., Axe J. L., Weber G. J., Dooley K., Davidson A. J., Schmidt B., et al. Deficiency of glutaredoxin 5 reveals Fe–S clusters are required for vertebrate haem synthesis. Nature. 2005;436:1035–1039.
    1. Ye H., Jeong S. Y., Ghosh M. C., Kovtunovych G., Silvestri L., Ortillo D., Uchida N., Tisdale J., Camaschella C., Rouault T. A. Glutaredoxin 5 deficiency causes sideroblastic anemia by specifically impairing heme biosynthesis and depleting cytosolic iron in human erythroblasts. J. Clin. Invest. 2010;120:1749–1761.
    1. Hubert N., Hentze M. W. Previously uncharacterized isoforms of divalent metal transporter (DMT)- 1: implications for regulation and cellular function. Proc. Natl. Acad. Sci. U.S.A. 2002;99:12345–12350.
    1. Gunshin H., Mackenzie B., Berger U. V., Gunshin Y., Romero M. F., Boron W. F., Nussberger S., Gollan J. L., Hediger M. A. Cloning and characterization of a mammalian protein-coupled metal-ion transporter. Nature. 1997;388:482–488.
    1. Zhang D. L., Hughes R. M., Ollivierre-Wilson H., Ghosh M. C., Rouault T. A. A ferroportin transcript that lacks an iron-responsive element enables duodenal and erythroid precursor cells to evade translational repression. Cell Metab. 2009;9:461–473.
    1. Abboud S., Haile D. J. A novel mammalian iron-regulated protein involved in intracellular iron metabolism. J. Biol. Chem. 2000;275:19906–19912.
    1. McKie A. T., Marciani P., Rolfs A., Brennan K., Wehr K., Barrow D., Miret S., Bomford A., Peters T. J., Farzaneh F., et al. A novel duodenal iron-regulated transporter IREG1, implicated in the basolateral transfer of iron to the circulation. Mol. Cell. 2000;5:299–309.
    1. Mok H., Jelinek J., Pai S., Cattanach B. M., Prchal J. T., Youssoufian H., Schumacher A. Disruption of ferroportin 1 regulation causes dynamic alterations in iron homeostasis and erythropoiesis in polycythaemia mice. Development. 2004;131:1859–1868.
    1. Sanchez M., Galy B., Muckenthaler M. U., Hentze M. W. Iron-regulatory proteins limit hypoxia-inducible factor-2α expression in iron deficiency. Nat. Struct. Mol. Biol. 2007;14:420–426.
    1. Zimmer M., Ebert B. L., Neil C., Brenner K., Papaioannou I., Melas A., Tolliday N., Lamb J., Pantopoulos K., Golub T., Iliopoulos O. Small-molecule inhibitors of HIF-2a translation link its 5′UTR iron-responsive element to oxygen sensing. Mol. Cell. 2008;32:838–848.
    1. Zimmer M., Lamb J., Ebert B. L., Lynch M., Neil C., Schmidt E., Golub T. R., Iliopoulos O. The connectivity map links iron regulatory protein-1-mediated inhibition of hypoxia-inducible factor-2a translation to the anti-inflammatory 15-deoxy-Δ12,14-prostaglandin J2. Cancer Res. 2010;70:3071–3079.
    1. Rankin E. B., Biju M. P., Liu Q., Unger T. L., Rha J., Johnson R. S., Simon M. C., Keith B., Haase V. H. Hypoxia-inducible factor-2 (HIF-2) regulates hepatic erythropoietin in vivo. J. Clin. Invest. 2007;117:1068–1077.
    1. Gruber M., Hu C. J., Johnson R. S., Brown E. J., Keith B., Simon M. C. Acute postnatal ablation of Hif-2α results in anemia. Proc. Natl. Acad. Sci. U.S.A. 2007;104:2301–2306.
    1. Cmejla R., Petrak J., Cmejlova J. A novel iron responsive element in the 3′UTR of human MRCKα. Biochem. Biophys. Res. Commun. 2006;341:158–166.
