The neural mobilization technique modulates the expression of endogenous opioids in the periaqueductal gray and improves muscle strength and mobility in rats with neuropathic pain

Fabio Martinez Santos, Leandro Henrique Grecco, Marcelo Gomes Pereira, Mara Evany Oliveira, Priscila Abreu Rocha, Joyce Teixeira Silva, Daniel Oliveira Martins, Elen Haruka Miyabara, Marucia Chacur, Fabio Martinez Santos, Leandro Henrique Grecco, Marcelo Gomes Pereira, Mara Evany Oliveira, Priscila Abreu Rocha, Joyce Teixeira Silva, Daniel Oliveira Martins, Elen Haruka Miyabara, Marucia Chacur

Abstract

Background: The neural mobilization (NM) technique is a noninvasive method that has been proven to be clinically effective in reducing pain; however, the molecular mechanisms involved remain poorly understood. The aim of this study was to analyze whether NM alters the expression of the mu-opioid receptor (MOR), the delta-opioid receptor (DOR) and the Kappa-opioid receptor (KOR) in the periaqueductal gray (PAG) and improves locomotion and muscle force after chronic constriction injury (CCI) in rats.

Methods: The CCI was imposed on adult male rats followed by 10 sessions of NM every other day, starting 14 days after the CCI injury. At the end of the sessions, the PAG was analyzed using Western blot assays for opioid receptors. Locomotion was analyzed by the Sciatic functional index (SFI), and muscle force was analyzed by the BIOPAC system.

Results: An improvement in locomotion was observed in animals treated with NM compared with injured animals. Animals treated with NM showed an increase in maximal tetanic force of the tibialis anterior muscle of 172% (p < 0.001) compared with the CCI group. We also observed a decrease of 53% (p < 0.001) and 23% (p < 0.05) in DOR and KOR levels, respectively, after CCI injury compared to those from naive animals and an increase of 17% (p < 0.05) in KOR expression only after NM treatment compared to naive animals. There were no significant changes in MOR expression in the PAG.

Conclusion: These data provide evidence that a non-pharmacological NM technique facilitates pain relief by endogenous analgesic modulation.

Figures

Figure 1
Figure 1
Analysis of Sciatic Functional Index (SFI). Motor dysfunction was induced by chronic constriction injury (CCI) to the sciatic nerve. Functional assessment was evaluated, 14 days after injury (14d PO), after the third (3°s); seventh (7°s); and tenth (10°s) session (s) using the SFI. The results obtained are expressed as a percentage of normal function, where 0 (zero) corresponds to normal function or no disability and -100 (minus one hundred) corresponds to total dysfunction. The results are expressed as the mean ± S.E.M. Five animals per group. *p <0.05 per CCI comparison group. #p <0.05 compared to the CCI NM group and p <0.05 compared to the initial measurement.
Figure 2
Figure 2
Analysis of in vivo muscle function experiments. The results are expressed in grams. The results are expressed as the mean ± S.E.M. n = 5. **p <0.001 comparing the CCI and control groups (naive, sham and sham NM) *p <0.001 comparing the CCI NM and CCI groups.
Figure 3
Figure 3
Densitometry analysis of DOR (A), KOR (B) and MOR (C) expression in the periaqueductal gray after CCI injury. The normalized average between sham and experimental groups (CCI) is reported. Values measured for naive animals were considered 100%. Data are reported as the mean ± SEM of 6 animals per group. A) *p < 0.001 comparing the CCI group with the naive group. B) *p < 0.05 the CCI group with naive animals, **p < 0.001 comparing the CCI NM group with the other groups.

