Enhancement of sleep slow waves: underlying mechanisms and practical consequences

Michele Bellesi, Brady A Riedner, Gary N Garcia-Molina, Chiara Cirelli, Giulio Tononi, Michele Bellesi, Brady A Riedner, Gary N Garcia-Molina, Chiara Cirelli, Giulio Tononi

Abstract

Even modest sleep restriction, especially the loss of sleep slow wave activity (SWA), is invariably associated with slower electroencephalogram (EEG) activity during wake, the occurrence of local sleep in an otherwise awake brain, and impaired performance due to cognitive and memory deficits. Recent studies not only confirm the beneficial role of sleep in memory consolidation, but also point to a specific role for sleep slow waves. Thus, the implementation of methods to enhance sleep slow waves without unwanted arousals or lightening of sleep could have significant practical implications. Here we first review the evidence that it is possible to enhance sleep slow waves in humans using transcranial direct-current stimulation (tDCS) and transcranial magnetic stimulation. Since these methods are currently impractical and their safety is questionable, especially for chronic long-term exposure, we then discuss novel data suggesting that it is possible to enhance slow waves using sensory stimuli. We consider the physiology of the K-complex (KC), a peripheral evoked slow wave, and show that, among different sensory modalities, acoustic stimulation is the most effective in increasing the magnitude of slow waves, likely through the activation of non-lemniscal ascending pathways to the thalamo-cortical system. In addition, we discuss how intensity and frequency of the acoustic stimuli, as well as exact timing and pattern of stimulation, affect sleep enhancement. Finally, we discuss automated algorithms that read the EEG and, in real-time, adjust the stimulation parameters in a closed-loop manner to obtain an increase in sleep slow waves and avoid undesirable arousals. In conclusion, while discussing the mechanisms that underlie the generation of sleep slow waves, we review the converging evidence showing that acoustic stimulation is safe and represents an ideal tool for slow wave sleep (SWS) enhancement.

Keywords: EEG; NREM sleep; acoustic stimulation; arousal systems; closed-loop.

Figures

Figure 1
Figure 1
(A) Representative example of acoustic stimulation delivered in 15-s blocks during deeper stages of NREM sleep (N2 and N3, 50 ms tones played with an inter-tone-interval of 1 s). A custom algorithm delivered acoustic stimuli automatically, using the ongoing EEG to examine sleep and adjust tone timing and volume. Hypnogram and SWA band-limited power (BLP) for channel F3-M2 along with the stimulation blocks shown below in red (2 min of EEG and tone stimulation are expanded below). Note that during ON blocks slow waves are more numerous and larger. (B) All subjects (n = 6) showed overall increases in SWA (top plot) in ON blocks relative to the temporally adjacent OFF blocks, while other frequency ranges did not change (bottom plot). * indicates significantly different based on a paired t-test, Bonferroni corrected for multiple comparisons (p < 0.0125). (C) Top plot shows a butterfly plot (all channels overlaid) averaging across all 100 slow waves aligned by the negative peak. Slow waves were randomly selected for comparison from the ON and OFF periods of the stimulation night and from a BASELINE (no stimulation) night. Middle plot shows the average scalp voltage topography at the negative peak. Bottom plot shows the traveling of individual waves and their average speed below. Each dot represents the origin of the wave and the line describes its traveling. Slow waves were detected globally based on standard criteria and traveling was calculated from the negative peak lag distribution of each wave (Siclari et al., 2014).
Figure 2
Figure 2
Sleep recordings performed with a HydroCel 256 channel hdEEG net (Electrical Geodesics Inc.) using NetStation software in healthy subjects (n = 5). Auditory tones were delivered through speakers or headphones during N2-N3 sleep stages. Auditory KCs and slow waves were detected globally based on period-amplitude criteria (peak to peak minimum amplitude: 75 µV; negative going zero-crossing to positive going zero-crossings greater than 250 ms and less than 1000 ms). For the KCs, an additional criterion was that the waves had to occur between 200 and 1100 ms after the auditory stimulus. Top figures are butterfly plots (all channels overlaid) averaging across all auditory evoked KCs (on the left) and all spontaneous slow waves (on the right). Both waves were aligned by the negative peak. Bottom plots show the average scalp voltage topography at the negative peak for KCs (on the left) and spontaneous slow waves (on the right).
Figure 3
Figure 3
(A–C) Similarity of scalp and source topographies of K-complex (KC) responses. Across subject (n = 7) grand average 256-channel EEG butterfly plot (overlaid traces) of the evoked response during sleep for auditory, somatosensory, and visual stimulation. (A–C’) Scalp topography for the N550 time periods. Each map is independently scaled in order to indicate relative topography. Red indicates positivity with respect to the average and blue indicates negativity. (A’) ranges from −30 (blue) to +20 (red); (B’) ranges from −10 (blue) to +7 (red); (C’) ranges from −23 (blue) to + 17 (red). (A–C”) Flat maps of the cortical sources for the N550 peak. Current hot spots (most current) indicated in red, cold spots in blue. AC = Anterior Cingulate, MFG = Middle Frontal Gyrus, IPL = Inferior Parietal Lobule. (ABC”), respectively MIN = −1.3, −1.2, −1.4; MAX = 2.6,2.5,2.3. (D) Modality-specific differences in cortical sources for the N550 peak of KC. Flat map of significantly different cortical sources across stimulation modalities (Quade test, p < 0.05). Color-coding of voxels indicates the stimulation with the highest ranking relative to the other stimulation modalities (adapted from Riedner et al., 2011).
Figure 4
Figure 4
Schematic representation of the organization of the ascending acoustic pathways and relative targets in the thalamus and the cerebral cortex. ICx: shell of the inferior colliculus; MRF: midbrain reticular formation; Sag: Sagulum; ST: spinothalamic tract; PRF: pontine reticular formation; NGC: Nucleus gigantocellularis; LC: Locus coeruleus; IC: Inferior colliculus; SC; Superior colliculus; MGd: Medial geniculate dorsal; MGm: Medial geniculate caudo-medial; MGv: Medial geniculate ventral.
Figure 5
Figure 5
Schematic representation of the hypothetical role of thalamic matrix cells and noradrenaline (NA) in regulating the EEG outcome after tone presentation. We hypothesize that, during NREM sleep, acoustic stimuli can be ineffective, lead to enhanced waves, or provoke cortical arousals, depending on the involvement of the locus coeruleus and/or thalamic matrix cells.
Figure 6
Figure 6
Schematic representation of an automated real-time system capable of adjusting acoustic stimulation parameters according to the ongoing sleep.