    1. Sanchez M., Galy B., Dandekar T., Bengert P., Vainshtein Y., Stolte J., Muckenthaler M. U., Hentze M. W. Iron regulation and the cell cycle: identification of an iron-responsive element in the 3′-untranslated region of human cell division cycle 14A mRNA by a refined microarray-based screening strategy. J. Biol. Chem. 2006;281:22865–22874.
    1. Cho H. H., Cahill C. M., Vanderburg C. R., Scherzer C. R., Wang B., Huang X., Rogers J. T. Selective translational control of the Alzheimer amyloid precursor protein transcript by iron regulatory protein-1. J. Biol. Chem. 2010;285:31217–31232.
    1. Friedlich A. L., Tanzi R. E., Rogers J. T. The 5′-untranslated region of Parkinson's disease α-synuclein messenger RNA contains a predicted iron responsive element. Mol. Psychiatry. 2007;12:222–223.
    1. Tang Y., Guest J. R. Direct evidence for mRNA binding and post-transcriptional regulation by Escherichia coli aconitases. Microbiology. 1999;145:3069–3079.
    1. Alen C., Sonenshein A. L. Bacillus subtilis aconitase is an RNA-binding protein. Proc. Natl. Acad. Sci. U.S.A. 1999;96:10412–10417.
    1. Dandekar T., Beyer K., Bork P., Kenealy M. -R., Pantopoulos K., Hentze M. W., Sonntag-Buck V., Flouriot G., Gannon F., Keller W., Schreiber S. Systematic genomic screening and analysis of mRNA in untranslated regions and mRNA precursors: combining experimental and computational approaches. Bioinformatics. 1998;14:271–278.
    1. Gruer M. J., Artymiuk P. J., Guest J. R. The aconitase family: three structural variations on a common theme. Trends Biochem. Sci. 1997;22:3–6.
    1. Dycke C., Bougault C., Gaillard J., Andrieu J. P., Pantopoulos K., Moulis J. M. Human iron regulatory protein 2 is easily cleaved in its specific domain: consequences for the heme binding properties of the protein. Biochem. J. 2007;408:429–439.
    1. Dupuy J., Volbeda A., Carpentier P., Darnault C., Moulis J. M., Fontecilla-Camps J. C. Crystal structure of human iron regulatory protein 1 as cytosolic aconitase. Structure. 2006;14:129–139.
    1. Walden W. E., Selezneva A. I., Dupuy J., Volbeda A., Fontecilla-Camps J. C., Theil E. C., Volz K. Structure of dual function iron regulatory protein 1 complexed with ferritin IRE-RNA. Science. 2006;314:1903–1908.
    1. Zumbrennen K. B., Wallander M. L., Romney S. J., Leibold E. A. Cysteine oxidation regulates the RNA-binding activity of iron regulatory protein 2. Mol. Cell. Biol. 2009;29:2219–2229.
    1. Fillebeen C., Caltagirone A., Martelli A., Moulis J. M., Pantopoulos K. IRP1 Ser-711 is a phosphorylation site, critical for regulation of RNA-binding and aconitase activities. Biochem. J. 2005;388:143–150.
    1. Biederbick A., Stehling O., Rösser R., Niggemeyer B., Nakai Y., Elsässer H. P., Lill R. Role of human mitochondrial Nfs1 in cytosolic iron-sulfur protein biogenesis and iron regulation. Mol. Cell. Biol. 2006;26:5675–5687.
    1. Fosset C., Chauveau M. J., Guillon B., Canal F., Drapier J. C., Bouton C. RNA silencing of mitochondrial m-Nfs1 reduces Fe-S enzyme activity both in mitochondria and cytosol of mammalian cells. J. Biol. Chem. 2006;281:25398–25406.
    1. Wang J., Fillebeen C., Chen G., Biederbick A., Lill R., Pantopoulos K. Iron-dependent degradation of apo-IRP1 by the ubiquitin-proteasome pathway. Mol. Cell. Biol. 2007;27:2423–2430.
    1. Stehling O., Elsasser H. P., Bruckel B., Muhlenhoff U., Lill R. Iron–sulfur protein maturation in human cells: evidence for a function of frataxin. Hum. Mol. Genet. 2004;13:3007–3015.
    1. Seznec H., Simon D., Bouton C., Reutenauer L., Hertzog A., Golik P., Procaccio V., Patel M., Drapier J. C., Koenig M., Puccio H. Friedreich ataxia: the oxidative stress paradox. Hum. Mol. Genet. 2005;14:463–474.