References

    1. Devor M, Seltzer Z. In: Textbook of Pain. Melzack R, Wall PD, editor. London: Churchill Livingstone; 1999. Pathophysiology of damaged nerves in relation to chronic pain; pp. 129–164.
    1. Schaible HG. In: Handbook of Experimental Pharmacology. Stain C, editor. Jena, Germany: Springer-Verlag; 2007. Peripheral and central mechanisms of pain generation; pp. 3–28. (177).
    1. Severo A, Calieron LG, Kuhn A. Compressão do nervo fibular comum por osteocondroma: relato de caso. Rev Bras Ortop. 2001;10(9):50–54.
    1. Bennett GJ, Xie YK. A peripheral mononeuropathy in rat that produces disorders of pain sensation like those seen in man. Pain. 1988;10(1):87–107. doi: 10.1016/0304-3959(88)90209-6.
    1. Aley KO, Levine JD. Different peripheral mechanisms mediate enhanced nociception in metabolic/toxic and traumatic painful peripheral neuropathies in the rat. Neuroscience. 2002;10(2):389–397. doi: 10.1016/S0306-4522(02)00009-X.
    1. Sah DW, Ossipo MH, Porreca F. Neurotrophic factors as novel therapeutics for neuropathic pain. Nat Rev Drug Discov. 2003;10(6):460–472. doi: 10.1038/nrd1107.
    1. Hoot MR, Sim-Selley LJ, Selley DE, Scoggins KL, Dewey WL. Chronic neuropathic pain in mice reduces μ-opioid receptor-mediated G-protein activity in the thalamus. Brain Res. 2011;10:1–7.
    1. Zöllner C, Stein C. Analgesia. Berlin Heidelberg: Springer; 2007. Opioids; pp. 31–63. (Handbook of Experiment Pharmacology).
    1. Atweh SF, Kuhar MJ. Autoradiographic localization of opiate receptors in rat brain. III. The telencephalon. Brain Res. 1977;10(3):393–405. doi: 10.1016/0006-8993(77)90817-4.
    1. Vaccarino AL, Olson GA, Olson RD, Kastin AJ. Endogenous opiates: 1998. Peptides. 1999;10(12):1527–1574. doi: 10.1016/S0196-9781(99)00166-7.
    1. Coggeshall RE, Zhou S, Carlton SM. Opioid receptors on peripheral sensory axons. Brain Res. 1997;10(1):126–132.
    1. Mansour A, Fox CA, Burke S, Meng F, Thompson RC, Akil H, Watson SJ. Mu, delta, and kappa opioid receptor mRNA expression in the rat CNS: an in situ hybridization study. J Comp Neurol. 1994;10(3):412–438. doi: 10.1002/cne.903500307.
    1. Russell R, Leslie J, Su Y, Watkins W, Chang K. Continuous intrathecal opioid analgesia: tolerance and cross-tolerance of mu and delta spinal opioid receptors. J Pharmacol Exp Ther. 1987;10(1):150–158.
    1. Tegeder I, Meier S, Burian M, Schmidt H, Geisslinger G, Lötsch J. Peripheral opioid analgesia in experimental human pain models. Brain. 2003;10(5):1092–1102. doi: 10.1093/brain/awg115.
    1. Sánchez-Blázquez P, Rodríguez-Muñoz M, Garzón J. Mu-opioid receptors transiently activate the Akt-nNOS pathway to produce sustained potentiation of PKC-mediated NMDAR-CaMKII signaling. PLoS One. 2010;10(6):e11278. doi: 10.1371/journal.pone.0011278.
    1. Mayer DJ, Wolfle TL, Akil H, Carder B, Liebeskind JC. Analgesia from electrical stimulation in the brainstem of the rat. Science. 1971;10(4016):1351–1354. doi: 10.1126/science.174.4016.1351.
    1. Paxinos G, Watson C. The rat brain in stereotaxic coordinates, Sixth Edition: hard cover edition. 6. The Netherlands: Academic Press, Access Online via Elsevier; 2006. p. 456.
    1. Basbaum AI, Fields HL. Endogenous pain control systems: brainstem spinal pathways and endorphin circuitry. Annu Rev Neurosci. 1984;10(1):309–338. doi: 10.1146/annurev.ne.07.030184.001521.
