Clinical Evaluation of Self-Collected Saliva by Quantitative Reverse Transcription-PCR (RT-qPCR), Direct RT-qPCR, Reverse Transcription-Loop-Mediated Isothermal Amplification, and a Rapid Antigen Test To Diagnose COVID-19

Mayu Nagura-Ikeda, Kazuo Imai, Sakiko Tabata, Kazuyasu Miyoshi, Nami Murahara, Tsukasa Mizuno, Midori Horiuchi, Kento Kato, Yoshitaka Imoto, Maki Iwata, Satoshi Mimura, Toshimitsu Ito, Kaku Tamura, Yasuyuki Kato, Mayu Nagura-Ikeda, Kazuo Imai, Sakiko Tabata, Kazuyasu Miyoshi, Nami Murahara, Tsukasa Mizuno, Midori Horiuchi, Kento Kato, Yoshitaka Imoto, Maki Iwata, Satoshi Mimura, Toshimitsu Ito, Kaku Tamura, Yasuyuki Kato

Abstract

The clinical performances of six molecular diagnostic tests and a rapid antigen test for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) were clinically evaluated for the diagnosis of coronavirus disease 2019 (COVID-19) in self-collected saliva. Saliva samples from 103 patients with laboratory-confirmed COVID-19 (15 asymptomatic and 88 symptomatic) were collected on the day of hospital admission. SARS-CoV-2 RNA in saliva was detected using a quantitative reverse transcription-PCR (RT-qPCR) laboratory-developed test (LDT), a cobas SARS-CoV-2 high-throughput system, three direct RT-qPCR kits, and reverse transcription-loop-mediated isothermal amplification (RT-LAMP). The viral antigen was detected by a rapid antigen immunochromatographic assay. Of the 103 samples, viral RNA was detected in 50.5 to 81.6% of the specimens by molecular diagnostic tests, and an antigen was detected in 11.7% of the specimens by the rapid antigen test. Viral RNA was detected at significantly higher percentages (65.6 to 93.4%) in specimens collected within 9 days of symptom onset than in specimens collected after at least 10 days of symptoms (22.2 to 66.7%) and in specimens collected from asymptomatic patients (40.0 to 66.7%). Self-collected saliva is an alternative specimen option for diagnosing COVID-19. The RT-qPCR LDT, a cobas SARS-CoV-2 high-throughput system, direct RT-qPCR kits (except for one commercial kit), and RT-LAMP showed sufficient sensitivities in clinical use to be selectively used in clinical settings and facilities. The rapid antigen test alone is not recommended for an initial COVID-19 diagnosis because of its low sensitivity.

Keywords: RT-LAMP; RT-qPCR; SARS-CoV-2; antigen test; saliva.

Copyright © 2020 Nagura-Ikeda et al.

Figures

FIG 1
FIG 1
Cycle threshold (CT) values and detection times for each molecular diagnostic test of saliva specimens. CT value for each RT-qPCR primer set and detection time by reverse transcription–loop-mediated isothermal amplification (RT-LAMP). Horizontal lines indicate the mean CT value or detection time.
FIG 2
FIG 2
Relation of RT-qPCR, RT-LAMP, and the rapid antigen test (RAT) results for saliva specimens. (A) Relation between the detection time of reverse transcription–loop-mediated isothermal amplification (RT-LAMP) and the CT value of target 2 (SARS-CoV-2 envelope gene) in the cobas SARS-CoV-2 test. The blue slope line represents the fitted regression curve. The gray shadow indicates the 95% confidence interval around the regression curve. (B) Distribution of the CT values of target 2 for the cobas SARS-CoV-2 test of saliva with positive and negative results. Horizontal lines indicate the mean CT value. The P value was calculated using Student’s t test.