References

    1. Achermann P., Borbély A. A. (1997). Low-frequency (< 1 Hz) oscillations in the human sleep electroencephalogram. Neuroscience 81, 213–222. 10.1016/s0306-4522(97)00186-3
    1. Achermann P., Borbély A. A. (2003). Mathematical models of sleep regulation. Front. Biosci. 8, s683–s693. 10.2741/1064
    1. Ackner B., Pampiglione G. (1957). Some relationships between peripheral vasomotor and E.E.G. changes. J. Neurol. Neurosurg. Psychiatry 20, 58–64. 10.1136/jnnp.20.1.58
    1. Adamantidis A. R., Zhang F., Aravanis A. M., Deisseroth K., de Lecea L. (2007). Neural substrates of awakening probed with optogenetic control of hypocretin neurons. Nature 450, 420–424. 10.1038/nature06310
    1. Adrian E. D., Matthews B. H. C. (1934). The Berger rhythm: potential changes from the occipital lobes in man. Brain 57, 355–385. 10.1093/brain/57.4.355
    1. Aeschbach D., Cutler A. J., Ronda J. M. (2008). A role for non-rapid-eye-movement sleep homeostasis in perceptual learning. J. Neurosci. 28, 2766–2772. 10.1523/JNEUROSCI.5548-07.2008
    1. Amici R., Domeniconi R., Jones C. A., Morales-Cobas G., Perez E., Tavernese L., et al. . (2000). Changes in REM sleep occurrence due to rhythmical auditory stimulation in the rat. Brain Res. 868, 241–250. 10.1016/s0006-8993(00)02337-4
    1. Amzica F., Steriade M. (1998a). Cellular substrates and laminar profile of sleep K-complex. Neuroscience 82, 671–686. 10.1016/s0306-4522(97)00319-9
    1. Amzica F., Steriade M. (1998b). Electrophysiological correlates of sleep delta waves. Electroencephalogr. Clin. Neurophysiol. 107, 69–83. 10.1016/s0013-4694(98)00051-0
    1. Anderson L. A., Christianson G. B., Linden J. F. (2009). Stimulus-specific adaptation occurs in the auditory thalamus. J. Neurosci. 29, 7359–7363. 10.1523/JNEUROSCI.0793-09.2009
    1. Anderson L. A., Linden J. F. (2011). Physiological differences between histologically defined subdivisions in the mouse auditory thalamus. Hear. Res. 274, 48–60. 10.1016/j.heares.2010.12.016
    1. Andrillon T., Nir Y., Staba R. J., Ferrarelli F., Cirelli C., Tononi G., et al. . (2011). Sleep spindles in humans: insights from intracranial EEG and unit recordings. J. Neurosci. 31, 17821–17834. 10.1523/JNEUROSCI.2604-11.2011
    1. Arankowsky-Sandoval G., Prospéro-Garcia O., Aguilar-Roblero R., Drucker-Colín R. (1986). Cholinergic reduction of REM sleep duration is reverted by auditory stimulation. Brain Res. 375, 377–380. 10.1016/0006-8993(86)90762-6
    1. Arankowsky-Sandoval G., Stone W. S., Gold P. E. (1992). Enhancement of REM sleep with auditory stimulation in young and old rats. Brain Res. 589, 353–357. 10.1016/0006-8993(92)91299-t
    1. Arzi A., Shedlesky L., Ben-Shaul M., Nasser K., Oksenberg A., Hairston I. S., et al. . (2012). Humans can learn new information during sleep. Nat. Neurosci. 15, 1460–1465. 10.1038/nn.3193
    1. Aston-Jones G., Ennis M., Pieribone V. A., Nickell W. T., Shipley M. T. (1986). The brain nucleus locus coeruleus: restricted afferent control of a broad efferent network. Science 234, 734–737. 10.1126/science.3775363
    1. Aston-Jones G., Rajkowski J., Kubiak P., Valentino R. J., Shipley M. T. (1996). Role of the locus coeruleus in emotional activation. Prog. Brain Res. 107, 379–402. 10.1016/s0079-6123(08)61877-4
    1. Attwell D., Laughlin S. B. (2001). An energy budget for signaling in the grey matter of the brain. J. Cereb. Blood Flow Metab. 21, 1133–1145. 10.1097/00004647-200110000-00001
    1. Balduzzi D., Tononi G. (2013). What can neurons do for their brain? Communicate selectivity with bursts. Theory Biosci. 132, 27–39. 10.1007/s12064-012-0165-0
    1. Ball W. A., Hunt W. H., Sanford L. D., Ross R. J., Morrison A. R. (1991). Effects of stimulus intensity on elicited ponto-geniculo-occipital waves. Electroencephalogr. Clin. Neurophysiol. 78, 35–39. 10.1016/0013-4694(91)90016-w
    1. Banks S., Dinges D. F. (2007). Behavioral and physiological consequences of sleep restriction. J. Clin. Sleep Med. 3, 519–528.
    1. Bastien C., Campbell K. (1994). Effects of rate of tone-pip stimulation on the evoked K-Complex. J. Sleep Res. 3, 65–72. 10.1111/j.1365-2869.1994.tb00109.x
    1. Bayer L., Constantinescu I., Perrig S., Vienne J., Vidal P. P., Muhlethaler M., et al. . (2011). Rocking synchronizes brain waves during a short nap. Curr. Biol. 21, R461–R462. 10.1016/j.cub.2011.05.012
    1. Beltramo R., D’urso G., Dal Maschio M., Farisello P., Bovetti S., Clovis Y., et al. . (2013). Layer-specific excitatory circuits differentially control recurrent network dynamics in the neocortex. Nat. Neurosci. 16, 227–234. 10.1038/nn.3306
    1. Berlucchi G. (1997). One or many arousal systems? Reflections on some of Giuseppe Moruzzi’s foresights and insights about the intrinsic regulation of brain activity. Arch. Ital. Biol. 135, 5–14.
    1. Berridge C. W., Foote S. L. (1991). Effects of locus coeruleus activation on electroencephalographic activity in neocortex and hippocampus. J. Neurosci. 11, 3135–3145.
    1. Berridge C. W., Waterhouse B. D. (2003). The locus coeruleus-noradrenergic system: modulation of behavioral state and state-dependent cognitive processes. Brain Res. Brain Res. Rev. 42, 33–84. 10.1016/s0165-0173(03)00143-7
    1. Blaivas A. J., Patel R., Hom D., Antigua K., Ashtyani H. (2007). Quantifying microsleep to help assess subjective sleepiness. Sleep Med. 8, 156–159. 10.1016/j.sleep.2006.06.011
    1. Bohlin G. (1971). Monotonous stimulation, sleep onset and habituation of the orienting reaction. Electroencephalogr. Clin. Neurophysiol. 31, 593–601. 10.1016/0013-4694(71)90075-7
    1. Borbély A. A., Achermann P. (1999). Sleep homeostasis and models of sleep regulation. J. Biol. Rhythms 14, 559–570. 10.1177/074873099129000894
    1. Borbély A. A., Achermann P. (2000). Homeostasis of Human Sleep and Models of Sleep Regulation. Philadelphia: W.B. Saunders
    1. Borbély A. A., Achermann P. (2005). “Sleep homeostasis and models of sleep regulation,” in Principles and Practice of Sleep Medicine, eds Kryger M. H., Roth T., Dement W. C. (Philadelphia: W. B. Saunders; ), 405–417
    1. Burns B. D., Stean J. P., Webb A. C. (1979). The effects of sleep on neurons in isolated cerebral cortex. Proc. R. Soc. Lond. B Biol. Sci. 206, 281–291. 10.1098/rspb.1979.0105
    1. Calford M. B., Aitkin L. M. (1983). Ascending projections to the medial geniculate body of the cat: evidence for multiple, parallel auditory pathways through thalamus. J. Neurosci. 3, 2365–2380.