    1. Gebhart G. Descending modulation of pain. Neurosci Biobehav Rev. 2004;10(8):729–737. doi: 10.1016/j.neubiorev.2003.11.008.
    1. Fields HL, Heinricher MM, Mason P. Neurotransmitters in nociceptive modulatory circuits. Annu Rev Neurosci. 1991;10:219–245. doi: 10.1146/annurev.ne.14.030191.001251.
    1. Wall PD, Melzack R, Bonica JJ. Textbook of pain. Volume 994. London: Churchill Livingstone; 1999.
    1. Pinto M, Sousa M, Lima D, Tavares I. Participation of μ‒opioid, GABAB, and NK1 receptors of major pain control medullary areas in pathways targeting the rat spinal cord: Implications for descending modulation of nociceptive transmission. J Comp Neurol. 2008;10(2):175–187. doi: 10.1002/cne.21793.
    1. Santos FM, Silva JT, Giardini AC, Rocha PA, Achermann AP, Alves AS, Britto LR, Chacur M. Neural mobilization reverses behavioral and cellular changes that characterize neuropathic pain in rats. Mol Pain. 2012;10(1):57. doi: 10.1186/1744-8069-8-57.
    1. Lopes PFD, Lopes RSD, Lima MO, Barja PR, Delmondes FDF, Santos KA, De Matos LKBL. Influência do alongamento muscular e da mobilização neural sobre a força do músculo quadríceps. ConScientiae Saúde. 2010;10(4):603–609.
    1. Silva JT, Santos FM, Giardini AC, Martins DO, Oliveira ME, Ciena AP, Gutierrez VP, Watanabe I, Britto LRG, Chacur M. “In press” Neural mobilization increases nerve regeneration after sciatic nerve injury. J Brachial Plexus and Peripheral Nerve Injury. 2014.
    1. Zimmermann M. Ethical guidelines for investigations of experimental pain in conscious animals. Pain. 1983;10(2):109–110. doi: 10.1016/0304-3959(83)90201-4.
    1. de Medinaceli L, Freed WJ, Wyatt RJ. An index of the functional condition of rat sciatic nerve based on measurements made from walking tracks. Exp Neurol. 1982;10(3):634–643. doi: 10.1016/0014-4886(82)90234-5.
    1. de Medinaceli L, DeRenzo E, Wyatt RJ. Rat sciatic functional index data management system with digitized input. Comput Biomed Res. 1984;10(2):185–192. doi: 10.1016/0010-4809(84)90031-4.
    1. Lowdon IMR, Seaber AV, Urbaniak JR. An improved method of recording rat tracks for measurement of the sciatic functional index of de Medinaceli. J Neurosci Methods. 1988;10(3):279–281. doi: 10.1016/0165-0270(88)90173-2.
    1. Bain JR, Mackinnon SE, Hunter DA. Functional evaluation of complete sciatic, peroneal, and posterior tibial nerve lesions in the rat. Plast Reconstr Surg. 1989;10:129–138. doi: 10.1097/00006534-198901000-00024.
    1. Hare GM, Evans PJ, Mackinnon SE, Best TJ, Bain JR, Szalai JP, Hunter DA. Walking track analysis: a long-term assessment of peripheral nerve recovery. Plast Reconstr Surg. 1992;10:251–258. doi: 10.1097/00006534-199202000-00009.
    1. Pereira MG, Baptista IL, Carlassara EO, Moriscot AS, Aoki MS, Miyabara EH. Leucine supplementation improves skeletal muscle regeneration after cryolesion in rats. PLoS One. 2014;10(1):e85283. doi: 10.1371/journal.pone.0085283.
    1. Chan S, Head SI. Age- and gender-related changes in contractile properties of non-atrophied EDL muscle. PLoS One. 2010;10:e12345. doi: 10.1371/journal.pone.0012345.
    1. Butler DS, Gifford LS. The concept of adverse mechanical tension in the nervous system. Part 2: "examination and treatment". Physiotherapy. 1989;10:629–636. doi: 10.1016/S0031-9406(10)62375-9. doi:10.1016/S0031-9406(10)62375-9.