References

    1. Huang C, Wang Y, Li X, Ren L, Zhao J, Hu Y, Zhang L, Fan G, Xu J, Gu X, Cheng Z, Yu T, Xia J, Wei Y, Wu W, Xie X, Yin W, Li H, Liu M, Xiao Y, Gao H, Guo L, Xie J, Wang G, Jiang R, Gao Z, Jin Q, Wang J, Cao B. 2020. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet 395:497–506. doi:10.1016/S0140-6736(20)30183-5.
    1. Sethuraman N, Jeremiah SS, Ryo A. 2020. Interpreting diagnostic tests for SARS-CoV-2. JAMA 323:2249. doi:10.1001/jama.2020.8259.
    1. Cobb B, Simon CO, Stramer SL, Body B, Mitchell PS, Reisch N, Stevens W, Carmona S, Katz L, Will S, Liesenfeld O. 2017. The cobas 6800/8800 system: a new era of automation in molecular diagnostics. Expert Rev Mol Diagn 17:167–180. doi:10.1080/14737159.2017.1275962.
    1. Yu L, Wu S, Hao X, Dong X, Mao L, Pelechano V, Chen WH, Yin X. 2020. Rapid detection of COVID-19 coronavirus using a reverse transcriptional loop-mediated isothermal amplification (RT-LAMP) diagnostic platform. Clin Chem 66:975–977. doi:10.1093/clinchem/hvaa102.
    1. Kitagawa Y, Orihara Y, Kawamura R, Imai K, Sakai J, Tarumoto N, Matsuoka M, Takeuchi S, Maesaki S, Maeda T. 2020. Evaluation of rapid diagnosis of novel coronavirus disease (COVID-19) using loop-mediated isothermal amplification. J Clin Virol 129:104446. doi:10.1016/j.jcv.2020.104446.
    1. Japanese Ministry of Health, Labour and Welfare. 2020. Approval of in vitro diagnostics for the novel coronavirus infection. Japanese Ministry of Health, Labour and Welfare, Tokyo, Japan: . Accessed 30 May 2020.
    1. Wehrhahn MC, Robson J, Brown S, Bursle E, Byrne S, New D, Chong S, Newcombe JP, Siversten T, Hadlow N. 2020. Self-collection: an appropriate alternative during the SARS-CoV-2 pandemic. J Clin Virol 128:104417. doi:10.1016/j.jcv.2020.104417.
    1. Wang W, Xu Y, Gao R, Lu R, Han K, Wu G, Tan W. 2020. Detection of SARS-CoV-2 in different types of clinical specimens. JAMA 323:1843–1844. doi:10.1001/jama.2020.3786.
    1. Yang Y, Yang M, Shen C, Wang F, Yuan J, Li J, Zhang M, Wang Z, Xing L, Wei J, Peng L, Wong G, Zheng H, Liao M, Feng K, Li J, Yang Q, Zhao J, Zhang Z, Liu L, Liu Y. 2020. Evaluating the accuracy of different respiratory specimens in the laboratory diagnosis and monitoring the viral shedding of 2019-nCoV infections. medRxiv doi:10.1101/2020.02.11.20021493.
    1. Chan JF, Yip CC, To KK, Tang TH, Wong SC, Leung KH, Fung AY, Ng AC, Zou Z, Tsoi HW, Choi GK, Tam AR, Cheng VC, Chan KH, Tsang OT, Yuen KY. 2020. Improved molecular diagnosis of COVID-19 by the novel, highly sensitive and specific COVID-19-RdRp/Hel real-time reverse transcription-PCR assay validated in vitro and with clinical specimens. J Clin Microbiol 58:e00310-20. doi:10.1128/JCM.00310-20.
    1. Pasomsub E, Watcharananan SP, Boonyawat K, Janchompoo P, Wongtabtim G, Suksuwan W, Sungkanuparph S, Phuphuakrat A. 15 May 2020. Saliva sample as a non-invasive specimen for the diagnosis of coronavirus disease-2019 (COVID-19): a cross-sectional study. Clin Microbiol Infect doi:10.1016/j.cmi.2020.05.001.
    1. Azzi L, Carcano G, Gianfagna F, Grossi P, Gasperina DD, Genoni A, Fasano M, Sessa F, Tettamanti L, Carinci F, Maurino V, Rossi A, Tagliabue A, Baj A. 2020. Saliva is a reliable tool to detect SARS-CoV-2. J Infect 81:e45–e50. doi:10.1016/j.jinf.2020.04.005.
    1. To KK-W, Tsang O-Y, Chik-Yan Yip C, Chan K-H, Wu T-C, Chan JMC, Leung W-S, Chik T-H, Choi C-C, Kandamby DH, Lung DC, Tam AR, Poon R-S, Fung A-F, Hung I-N, Cheng V-C, Chan J-W, Yuen K-Y. 12 February 2020. Consistent detection of 2019 novel coronavirus in saliva. Clin Infect Dis doi:10.1093/cid/ciaa149.