    1. Calvet J., Fourment A., Thiefry M. (1973). Electrical activity in neocortical projection and association areas during slow wave sleep. Brain Res. 52, 173–187. 10.1016/0006-8993(73)90657-4
    1. Cant N. B., Benson C. G. (2003). Parallel auditory pathways: projection patterns of the different neuronal populations in the dorsal and ventral cochlear nuclei. Brain Res. Bull. 60, 457–474. 10.1016/s0361-9230(03)00050-9
    1. Carskadon M. A., Herz R. S. (2004). Minimal olfactory perception during sleep: why odor alarms will not work for humans. Sleep 27, 402–405.
    1. Carter M. E., Yizhar O., Chikahisa S., Nguyen H., Adamantidis A., Nishino S., et al. . (2010). Tuning arousal with optogenetic modulation of locus coeruleus neurons. Nat. Neurosci. 13, 1526–1533. 10.1038/nn.2682
    1. Cash S. S., Halgren E., Dehghani N., Rossetti A. O., Thesen T., Wang C., et al. . (2009). The human K-complex represents an isolated cortical down-state. Science 324, 1084–1087. 10.1126/science.1169626
    1. Chennu S., Bekinschtein T. A. (2012). Arousal modulates auditory attention and awareness: insights from sleep, sedation and disorders of consciousness. Front. Psychol. 3:65. 10.3389/fpsyg.2012.00065
    1. Cirelli C., Tononi G. (2008). Is sleep essential? PLoS Biol 6:e216. 10.1371/journal.pbio.0060216
    1. Clascá F., Rubio-Garrido P., Jabaudon D. (2012). Unveiling the diversity of thalamocortical neuron subtypes. Eur. J. Neurosci. 35, 1524–1532. 10.1111/j.1460-9568.2012.08033.x
    1. Colrain I. M. (2005). The K-complex: a 7-decade history. Sleep 28, 255–273.
    1. Constantinople C. M., Bruno R. M. (2011). Effects and mechanisms of wakefulness on local cortical networks. Neuron 69, 1061–1068. 10.1016/j.neuron.2011.02.040
    1. Contreras D., Steriade M. (1995). Cellular basis of EEG slow rhythms: a study of dynamic corticothalamic relationships. J. Neurosci. 15, 604–622.
    1. Copinschi G., Leproult R., Spiegel K. (2014). The important role of sleep in metabolism. Front. Horm. Res. 42, 59–72. 10.1159/000358858
    1. Cordero L., Clark D. L., Schott L. (1986). Effects of vestibular stimulation on sleep states in premature infants. Am. J. Perinatol. 3, 319–324. 10.1055/s-2007-999888
    1. Curcio G., Ferrara M., Pellicciari M. C., Cristiani R., De Gennaro L. (2003). Effect of total sleep deprivation on the landmarks of stage 2 sleep. Clin. Neurophysiol. 114, 2279–2285. 10.1016/s1388-2457(03)00276-1
    1. Czisch M., Wehrle R., Stiegler A., Peters H., Andrade K., Holsboer F., et al. . (2009). Acoustic oddball during NREM sleep: a combined EEG/fMRI study. PLoS One 4:e6749. 10.1371/journal.pone.0006749
    1. Dang-Vu T. T., Bonjean M., Schabus M., Boly M., Darsaud A., Desseilles M., et al. . (2011). Interplay between spontaneous and induced brain activity during human non-rapid eye movement sleep. Proc. Natl. Acad. Sci. U S A 108, 15438–15443. 10.1073/pnas.1112503108
    1. Dang-Vu T. T., McKinney S. M., Buxton O. M., Solet J. M., Ellenbogen J. M. (2010). Spontaneous brain rhythms predict sleep stability in the face of noise. Curr. Biol. 20, R626–R627. 10.1016/j.cub.2010.06.032
    1. Davis H. D., Davis P. A., Loomis A. L., Hervey E. N., Hobart G. (1939). Electrical reactions of the human brain to auditory stimulation during sleep. J. Neurophysiol. 2, 500–514
    1. De Gennaro L., Ferrara M., Bertini M. (2000). The spontaneous K-complex during stage 2 sleep: is it the ‘forerunner’ of delta waves? Neurosci. Lett. 291, 41–43. 10.1016/s0304-3940(00)01366-5
    1. de Lecea L., Carter M. E., Adamantidis A. (2012). Shining light on wakefulness and arousal. Biol. Psychiatry 71, 1046–1052. 10.1016/j.biopsych.2012.01.032
    1. Destexhe A., Contreras D., Steriade M. (1999). Spatiotemporal analysis of local field potentials and unit discharges in cat cerebral cortex during natural wake and sleep states. J. Neurosci. 19, 4595–4608.
    1. Diekelmann S., Biggel S., Rasch B., Born J. (2012). Offline consolidation of memory varies with time in slow wave sleep and can be accelerated by cuing memory reactivations. Neurobiol. Learn. Mem. 98, 103–111. 10.1016/j.nlm.2012.07.002
    1. Diekelmann S., Born J. (2010). The memory function of sleep. Nat. Rev. Neurosci. 11, 114–126. 10.1038/nrn2762
    1. Drucker-Colin R., Bernal-Pedraza J., Fernandez-Cancino F., Morrison A. R. (1983). Increasing PGO spike density by auditory stimulation increases the duration and decreases the latency of rapid eye movement (REM) sleep. Brain Res. 278, 308–312. 10.1016/0006-8993(83)90261-5
    1. Edeline J. M., Manunta Y., Nodal F. R., Bajo V. M. (1999). Do auditory responses recorded from awake animals reflect the anatomical parcellation of the auditory thalamus? Hear. Res. 131, 135–152. 10.1016/s0378-5955(99)00026-x
    1. Feld G. B., Wilhelm I., Ma Y., Groch S., Binkofski F., Mölle M., et al. . (2013). Slow wave sleep induced by GABA agonist tiagabine fails to benefit memory consolidation. Sleep 36, 1317–1326. 10.5665/sleep.2954
    1. Firth H. (1973). Habituation during sleep. Psychophysiology 10, 43–51. 10.1111/j.1469-8986.1973.tb01081.x
    1. Fontanini A., Bower J. M. (2006). Slow-waves in the olfactory system: an olfactory perspective on cortical rhythms. Trends Neurosci. 29, 429–437. 10.1016/j.tins.2006.06.013
    1. Fontanini A., Spano P., Bower J. M. (2003). Ketamine-xylazine-induced slow (<1.5 Hz) oscillations in the rat piriform (olfactory) cortex are functionally correlated with respiration. J. Neurosci. 23, 7993–8001.