    1. Tong W. H., Rouault T. A. Functions of mitochondrial ISCU and cytosolic ISCU in mammalian iron–sulfur cluster biogenesis and iron homeostasis. Cell Metab. 2006;3:199–210.
    1. Shi Y., Ghosh M., Tong W. H., Rouault T. A. Human ISD11 is essential for both iron–sulfur cluster assembly and maintenance of normal cellular iron homeostasis. Hum. Mol. Genet. 2009;18:3014–3025.
    1. Pondarre C., Antiochos B. B., Campagna D. R., Clarke S. L., Greer E. L., Deck K. M., McDonald A., Han A. P., Medlock A., Kutok J. L., et al. The mitochondrial ATP-binding cassette transporter Abcb7 is essential in mice and participates in cytosolic iron–sulfur cluster biogenesis. Hum. Mol. Genet. 2006;15:953–964.
    1. Bouton C., Chauveau M. J., Lazereg S., Drapier J. C. Recycling of RNA binding iron regulatory protein 1 into an aconitase after nitric oxide removal depends on mitochondrial ATP. J. Biol. Chem. 2002;277:31220–31227.
    1. Popovic Z., Templeton D. M. Interaction of iron regulatory protein-1 (IRP-1) with ATP/ADP maintains a non-IRE-binding state. Biochem. J. 2010;430:315–324.
    1. Li K., Tong W. H., Hughes R. M., Rouault T. A. Roles of the mammalian cytosolic cysteine desulfurase, ISCS, and scaffold protein, ISCU, in iron–sulfur cluster assembly. J. Biol. Chem. 2006;281:12344–12351.
    1. Roy A., Solodovnikova N., Nicholson T., Antholine W., Walden W. E. A novel eukaryotic factor for cytosolic Fe–S cluster assembly. EMBO J. 2003;22:4826–4835.
    1. Stehling O., Netz D. J., Niggemeyer B., Rosser R., Eisenstein R. S., Puccio H., Pierik A. J., Lill R. Human Nbp35 is essential for both cytosolic iron–sulfur protein assembly and iron homeostasis. Mol. Cell. Biol. 2008;28:5517–5528.
    1. Song D., Lee F. S. A role for IOP1 in mammalian cytosolic iron–sulfur protein biogenesis. J. Biol. Chem. 2008;283:9231–9238.
    1. Balk J., Aguilar Netz D. J., Tepper K., Pierik A. J., Lill R. The essential WD40 protein Cia1 is involved in a late step of cytosolic and nuclear iron–sulfur protein assembly. Mol. Cell. Biol. 2005;25:10833–10841.
    1. Zhang Y., Lyver E. R., Nakamaru-Ogiso E., Yoon H., Amutha B., Lee D. W., Bi E., Ohnishi T., Daldal F., Pain D., Dancis A. Dre2, a conserved eukaryotic Fe/S cluster protein, functions in cytosolic Fe/S protein biogenesis. Mol. Cell. Biol. 2008;28:5569–5582.
    1. Netz D. J., Stumpfig M., Dore C., Muhlenhoff U., Pierik A. J., Lill R. Tah18 transfers electrons to Dre2 in cytosolic iron–sulfur protein biogenesis. Nat. Chem. Biol. 2010;6:758–765.
    1. Clarke S. L., Vasanthakumar A., Anderson S. A., Pondarre C., Koh C. M., Deck K. M., Pitula J. S., Epstein C. J., Fleming M. D., Eisenstein R. S. Iron-responsive degradation of iron-regulatory protein 1 does not require the Fe–S cluster. EMBO J. 2006;25:544–553.
    1. Fillebeen C., Chahine D., Caltagirone A., Segal P., Pantopoulos K. A phosphomimetic mutation at Ser-138 renders iron regulatory protein 1 sensitive to iron-dependent degradation. Mol. Cell. Biol. 2003;23:6973–6981.
    1. Meyron-Holtz E. G., Ghosh M. C., Rouault T. A. Mammalian tissue oxygen levels modulate iron-regulatory protein activities in vivo. Science. 2004;306:2087–2090.