    1. Lew PC, Briggs CA. Relationship between the cervical component of the slump test and change in hamstring muscle tension. Man Ther. 1997;10(2):98–105. doi: 10.1054/math.1997.0291.
    1. Bradford MM. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976;10:248–254. doi: 10.1016/0003-2697(76)90527-3.
    1. Patwardhan AM, Berg KA, Akopain AN, Jeske NA, Gamper N, Clarke WP, Hargreaves KM. Bradykinin-induced functional competence and trafficking of the δ-opioid receptor in trigeminal nociceptors. J Neurosci. 2005;10(39):8825–8832. doi: 10.1523/JNEUROSCI.0160-05.2005.
    1. Ott D, Frischknecht R, Plückthun A. Construction and characterization of a kappa opioid receptor devoid of all free cysteines. Protein Eng Des Sel. 2004;10(1):37–48. doi: 10.1093/protein/gzh004.
    1. Liu H, Li H, Guo L, Li C, Li M, Jiang W, Liu X, McNutt MA, Li G. The mechanism involved in the repression of the μ opioid receptor gene expression in CEM × 174 cells infected by simian immunodeficiency virus. J Leukoc Biol. 2009;10(4):684–691. doi: 10.1189/jlb.0908543.
    1. Snedecor GW, Sokal RR, Rohlf FJ. Statistical methods Biometry. New York: Owa State University Press; 1946.
    1. Konno K, Picolo G, Gutierrez VP, Brigatte P, Zambelli VO, Camargo AC, Cury Y. Crotalphine, a novel potent analgesic peptide from the venom of the South American rattlesnake Crotalus durissus terrificus. Peptides. 2008;10(8):1293–1304. doi: 10.1016/j.peptides.2008.04.003.
    1. Brigatte P, Sampaio SC, Gutierrez VP, Guerra JL, Sinhorini IL, Curi R, Cury Y. Walker 256 tumor-bearing rats as a model to study cancer pain. J Pain. 2007;10(5):412–421. doi: 10.1016/j.jpain.2006.11.006.
    1. Picolo G, Cassola AC, Cury Y. Activation of peripheral ATP-sensitive K + channels mediates the antinociceptive effect of Crotalus durissus terrificus snake venom. Eur J Pharmacol. 2003;10(1–3):57–64.
    1. Zambelli VO, Fernandes AC, Gutierrez VP, Ferreira JC, Parada CA, Mochly-Rosen D, Cury Y. Peripheral sensitization increases opioid receptor expression and activation by crotalphine in rats. PLoS One. 2014;10(3):e90576. doi: 10.1371/journal.pone.0090576.
    1. Wang JY, Huang J, Chang JY, Woodward DJ, Luo F. Morphine modulation of pain processing in medial and lateral pain pathways. Mol Pain. 2009;10:60. doi: 10.1186/1744-8069-5-60.
    1. Galdino G, Duarte I, Perez A. Participation of endogenous opioids in the antinociception induced by resistance exercise in rats. Braz J Med Biol Res. 2010;10(9):906–909. doi: 10.1590/S0100-879X2010007500086.
    1. Stagg NJ, Mata HP, Ibrahim MM, Henriksen EJ, Porreca F, Vanderah TW, Malan TP Jr. Regular exercise reverses sensory hypersensitivity in a rat neuropathic pain model: role of endogenous opioids. Anesthesiology. 2011;10(4):940–948. doi: 10.1097/ALN.0b013e318210f880.
    1. Smith MA, McClean JM, Bryant PA. Sensitivity to the effects of a kappa opioid in rats with free access to exercise wheels: differential effects across behavioral measures. Pharmacol Biochem Behav. 2004;10(1):49–57. doi: 10.1016/j.pbb.2003.09.021.
    1. Sohn J-H, Lee BH, Park SH, Ryu J-W, Kim B-O, Park YG. Microinjection of opiates into the periaqueductal gray matter attenuates neuropathic pain symptoms in rats. Neuroreport. 2000;10(7):1413–1416. doi: 10.1097/00001756-200005150-00012.