    1. Foster T. C., Gagne J., Massicotte G. (1996). Mechanism of altered synaptic strength due to experience: relation to long-term potentiation. Brain Res. 736, 243–250. 10.1016/s0006-8993(96)00707-x
    1. Franken P., Tobler I., Borbely A. A. (1991). Sleep homeostasis in the rat: simulation of the time course of EEG slow-wave activity. Neurosci. Lett. 130, 141–144. 10.1016/0304-3940(91)90382-4
    1. Gao L., Meng X., Ye C., Zhang H., Liu C., Dan Y., et al. . (2009). Entrainment of slow oscillations of auditory thalamic neurons by repetitive sound stimuli. J. Neurosci. 29, 6013–6021. 10.1523/JNEUROSCI.5733-08.2009
    1. Grossman C. (1949). Sensory stimulation during sleep. Observations on the EEG responses to auditory stimulation during sleep in patients with brain pathology (Preliminary report). Electroencephalogr. Clin. Neurophysiol. 1, 487–490. 10.1016/0013-4694(49)90069-3
    1. Groves P. M., Lynch G. S. (1972). Mechanisms of habituation in the brain stem. Psychol. Rev. 79, 237–244. 10.1037/h0032689
    1. Guerrien A., Dujardin K., Mandai O., Sockeel P., Leconte P. (1989). Enhancement of memory by auditory stimulation during postlearning REM sleep in humans. Physiol. Behav. 45, 947–950. 10.1016/0031-9384(89)90219-9
    1. Guyon A., Balbo M., Morselli L. L., Tasali E., Leproult R., L’Hermite-Balériaux M., et al. . (2014). Adverse effects of two nights of sleep restriction on the hypothalamic-pituitary-adrenal axis in healthy men. J. Clin. Endocrinol. Metab. 99, 2861–2868. 10.1210/jc.2013-4254
    1. Halász P. (2005). K-complex, a reactive EEG graphoelement of NREM sleep: an old chap in a new garment. Sleep Med. Rev. 9, 391–412. 10.1016/j.smrv.2005.04.003
    1. Halász P., Terzano M., Parrino L., Bodizs R. (2004). The nature of arousal in sleep. J. Sleep Res. 13, 1–23. 10.1111/j.1365-2869.2004.00388.x
    1. Han Y., Shi Y. F., Xi W., Zhou R., Tan Z. B., Wang H., et al. . (2014). Selective Activation of cholinergic basal forebrain neurons induces immediate sleep-wake transitions. Curr. Biol. 24, 693–698. 10.1016/j.cub.2014.02.011
    1. Hanlon E. C., Faraguna U., Vyazovskiy V. V., Tononi G., Cirelli C. (2009). Effects of skilled training on sleep slow wave activity and cortical gene expression in the rat. Sleep 32, 719–729.
    1. Harley C. (1991). Noradrenergic and locus coeruleus modulation of the perforant path-evoked potential in rat dentate gyrus supports a role for the locus coeruleus in attentional and memorial processes. Prog. Brain Res. 88, 307–321. 10.1016/s0079-6123(08)63818-2
    1. Hartmann T., Schulz H., Weisz N. (2011). Probing of brain states in real-time: introducing the console environment. Front. Psychol. 2:36. 10.3389/fpsyg.2011.00036
    1. He J., Hu B. (2002). Differential distribution of burst and single-spike responses in auditory thalamus. J. Neurophysiol. 88, 2152–2156.
    1. Herrmann C. S. (2001). Human EEG responses to 1–100 Hz flicker: resonance phenomena in visual cortex and their potential correlation to cognitive phenomena. Exp. Brain Res. 137, 346–353. 10.1007/s002210100682
    1. Hervé-Minvielle A., Sara S. J. (1995). Rapid habituation of auditory responses of locus coeruleus cells in anaesthetized and awake rats. Neuroreport 6, 1363–1368. 10.1097/00001756-199507100-00001
    1. Hill S., Tononi G. (2005). Modeling sleep and wakefulness in the thalamocortical system. J. Neurophysiol. 93, 1671–1698. 10.1152/jn.00915.2004
    1. Himanen S. L., Virkkala J., Huhtala H., Hasan J. (2002). Spindle frequencies in sleep EEG show U-shape within first four NREM sleep episodes. J. Sleep Res. 11, 35–42. 10.1046/j.1365-2869.2002.00273.x
    1. Hu B. (2003). Functional organization of lemniscal and nonlemniscal auditory thalamus. Exp. Brain Res. 153, 543–549. 10.1007/s00221-003-1611-5
    1. Huber R., Ghilardi M. F., Massimini M., Ferrarelli F., Riedner B. A., Peterson M. J., et al. . (2006). Arm immobilization causes cortical plastic changes and locally decreases sleep slow wave activity. Nat. Neurosci. 9, 1169–1176. 10.1038/nn1758
    1. Huber R., Ghilardi M. F., Massimini M., Tononi G. (2004). Local sleep and learning. Nature 430, 78–81. 10.1038/nature02663
    1. Hung C. S., Sarasso S., Ferrarelli F., Riedner B., Ghilardi M. F., Cirelli C., et al. . (2013). Local experience-dependent changes in the wake EEG after prolonged wakefulness. Sleep 36, 59–72. 10.5665/sleep.2302
    1. Ji D., Wilson M. A. (2007). Coordinated memory replay in the visual cortex and hippocampus during sleep. Nat. Neurosci. 10, 100–107. 10.1038/nn1825
    1. Jones E. G. (1998). Viewpoint: the core and matrix of thalamic organization. Neuroscience 85, 331–345. 10.1016/s0306-4522(97)00581-2
    1. Jones E. G. (2001). The thalamic matrix and thalamocortical synchrony. Trends Neurosci. 24, 595–601. 10.1016/s0166-2236(00)01922-6
    1. Jones B. E. (2003). Arousal systems. Front. Biosci. 8, s438–s451. 10.2741/1074
    1. Jones B. E., Halaris A. E., Mcilhany M., Moore R. Y. (1977). Ascending projections of the locus coeruleus in the rat. I. Axonal transport in central noradrenaline neurons. Brain Res. 127, 1–21. 10.1016/0006-8993(77)90377-8
    1. Jones B. E., Moore R. Y. (1977). Ascending projections of the locus coeruleus in the rat. II. Autoradiographic study. Brain Res. 127, 25–53. 10.1016/0006-8993(77)90378-x
    1. Jones B. E., Yang T. Z. (1985). The efferent projections from the reticular formation and the locus coeruleus studied by anterograde and retrograde axonal transport in the rat. J. Comp. Neurol. 242, 56–92. 10.1002/cne.902420105
    1. Kemp N., Bashir Z. I. (2001). Long-term depression: a cascade of induction and expression mechanisms. Prog. Neurobiol. 65, 339–365. 10.1016/s0301-0082(01)00013-2
    1. King C., McGee T., Rubel E. W., Nicol T., Kraus N. (1995). Acoustic features and acoustic changes are represented by different central pathways. Hear. Res. 85, 45–52. 10.1016/0378-5955(95)00028-3
    1. Komura Y., Tamura R., Uwano T., Nishijo H., Ono T. (2005). Auditory thalamus integrates visual inputs into behavioral gains. Nat. Neurosci. 8, 1203–1209. 10.1038/nn1528
    1. Kraus N., McGee T., Littman T., Nicol T., King C. (1994). Nonprimary auditory thalamic representation of acoustic change. J. Neurophysiol. 72, 1270–1277.