    1. Deck K. M., Vasanthakumar A., Anderson S. A., Goforth J. B., Kennedy M. C., Antholine W. E., Eisenstein R. S. Evidence that phosphorylation of iron regulatory protein 1 at serine 138 destabilizes the [4Fe–4S] cluster in cytosolic aconitase by enhancing 4Fe–3Fe cycling. J. Biol. Chem. 2009;284:12701–12709.
    1. Pitula J. S., Deck K. M., Clarke S. L., Anderson S. A., Vasanthakumar A., Eisenstein R. S. Selective inhibition of the citrate-to-isocitrate reaction of cytosolic aconitase by phosphomimetic mutation of serine-711. Proc. Natl. Acad. Sci. U.S.A. 2004;101:10907–10912.
    1. Patton S. M., Pinero D. J., Surguladze N., Beard J., Connor J. R. Subcellular localization of iron regulatory proteins to Golgi and ER membranes. J. Cell Sci. 2005;118:4365–4373.
    1. Hanson E. S., Rawlins M. L., Leibold E. A. Oxygen and iron regulation of iron regulatory protein 2. J. Biol. Chem. 2003;278:40337–40342.
    1. Wang J., Chen G., Muckenthaler M., Galy B., Hentze M. W., Pantopoulos K. Iron-mediated degradation of IRP2: an unexpected pathway involving a 2-oxoglutarate-dependent oxygenase activity. Mol. Cell. Biol. 2004;24:954–965.
    1. Wang J., Chen G., Lee J., Pantopoulos K. Iron-dependent degradation of IRP2 requires its C-terminal region and IRP structural integrity. BMC Mol. Biol. 2008;9:15.
    1. Bourdon E., Kang D. K., Ghosh M. C., Drake S. K., Wey J., Levine R. L., Rouault T. A. The role of endogenous heme synthesis and degradation domain cysteines in cellular iron-dependent degradation of IRP2. Blood Cells Mol. Dis. 2003;31:247–255.
    1. Wang J., Fillebeen C., Chen G., Andriopoulos B., Pantopoulos K. Sodium nitroprusside promotes IRP2 degradation via an increase in intracellular iron and in the absence of S-nitrosylation at C178. Mol. Cell. Biol. 2006;26:1948–1954.
    1. Kim S., Wing S. S., Ponka P. S-nitrosylation of IRP2 regulates its stability via the ubiquitin–proteasome pathway. Mol. Cell. Biol. 2004;24:330–337.
    1. Vashisht A. A., Zumbrennen K. B., Huang X., Powers D. N., Durazo A., Sun D., Bhaskaran N., Persson A., Uhlen M., Sangfelt O., et al. Control of iron homeostasis by an iron-regulated ubiquitin ligase. Science. 2009;326:718–721.
    1. Salahudeen A. A., Thompson J. W., Ruiz J. C., Ma H. W., Kinch L. N., Li Q., Grishin N. V., Bruick R. K. An E3 ligase possessing an iron-responsive hemerythrin domain is a regulator of iron homeostasis. Science. 2009;326:722–726.
    1. French C. E., Bell J. M., Ward F. B. Diversity and distribution of hemerythrin-like proteins in prokaryotes. FEMS Microbiol. Lett. 2008;279:131–145.
    1. Wallander M. L., Zumbrennen K. B., Rodansky E. S., Romney S. J., Leibold E. A. Iron-independent phosphorylation of iron regulatory protein 2 regulates ferritin during the cell cycle. J. Biol. Chem. 2008;283:23589–23598.
    1. Fillebeen C., Pantopoulos K. Redox control of iron regulatory proteins. Redox Rep. 2002;7:15–22.
    1. Mütze S., Hebling U., Stremmel W., Wang J., Arnhold J., Pantopoulos K., Mueller S. Myeloperoxidase-derived hypochlorous acid antagonizes the oxidative stress-mediated activation of iron regulatory protein 1. J. Biol. Chem. 2003;278:40542–40549.
    1. Watts R. N., Hawkins C., Ponka P., Richardson D. R. Nitrogen monoxide (NO)-mediated iron release from cells is linked to NO-induced glutathione efflux via multidrug resistance-associated protein 1. Proc. Natl. Acad. Sci. U.S.A. 2006;103:7670–7675.