    1. van Sloten TT, Savelberg HH, Duimel-Peeters IG, Meijer K, Henry R, Stehouwer CD, Schaper NC. Peripheral neuropathy, decreased muscle strength and obesity are strongly associated with walking in persons with type 2 diabetes without manifest mobility limitations. Diabetes Res Clin Pract. 2011;10(1):32–39. doi: 10.1016/j.diabres.2010.09.030.
    1. Wu A, Lauschke JL, Morris R, Waite PM. Characterization of rat forepaw function in two models of cervical dorsal root injury. J Neurotrauma. 2009;10(1):17–29. doi: 10.1089/neu.2008.0675.
    1. Munro G, Storm A, Hansen MK, Dyhr H, Marcher L, Erichsen HK, Sheykhzade M. The combined predictive capacity of rat models of algogen-induced and neuropathic hypersensitivity to clinically used analgesics varies with nociceptive endpoint and consideration of locomotor function. Pharmacol Biochem Behav. 2012;10(3):465–478. doi: 10.1016/j.pbb.2012.02.008.
    1. Hutchinson KJ, Gómez‒Pinilla F, Crowe MJ, Ying Z, Basso DM. Three exercise paradigms differentially improve sensory recovery after spinal cord contusion in rats. Brain. 2004;10(6):1403–1414. doi: 10.1093/brain/awh160.
    1. Buerger C, Silva E, Imme J, André E. Efeitos da laserterapia de baixa potência sobre os processos de regeneração do tecido nervoso periférico. Fisiot Mov. 2004;10(2):67–74.
    1. Martins FD. Mobilização neural como recurso terapêutico na recuperação funcional e morfológica do nervo ciático de ratos após lesão traumática. Florianópolis, SC-Brasil: Universidade Federal de Santa Catarina; 2009. (Dissertation (Masters)). .
    1. Monte-Raso V, Barbieri C, Mazzer N, Fazan V. Os efeitos do ultra-som terapêutico nas lesões por esmagamento do nervo ciático de ratos: análise funcional da marcha. Rev Bras Fisioter. 2006;10(1):113–119. doi: 10.1590/S1413-35552006000100015.
    1. Gasparini ALP, Barbieri CH, Mazzer N. Correlação entre diferentes métodos de avaliação funcional da marcha de ratos com lesão por esmagamento do nervo isquiático. Acta Ortopédica Brasileira. 2007;10:285–289.
    1. Ramer MS, French GD, Bisby MA. Wallerian degeneration is required for both neuropathic pain and sympathetic sprouting into the DRG. Pain. 1997;10(1):71–78.
    1. Wagner R, Heckman HM, Myers RR. Wallerian degeneration and hyperalgesia after peripheral nerve injury are glutathione-dependent. Pain. 1998;10(2):173–179. doi: 10.1016/S0304-3959(98)00091-8.
    1. Campana WM, Li X, Shubayev VI, Angert M, Cai K, Myers RR. Erythropoietin reduces Schwann cell TNF‒α, Wallerian degeneration and pain‒related behaviors after peripheral nerve injury. Eur J Neurosci. 2006;10(3):617–626. doi: 10.1111/j.1460-9568.2006.04606.x.
    1. Scrimshaw SV, Maher CG. Randomized controlled trial of neural mobilization after spinal surgery. Spine (Phila Pa 1976) 2001;10(24):2647–2652. doi: 10.1097/00007632-200112150-00002.
    1. Boyles R, Toy P, Mellon J Jr, Hayes M, Hammer B. Effectiveness of manual physical therapy in the treatment of cervical radiculopathy: a systematic review. J Man Manip Ther. 2011;10(3):135. doi: 10.1179/2042618611Y.0000000011.
    1. Ellis RF, Hing WA. Neural mobilization: a systematic review of randomized controlled trials with an analysis of therapeutic efficacy. J Man Manip Ther. 2008;10(1):8–22. doi: 10.1179/106698108790818594.
    1. Walsh MT. Upper limb neural tension testing and mobilization. Fact, fiction, and a practical approach. J Hand Ther. 2005;10(2):241–258. doi: 10.1197/j.jht.2005.02.010.

Source: PubMed

3
Předplatit