    1. Krueger J. M., Tononi G. (2011). Local use-dependent sleep; synthesis of the new paradigm. Curr. Top. Med. Chem. 11, 2490–2492. 10.2174/156802611797470330
    1. Krystal A. D., Zammit G. K., Wyatt J. K., Quan S. F., Edinger J. D., White D. P., et al. . (2010). The effect of vestibular stimulation in a four-hour sleep phase advance model of transient insomnia. J. Clin. Sleep Med. 6, 315–321.
    1. Kuhl D., Kennedy T. E., Barzilai A., Kandel E. R. (1992). Long-term sensitization training in Aplysia leads to an increase in the expression of BiP, the major protein chaperon of the ER. J. Cell Biol. 119, 1069–1076. 10.1083/jcb.119.5.1069
    1. Landsness E. C., Crupi D., Hulse B. K., Peterson M. J., Huber R., Ansari H., et al. . (2009). Sleep-dependent improvement in visuomotor learning: a causal role for slow waves. Sleep 32, 1273–1284.
    1. Lang N., Siebner H. R., Ward N. S., Lee L., Nitsche M. A., Paulus W., et al. . (2005). How does transcranial DC stimulation of the primary motor cortex alter regional neuronal activity in the human brain? Eur. J. Neurosci. 22, 495–504. 10.1111/j.1460-9568.2005.04233.x
    1. Lanté F., Toledo-Salas J. C., Ondrejcak T., Rowan M. J., Ulrich D. (2011). Removal of synaptic Ca(2)+-permeable AMPA receptors during sleep. J. Neurosci. 31, 3953–3961. 10.1523/JNEUROSCI.3210-10.2011
    1. Lee C. C., Sherman S. M. (2011). On the classification of pathways in the auditory midbrain, thalamus and cortex. Hear. Res. 276, 79–87. 10.1016/j.heares.2010.12.012
    1. Li Z., Okamoto K., Hayashi Y., Sheng M. (2004). The importance of dendritic mitochondria in the morphogenesis and plasticity of spines and synapses. Cell 119, 873–887. 10.1016/j.cell.2004.11.003
    1. Loomis A. L., Harvey E. N., Hobart G. A. (1938). Distribution of disturbance-patterns in the human electroencephalogram with special reference to sleep. J. Neurophysiol. 1, 413–430
    1. Lubenov E. V., Siapas A. G. (2008). Decoupling through synchrony in neuronal circuits with propagation delays. Neuron 58, 118–131. 10.1016/j.neuron.2008.01.036
    1. Luczak A., Barthó P., Marguet S. L., Buzsáki G., Harris K. D. (2007). Sequential structure of neocortical spontaneous activity in vivo. Proc. Natl. Acad. Sci. U S A 104, 347–352. 10.1073/pnas.0605643104
    1. Marshall L., Born J. (2007). The contribution of sleep to hippocampus-dependent memory consolidation. Trends Cogn. Sci. 11, 442–450. 10.1016/j.tics.2007.09.001
    1. Marshall L., Helgadóttir H., Mölle M., Born J. (2006). Boosting slow oscillations during sleep potentiates memory. Nature 444, 610–613. 10.1038/nature05278
    1. Martin E. M., Pavlides C., Pfaff D. (2010). Multimodal sensory responses of nucleus reticularis gigantocellularis and the responses’ relation to cortical and motor activation. J. Neurophysiol. 103, 2326–2338. 10.1152/jn.01122.2009
    1. Massimini M., Ferrarelli F., Esser S. K., Riedner B. A., Huber R., Murphy M., et al. . (2007). Triggering sleep slow waves by transcranial magnetic stimulation. Proc. Natl. Acad. Sci. U S A 104, 8496–8501. 10.1073/pnas.0702495104
    1. Massimini M., Rosanova M., Mariotti M. (2003). EEG slow (approximately 1 Hz) waves are associated with nonstationarity of thalamo-cortical sensory processing in the sleeping human. J. Neurophysiol. 89, 1205–1213. 10.1152/jn.00373.2002
    1. Mathias S., Wetter T. C., Steiger A., Lancel M. (2001). The GABA uptake inhibitor tiagabine promotes slow wave sleep in normal elderly subjects. Neurobiol. Aging 22, 247–253. 10.1016/s0197-4580(00)00232-3
    1. McCormick D. A., Bal T. (1997). Sleep and arousal: thalamocortical mechanisms. Annu. Rev. Neurosci. 20, 185–215. 10.1146/annurev.neuro.20.1.185
    1. McCormick D. A., Wang Z., Huguenard J. (1993). Neurotransmitter control of neocortical neuronal activity and excitability. Cereb. Cortex 3, 387–398. 10.1093/cercor/3.5.387
    1. Mesulam M. M., Mufson E. J., Wainer B. H., Levey A. I. (1983). Central cholinergic pathways in the rat: an overview based on an alternative nomenclature (Ch1-Ch6). Neuroscience 10, 1185–1201. 10.1016/0306-4522(83)90108-2
    1. Miller L. M., Escabí M. A., Read H. L., Schreiner C. E. (2001a). Functional convergence of response properties in the auditory thalamocortical system. Neuron 32, 151–160. 10.1016/s0896-6273(01)00445-7
    1. Miller L. M., Escabí M. A., Schreiner C. E. (2001b). Feature selectivity and interneuronal cooperation in the thalamocortical system. J. Neurosci. 21, 8136–8144.