    1. Wang J., Chen G., Pantopoulos K. Nitric oxide inhibits the degradation of IRP2. Mol. Cell. Biol. 2005;25:1347–1353.
    1. Hausmann A., Lee J., Pantopoulos K. Redox control of iron regulatory protein 2 stability. FEBS Lett. 2011 doi:101016/j.febslet.2011.01.036.
    1. Caltagirone A., Weiss G., Pantopoulos K. Modulation of cellular iron metabolism by hydrogen peroxide. Effects of H2O2 on the expression and function of iron-responsive element-containing mRNAs in B6 fibroblasts. J. Biol. Chem. 2001;276:19738–19745.
    1. Andriopoulos B., Hegedusch S., Mangin J., Riedel H. D., Hebling U., Wang J., Pantopoulos K., Mueller S. Sustained hydrogen peroxide induces iron uptake by transferrin receptor-1 independent of the IRP/IRE network. J. Biol. Chem. 2007;282:20301–20308.
    1. Mehlhase J., Sandig G., Pantopoulos K., Grune T. Oxidation-induced ferritin turnover in microglial cells: role of proteasome. Free Radical Biol. Med. 2005;38:276–285.
    1. Gerald D., Berra E., Frapart Y. M., Chan D. A., Giaccia A. J., Mansuy D., Pouyssegur J., Yaniv M., Mechta-Grigoriou F. JunD reduces tumor angiogenesis by protecting cells from oxidative stress. Cell. 2004;118:781–794.
    1. Salahudeen A. A., Bruick R. K. Maintaining Mammalian iron and oxygen homeostasis: sensors, regulation, and cross-talk. Ann. N. Y. Acad. Sci. 2009;1177:30–38.
    1. Hofer T., Wenger R. H., Kramer M. F., Ferreira G. C., Gassmann M. Hypoxic up-regulation of erythroid 5-aminolevulinate synthase. Blood. 2003;101:348–350.
    1. Choi S. O., Cho Y. S., Kim H. L., Park J. W. ROS mediate the hypoxic repression of the hepcidin gene by inhibiting C/EBPα and STAT-3. Biochem. Biophys. Res. Commun. 2007;356:312–317.
    1. Harrison-Findik D. D., Schafer D., Klein E., Timchenko N. A., Kulaksiz H., Clemens D., Fein E., Andriopoulos B., Pantopoulos K., Gollan J. Alcohol metabolism-mediated oxidative stress down-regulates hepcidin transcription and leads to increased duodenal iron transporter expression. J. Biol. Chem. 2006;281:22974–22982.
    1. Smith S. R., Ghosh M. C., Ollivierre-Wilson H., Hang Tong W., Rouault T. A. Complete loss of iron regulatory proteins 1 and 2 prevents viability of murine zygotes beyond the blastocyst stage of embryonic development. Blood Cells Mol. Dis. 2006;36:283–287.
    1. Galy B., Ferring-Appel D., Kaden S., Grone H. J., Hentze M. W. Iron regulatory proteins are essential for intestinal function and control key iron absorption molecules in the duodenum. Cell Metab. 2008;7:79–85.
    1. Galy B., Ferring-Appel D., Sauer S. W., Kaden S., Lyoumi S., Puy H., Kolker S., Grone H. J., Hentze M. W. Iron regulatory proteins secure mitochondrial iron sufficiency and function. Cell Metab. 2010;12:194–201.
    1. Muckenthaler M. U., Galy B., Hentze M. W. Systemic iron homeostasis and the iron-responsive element/iron-regulatory protein (IRE/IRP) regulatory network. Annu. Rev. Nutr. 2008;28:197–213.
    1. Meyron-Holtz E. G., Ghosh M. C., Iwai K., LaVaute T., Brazzolotto X., Berger U. V., Land W., Ollivierre-Wilson H., Grinberg A., Love P., Rouault T. A. Genetic ablations of iron regulatory proteins 1 and 2 reveal why iron regulatory protein 2 dominates iron homeostasis. EMBO J. 2004;23:386–395.