    1. Mölle M., Marshall L., Gais S., Born J. (2004). Learning increases human electroencephalographic coherence during subsequent slow sleep oscillations. Proc. Natl. Acad. Sci. U S A 101, 13963–13968. 10.1073/pnas.0402820101
    1. Mölle M., Yeshenko O., Marshall L., Sara S. J., Born J. (2006). Hippocampal sharp wave-ripples linked to slow oscillations in rat slow-wave sleep. J. Neurophysiol. 96, 62–70. 10.1152/jn.00014.2006
    1. Montagna P., Lugaresi E. (2002). Agrypnia excitata: a generalized overactivity syndrome and a useful concept in the neurophysiopathology of sleep. Clin. Neurophysiol. 113, 552–560. 10.1016/s1388-2457(02)00022-6
    1. Moruzzi G. (1954). “The physiological properties of the brain stem reticular system,” in Brain Mechanisms and Consciousness, ed Fresnaye J. F. D. L. (Springfield, Ill: Thomas; ), 21–53
    1. Mouze-Amady M., Sockeel P., Leconte P. (1986). Modification of REM sleep behavior by REMs contingent auditory stimulation in man. Physiol. Behav. 37, 543–548. 10.1016/0031-9384(86)90282-9
    1. Mukovski M., Chauvette S., Timofeev I., Volgushev M. (2006). Detection of active and silent states in neocortical neurons from the field potential signal during slow-wave sleep. Cereb. Cortex 17, 400–414. 10.1093/cercor/bhj157
    1. Mundy-Castle A. C. (1953). An analysis of central responses to photic stimulation in normal adults. Electroencephalogr. Clin. Neurophysiol. 5, 1–22. 10.1016/0013-4694(53)90048-0
    1. Murata K., Kameda K. (1963). The activity of single cortical neurones of unrestrained cats during sleep and wakefulness. Arch. Ital. Biol. 101, 306–331.
    1. Näätänen R., Kujala T., Winkler I. (2011). Auditory processing that leads to conscious perception: a unique window to central auditory processing opened by the mismatch negativity and related responses. Psychophysiology 48, 4–22. 10.1111/j.1469-8986.2010.01114.x
    1. Ngo H. V., Claussen J. C., Born J., Mölle M. (2013a). Induction of slow oscillations by rhythmic acoustic stimulation. J. Sleep Res. 22, 22–31. 10.1111/j.1365-2869.2012.01039.x
    1. Ngo H. V., Martinetz T., Born J., Mölle M. (2013b). Auditory closed-loop stimulation of the sleep slow oscillation enhances memory. Neuron 78, 545–553. 10.1016/j.neuron.2013.03.006
    1. Nicholas C. L., Sullivan E. V., Pfefferbaum A., Trinder J., Colrain I. M. (2002a). The effects of alcoholism on auditory evoked potentials during sleep. J. Sleep Res. 11, 247–253. 10.1046/j.1365-2869.2002.00298.x
    1. Nicholas C. L., Trinder J., Colrain I. M. (2002b). Increased production of evoked and spontaneous K-complexes following a night of fragmented sleep. Sleep 25, 882–887.
    1. Nir Y., Staba R. J., Andrillon T., Vyazovskiy V. V., Cirelli C., Fried I., et al. . (2011). Regional slow waves and spindles in human sleep. Neuron 70, 153–169. 10.1016/j.neuron.2011.02.043
    1. Noda H., Adey W. R. (1973). Neuronal activity in the association cortex of the cat during sleep, wakefulness and anesthesia. Brain Res. 54, 243–259. 10.1016/0006-8993(73)90047-4
    1. Numminen J., Mäkelä J. P., Hari R. (1996). Distributions and sources of magnetoencephalographic K-complexes. Electroencephalogr. Clin. Neurophysiol. 99, 544–555. 10.1016/s0921-884x(96)95712-4
    1. Oakson G., Steriade M. (1982). Slow rhythmic rate fluctuations of cat midbrain reticular neurons in synchronized sleep and waking. Brain Res. 247, 277–288. 10.1016/0006-8993(82)91252-5
    1. Oakson G., Steriade M. (1983). Slow rhythmic oscillations of EEG slow-wave amplitudes and their relations to midbrain reticular discharge. Brain Res. 269, 386–390. 10.1016/0006-8993(83)90153-1
    1. Oswald I. (1960). Falling asleep open-eyed during intense rhythmic stimulation. Br. Med. J. 1, 1450–1455. 10.1136/bmj.1.5184.1450
    1. Parrino L., Ferri R., Bruni O., Terzano M. G. (2012). Cyclic alternating pattern (CAP): the marker of sleep instability. Sleep Med. Rev. 16, 27–45. 10.1016/j.smrv.2011.02.003
    1. Patel S. R., Hu F. B. (2008). Short sleep duration and weight gain: a systematic review. Obesity (Silver Spring) 16, 643–653. 10.1038/oby.2007.118
    1. Peszka J., Harsh J. (2002). Effect of sleep deprivation on NREM sleep ERPs and related activity at sleep onset. Int. J. Psychophysiol. 46, 275–286. 10.1016/s0167-8760(02)00115-0
    1. Pfaff D. W., Martin E. M., Faber D. (2012). Origins of arousal: roles for medullary reticular neurons. Trends Neurosci. 35, 468–476. 10.1016/j.tins.2012.04.008
    1. Pikovsky A., Rosenblum M., Kurths J. (2003). Synchronization: A Universal Concept in Nonlinear Sciences. New York, NY: Cambridge University Press
    1. Plihal W., Born J. (1997). Effects of early and late nocturnal sleep on declarative and procedural memory. J. Cogn. Neurosci. 9, 534–547. 10.1162/jocn.1997.9.4.534
    1. Pompeiano O., Swett J. E. (1962). EEG and behavioral manifestations of sleep induced by cutaneous nerve stimulation in normal cats. Arch. Ital. Biol. 100, 311–342.
    1. Portas C. M., Krakow K., Allen P., Josephs O., Armony J. L., Frith C. D. (2000). Auditory processing across the sleep-wake cycle: simultaneous EEG and fMRI monitoring in humans. Neuron 28, 991–999. 10.1016/S0896-6273(00)00169-0
    1. Priest B., Brichard C., Aubert G., Liistro G., Rodenstein D. O. (2001). Microsleep during a simplified maintenance of wakefulness test. A validation study of the OSLER test. Am. J. Respir. Crit. Care Med. 163, 1619–1625. 10.1164/ajrccm.163.7.2007028
    1. Prince D. A. (1965). Long duration periodic changes in excitability of penicillin spike foci: cyclical spike driving. Electroencephalogr. Clin. Neurophysiol. 19, 139–151. 10.1016/0013-4694(65)90224-5
    1. Rasch B., Born J. (2013). About sleep’s role in memory. Physiol. Rev. 93, 681–766. 10.1152/physrev.00032.2012
    1. Reato D., Gasca F., Datta A., Bikson M., Marshall L., Parra L. C. (2013). Transcranial electrical stimulation accelerates human sleep homeostasis. PLoS Comput. Biol. 9:e1002898. 10.1371/journal.pcbi.1002898
    1. Rechtschaffen A., Bergmann B. M. (2002). Sleep deprivation in the rat: an update of the 1989 paper. Sleep 25, 18–24.
    1. Reese N. B., Garcia-Rill E., Skinner R. D. (1995a). Auditory input to the pedunculopontine nucleus: I. Evoked potentials. Brain Res. Bull. 37, 257–264. 10.1016/0361-9230(95)00002-v
    1. Reese N. B., Garcia-Rill E., Skinner R. D. (1995b). The pedunculopontine nucleus–auditory input, arousal and pathophysiology. Prog. Neurobiol. 47, 105–133. 10.1016/0301-0082(95)00023-o
    1. Reichenbach A., Derouiche A., Kirchhoff F. (2010). Morphology and dynamics of perisynaptic glia. Brain Res. Rev. 63, 11–25. 10.1016/j.brainresrev.2010.02.003
    1. Riedner B. A., Bellesi M., Hulse B. K., Santostasi G., Ferrarelli F., Cirelli C., et al. . (2012). Enhancing slow waves using acoustic stimuli. Society for Neuroscience Meeting 902.08.
    1. Riedner B. A., Hulse B. K., Murphy M. J., Ferrarelli F., Tononi G. (2011). Temporal dynamics of cortical sources underlying spontaneous and peripherally evoked slow waves. Prog. Brain Res. 193, 201–218. 10.1016/b978-0-444-53839-0.00013-2
    1. Rioult-Pedotti M. S., Friedman D., Donoghue J. P. (2000). Learning-induced LTP in neocortex. Science 290, 533–536. 10.1126/science.290.5491.533
    1. Rioult-Pedotti M. S., Friedman D., Hess G., Donoghue J. P. (1998). Strengthening of horizontal cortical connections following skill learning. Nat. Neurosci. 1, 230–234. 10.1038/678
    1. Rodenburg M., Verweij C., van den Brink G. (1972). Analysis of evoked responses in man elicited by sinusoidally modulated noise. Audiology 11, 283–293. 10.3109/00206097209072594
    1. Roldán E., Radil-Weiss T. (1970). Excitability changes during the sleep cycle in the cat. Int. J. Neurosci. 1, 87–94. 10.3109/00207457009147620
    1. Romeijn N., Verweij I. M., Koeleman A., Mooij A., Steimke R., Virkkala J., et al. . (2012). Cold hands, warm feet: sleep deprivation disrupts thermoregulation and its association with vigilance. Sleep 35, 1673–1683. 10.5665/sleep.2242
    1. Salin-Pascual R. J., Granados-Fuentes D., de la Fuente J. R., Drucker-Colin R. (1991). Effects of auditory stimulation during rapid eye movement sleep in healthy volunteers and depressed patients. Psychiatry Res. 38, 237–246. 10.1016/0165-1781(91)90014-g
    1. Sanchez-Vives M. V., Mccormick D. A. (2000). Cellular and network mechanisms of rhythmic recurrent activity in neocortex. Nat. Neurosci. 3, 1027–1034. 10.1038/79848
    1. Schabus M., Dang-Vu T. T., Heib D. P., Boly M., Desseilles M., Vandewalle G., et al. . (2012). The fate of incoming stimuli during NREM sleep is determined by spindles and the phase of the slow oscillation. Front. Neurol. 3:40. 10.3389/fneur.2012.00040
    1. Sclabassi R. J., Namerow N. S., Enns N. F. (1974). Somatosensory response to stimulus trains in patients with multiple sclerosis. Electroencephalogr. Clin. Neurophysiol. 37, 23–33. 10.1016/0013-4694(74)90242-9
    1. Seol G. H., Ziburkus J., Huang S., Song L., Kim I. T., Takamiya K., et al. . (2007). Neuromodulators control the polarity of spike-timing-dependent synaptic plasticity. Neuron 55, 919–929. 10.1016/j.neuron.2007.08.013
    1. Sforza E., Chapotot F., Pigeau R., Paul P. N., Buguet A. (2004). Effects of sleep deprivation on spontaneous arousals in humans. Sleep 27, 1068–1075.
    1. Shaw P. J., Tononi G., Greenspan R. J., Robinson D. F. (2002). Stress response genes protect against lethal effects of sleep deprivation in Drosophila. Nature 417, 287–291. 10.1038/417287a
    1. Siclari F., Bernardi G., Riedner B. A., LaRocque J. J., Benca R. M., Tononi G. (2014). Two distinct synchronization processes in the transition to sleep: a high-density electroencephalographic study. Sleep 37, 1621–1637. 10.5665/sleep.4070
    1. Sokolov E. (1963). Perception and the Conditioned Reflex. New York, NY: Macmillan
    1. Steriade M. (1990). Cholinergic control of thalamic function. Arch. Int. Physiol. Biochim. 98, A11–A46.
    1. Steriade M., Amzica F., Nuñez A. (1993a). Cholinergic and noradrenergic modulation of the slow (approximately 0.3 Hz) oscillation in neocortical cells. J. Neurophysiol. 70, 1385–1400.
    1. Steriade M., Dossi R. C., Nuñez A. (1991). Network modulation of a slow intrinsic oscillation of cat thalamocortical neurons implicated in sleep delta waves: cortically induced synchronization and brainstem cholinergic suppression. J. Neurosci. 11, 3200–3217.
    1. Steriade M., Nuñez A., Amzica F. (1993b). A novel slow (< 1 Hz) oscillation of neocortical neurons in vivo: depolarizing and hyperpolarizing components. J. Neurosci. 13, 3252–3265.
    1. Steriade M., Nuñez A., Amzica F. (1993c). Intracellular analysis of relations between the slow (<1 Hz) neocortical oscillation and other sleep rhythms of the electroencephalogram. J. Neurosci. 13, 3266–3283.
    1. Steriade M., Timofeev I., Grenier F. (2001). Natural waking and sleep states: a view from inside neocortical neurons. J. Neurophysiol. 85, 1969–1985.
    1. Sussman E., Winkler I. (2001). Dynamic sensory updating in the auditory system. Brain Res. Cogn. Brain Res. 12, 431–439. 10.1016/s0926-6410(01)00067-2
    1. Takahashi T. (2005). “Activation methods,” in Electroencephalography 5th edn., eds Niedermeyer E., da Silva F. L. (Philadelphia, PA: Lippincott Williams and Wilkins; ), 281–304
    1. Tasali E., Leproult R., Ehrmann D. A., Van Cauter E. (2008). Slow-wave sleep and the risk of type 2 diabetes in humans. Proc. Natl. Acad. Sci. U S A 105, 1044–1049. 10.1073/pnas.0706446105
    1. Terzano M. G., Mancia D., Salati M. R., Costani G., Decembrino A., Parrino L. (1985). The cyclic alternating pattern as a physiologic component of normal NREM sleep. Sleep 8, 137–145.