    1. Viatte L., Grone H. J., Hentze M. W., Galy B. In vivo role(s) of the iron regulatory proteins (IRP) 1 and 2 in aseptic local inflammation. J. Mol. Med. 2009;87:913–921.
    1. Corna G., Galy B., Hentze M. W., Cairo G. IRP1-independent alterations of cardiac iron metabolism in doxorubicin-treated mice. J. Mol. Med. 2006;84:551–560.
    1. Tong W. H., Rouault T. A. Metabolic regulation of citrate and iron by aconitases: role of iron–sulfur cluster biogenesis. Biometals. 2007;20:549–564.
    1. Cooperman S. S., Meyron-Holtz E. G., Olivierre-Wilson H., Ghosh M. C., McConnell J. P., Rouault T. A. Microcytic anemia, erythropoietic protoporphyria and neurodegeneration in mice with targeted deletion of iron regulatory protein 2. Blood. 2005;106:1084–1091.
    1. Galy B., Ferring D., Minana B., Bell O., Janser H. G., Muckenthaler M., Schumann K., Hentze M. W. Altered body iron distribution and microcytosis in mice deficient for iron regulatory protein 2 (IRP2) Blood. 2005;106:2580–2589.
    1. Ferring-Appel D., Hentze M. W., Galy B. Cell-autonomous and systemic context-dependent functions of iron regulatory protein 2 in mammalian iron metabolism. Blood. 2009;113:679–687.
    1. LaVaute T., Smith S., Cooperman S., Iwai K., Land W., Meyron-Holtz E., Drake S. K., Miller G., Abu-Asab M., Tsokos M., et al. Targeted deletion of the gene encoding iron regulatory protein-2 causes misregulation of iron metabolism and neurodegenerative disease in mice. Nat. Genet. 2001;27:209–214.
    1. Ghosh M. C., Ollivierre-Wilson H., Cooperman S., Rouault T. A. Reply to Iron homeostasis in the brain: complete iron regulatory protein 2 deficiency without symptomatic neurodegeneration in the mouse. Nat. Genet. 2006;38:969–970.
    1. Smith S. R., Cooperman S., Lavaute T., Tresser N., Ghosh M., Meyron-Holtz E., Land W., Ollivierre H., Jortner B., Switzer R., III, et al. Severity of neurodegeneration correlates with compromise of iron metabolism in mice with iron regulatory protein deficiencies. Ann. N. Y. Acad. Sci. 2004;1012:65–83.
    1. Ghosh M. C., Tong W. H., Zhang D., Ollivierre-Wilson H., Singh A., Krishna M. C., Mitchell J. B., Rouault T. A. Tempol-mediated activation of latent iron regulatory protein activity prevents symptoms of neurodegenerative disease in IRP2 knockout mice. Proc. Natl. Acad. Sci. U.S.A. 2008;105:12028–12033.
    1. Galy B., Hölter S. M., Klopstock T., Ferring D., Becker L., Kaden S., Wurst W., Gröne H.-J., Hentze M. W. Iron homeostasis in the brain: complete iron regulatory protein 2 deficiency without symptomatic neurodegeneration in the mouse. Nat. Genet. 2006;38:967–969.
    1. Mueller C., Magaki S., Schrag M., Ghosh M. C., Kirsch W. M. Iron regulatory protein 2 is involved in brain copper homeostasis. J. Alzheimers Dis. 2009;18:201–210.
    1. Chen G., Fillebeen C., Wang J., Pantopoulos K. Overexpression of iron regulatory protein 1 suppresses growth of tumor xenografts. Carcinogenesis. 2007;28:785–791.
    1. Maffettone C., Chen G., Drozdov I., Ouzounis C., Pantopoulos K. Tumorigenic properties of iron regulatory protein 2 (IRP2) mediated by its specific 73-amino acids insert. PLoS ONE. 2010;5:e10163.
    1. Wang J., Pantopoulos K. Conditional de-repression of ferritin synthesis in cells expressing a constitutive IRP1 mutant. Mol. Cell. Biol. 2002;22:4638–4651.
    1. Wu K. J., Polack A., Dalla-Favera R. Coordinated regulation of iron-controlling genes, H-ferritin and IRP2, by c-MYC. Science. 1999;283:676–679.

Source: PubMed

3
Předplatit