    1. Thompson R. F. (2009). Habituation: a history. Neurobiol. Learn. Mem. 92, 127–134. 10.1016/j.nlm.2008.07.011
    1. Thut G., Schyns P. G., Gross J. (2011). Entrainment of perceptually relevant brain oscillations by non-invasive rhythmic stimulation of the human brain. Front. Psychol. 2:170. 10.3389/fpsyg.2011.00170
    1. Timofeev I., Grenier F., Bazhenov M., Sejnowski T. J., Steriade M. (2000a). Origin of slow cortical oscillations in deafferented cortical slabs. Cereb. Cortex 10, 1185–1199. 10.1093/cercor/10.12.1185
    1. Timofeev I., Grenier F., Steriade M. (2000b). Impact of intrinsic properties and synaptic factors on the activity of neocortical networks in vivo. J. Physiol. Paris 94, 343–355. 10.1016/s0928-4257(00)01097-4
    1. Tobler I. (2005). “Phylogeny of sleep regulation,” in Principles and Practice of Sleep Medicine, eds Kryger M. H., Roth T., Dement W. C. (Philadelphia: W. B. Saunders; ), 77–90
    1. Tobler I., Borbély A. A. (1986). Sleep EEG in the rat as a function of prior waking. Electroencephalogr. Clin. Neurophysiol. 64, 74–76. 10.1016/0013-4694(86)90044-1
    1. Tononi G., Cirelli C. (2003). Sleep and synaptic homeostasis: a hypothesis. Brain Res. Bull. 62, 143–150. 10.1016/j.brainresbull.2003.09.004
    1. Tononi G., Cirelli C. (2006). Sleep function and synaptic homeostasis. Sleep Med. Rev. 10, 49–62. 10.1016/j.smrv.2005.05.002
    1. Tononi G., Cirelli C. (2012). Time to be SHY? Some comments on sleep and synaptic homeostasis. Neural Plast. 2012:415250. 10.1155/2012/415250
    1. Tononi G., Cirelli C. (2014). Sleep and the price of plasticity: from synaptic and cellular homeostasis to memory consolidation and integration. Neuron 81, 12–34. 10.1016/j.neuron.2013.12.025
    1. Tononi G., Riedner B. A., Hulse B. K., Ferrarelli F., Sarasso S. (2010). Enhancing sleep slow waves with natural stimuli. Medicamundi 54, 73–79
    1. Vaara J., Kyröläinen H., Koivu M., Tulppo M., Finni T. (2009). The effect of 60-h sleep deprivation on cardiovascular regulation and body temperature. Eur. J. Appl. Physiol. 105, 439–444. 10.1007/s00421-008-0921-5
    1. Van Bockstaele E. J., Aston-Jones G. (1995). Integration in the ventral medulla and coordination of sympathetic, pain and arousal functions. Clin. Exp. Hypertens. 17, 153–165. 10.3109/10641969509087062
    1. Van Cauter E., Spiegel K., Tasali E., Leproult R. (2008). Metabolic consequences of sleep and sleep loss. Sleep Med. 9(Suppl. 1), S23–S28. 10.1016/s1389-9457(08)70013-3
    1. Vanhatalo S., Palva J. M., Holmes M. D., Miller J. W., Voipio J., Kaila K. (2004). Infraslow oscillations modulate excitability and interictal epileptic activity in the human cortex during sleep. Proc. Natl. Acad. Sci. U S A 101, 5053–5057. 10.1073/pnas.0305375101
    1. Vazquez J., Merchant-Nancy H., García F., Drucker-Colín R. (1998). The effects of sensory stimulation on REM sleep duration. Sleep 21, 138–142.
    1. Velluti R. A. (1997). Interactions between sleep and sensory physiology. J. Sleep Res. 6, 61–77. 10.1046/j.1365-2869.1997.00031.x
    1. Vyazovskiy V. V., Faraguna U., Cirelli C., Tononi G. (2009). Triggering slow waves during NREM sleep in the rat by intracortical electrical stimulation: effects of sleep/wake history and background activity. J. Neurophysiol. 101, 1921–1931. 10.1152/jn.91157.2008
    1. Vyazovskiy V. V., Olcese U., Hanlon E. C., Nir Y., Cirelli C., Tononi G. (2011). Local sleep in awake rats. Nature 472, 443–447. 10.1038/nature10009
    1. Vyazovskiy V. V., Riedner B. A., Cirelli C., Tononi G. (2007). Sleep homeostasis and cortical synchronization: II. A local field potential study of sleep slow waves in the rat. Sleep 30, 1631–1642.
    1. Vyazovskiy V. V., Tobler I. (2008). Handedness leads to interhemispheric EEG asymmetry during sleep in the rat. J. Neurophysiol. 99, 969–975. 10.1152/jn.01154.2007
    1. Walsh J. K. (2009). Enhancement of slow wave sleep: implications for insomnia. J. Clin. Sleep Med. 5, S27–S32.
    1. Walsh J. K., Randazzo A. C., Stone K., Eisenstein R., Feren S. D., Kajy S., et al. . (2006). Tiagabine is associated with sustained attention during sleep restriction: evidence for the value of slow-wave sleep enhancement? Sleep 29, 433–443.
    1. Walsh J. K., Snyder E., Hall J., Randazzo A. C., Griffin K., Groeger J., et al. . (2008). Slow wave sleep enhancement with gaboxadol reduces daytime sleepiness during sleep restriction. Sleep 31, 659–672.
    1. Walter V. J., Walter W. G. (1949). The central effects of rhythmic sensory stimulation. Electroencephalogr. Clin. Neurophysiol. 1, 57–86. 10.1016/0013-4694(49)90011-5
    1. Weber M., Schnitzler H. U., Schmid S. (2002). Synaptic plasticity in the acoustic startle pathway: the neuronal basis for short-term habituation? Eur. J. Neurosci. 16, 1325–1332. 10.1046/j.1460-9568.2002.02194.x
    1. Webster K. E., Colrain I. M. (1998). Multichannel EEG analysis of respiratory evoked-potential components during wakefulness and NREM sleep. J. Appl. Physiol. (1985) 85, 1727–1735.
    1. Whitlock J. R., Heynen A. J., Shuler M. G., Bear M. F. (2006). Learning induces long-term potentiation in the hippocampus. Science 313, 1093–1097. 10.1126/science.1128134
    1. Wilhelm I., Diekelmann S., Molzow I., Ayoub A., Mölle M., Born J. (2011). Sleep selectively enhances memory expected to be of future relevance. J. Neurosci. 31, 1563–1569. 10.1523/jneurosci.3575-10.2011
    1. Winkler I., Karmos G., Näätänen R. (1996). Adaptive modeling of the unattended acoustic environment reflected in the mismatch negativity event-related potential. Brain Res. 742, 239–252. 10.1016/s0006-8993(96)01008-6
    1. Woodward S., Tauber E. S., Spielmann A. J., Thorpy M. J. (1990). Effects of otolithic vestibular stimulation on sleep. Sleep 13, 533–537.
    1. Yeomans J. S., Frankland P. W. (1995). The acoustic startle reflex: neurons and connections. Brain Res. Brain Res. Rev. 21, 301–314. 10.1016/0165-0173(96)00004-5
    1. Zung W. W., Wilson W. P. (1961). Response to auditory stimulation during sleep. Discrimination and arousal as studied with electroencephalography. Arch. Gen. Psychiatry 4, 548–552. 10.1001/archpsyc.1961.01710120018002

Source: PubMed

3
Předplatit