    1. To KK-W, Tsang O-Y, Leung W-S, Tam AR, Wu T-C, Lung DC, Yip CC-Y, Cai J-P, Chan J-C, Chik T-H, Lau D-L, Choi C-C, Chen L-L, Chan W-M, Chan K-H, Ip JD, Ng A-K, Poon R-S, Luo C-T, Cheng V-C, Chan J-W, Hung I-N, Chen Z, Chen H, Yuen K-Y. 2020. Temporal profiles of viral load in posterior oropharyngeal saliva samples and serum antibody responses during infection by SARS-CoV-2: an observational cohort study. Lancet Infect Dis 20:565–574. doi:10.1016/S1473-3099(20)30196-1.
    1. McCormick-Baw C, Morgan K, Gaffney D, Cazares Y, Jaworski K, Byrd A, Molberg K, Cavuoti D. 15 May 2020. Saliva as an alternate specimen source for detection of SARS-CoV-2 in symptomatic patients using Cepheid Xpert Xpress SARS-CoV-2. J Clin Microbiol doi:10.1128/jcm.01109-20.
    1. Kojima N, Turner F, Slepnev V, Bacelar A, Deming L, Kodeboyina S, Klausner JD. 2020. Self-collected oral fluid and nasal swabs demonstrate comparable sensitivity to clinician collected nasopharyngeal swabs for Covid-19 detection. medRxiv doi:10.1101/2020.04.11.20062372.
    1. Wyllie AL, Fournier J, Casanovas-Massana A, Campbell M, Tokuyama M, Vijayakumar P, Geng B, Muenker MC, Moore AJ, Vogels CBF, Petrone ME, Ott IM, Lu P, Lu-Culligan A, Klein J, Venkataraman A, Earnest R, Simonov M, Datta R, Handoko R, Naushad N, Sewanan LR, Valdez J, White EB, Lapidus S, Kalinich CC, Jiang X, Kim DJ, Kudo E, Linehan M, Mao T, Moriyama M, Oh JE, Park A, Silva J, Song E, Takahashi T, Taura M, Weizman O-E, Wong P, Yang Y, Bermejo S, Odio C, Omer SB, Dela Cruz CS, Farhadian S, Martinello RA, Iwasaki A, Grubaugh ND, Ko AI. 2020. Saliva is more sensitive for SARS-CoV-2 detection in COVID-19 patients than nasopharyngeal swabs. medRxiv doi:10.1101/2020.04.16.20067835.
    1. To KK-W, Yip CC-Y, Lai C-W, Wong C-H, Ho D-Y, Pang P-P, Ng A-K, Leung KH, Poon R-S, Chan KH, Cheng V-C, Hung I-N, Yuen KY. 2019. Saliva as a diagnostic specimen for testing respiratory virus by a point-of-care molecular assay: a diagnostic validity study. Clin Microbiol Infect 25:372–378. doi:10.1016/j.cmi.2018.06.009.
    1. Becker D, Sandoval E, Amin A, De Hoff P, Diets A, Leonetti N, Lim YW, Elliott C, Laurent L, Grzymski J, Lu J. 2020. Saliva is less sensitive than nasopharyngeal swabs for COVID-19 detection in the community setting. medRxiv doi:10.1101/2020.05.11.20092338.
    1. Shirato K, Nao N, Katano H, Takayama I, Saito S, Kato F, Katoh H, Sakata M, Nakatsu Y, Mori Y, Kageyama T, Matsuyama S, Takeda M. 18 February 2020. Development of genetic diagnostic methods for novel coronavirus 2019 (nCoV-2019) in Japan. Jpn J Infect Dis doi:10.7883/yoken.JJID.2020.061.
    1. Centers for Disease Control and Prevention. 2020. Research use only 2019-novel coronavirus (2019-nCoV) real-time RT-PCR primers and probes. Centers for Disease Control and Prevention, Atlanta, GA: . Accessed 30 May 2020.
    1. US Food and Drug Administration. 2020. cobas® SARS-CoV-2. US Food and Drug Administration, Silver Spring, MD: . Accessed 30 May 2020.
    1. Zhang J, Zhou L, Yang Y, Peng W, Wang W, Chen X. 2020. Therapeutic and triage strategies for 2019 novel coronavirus disease in fever clinics. Lancet Respir Med 8:e11–e12. doi:10.1016/S2213-2600(20)30071-0.
    1. Yan C, Cui J, Huang L, Du B, Chen L, Xue G, Li S, Zhang W, Zhao L, Sun Y, Yao H, Li N, Zhao H, Feng Y, Liu S, Zhang Q, Liu D, Yuan J. 2020. Rapid and visual detection of 2019 novel coronavirus (SARS-CoV-2) by a reverse transcription loop-mediated isothermal amplification assay. Clin Microbiol Infect 26:773–779. doi:10.1016/j.cmi.2020.04.001.
    1. Lieberman JA, Pepper G, Naccache SN, Huang M-L, Jerome KR, Greninger AL. 29 April 2020. Comparison of commercially available and laboratory developed assays for in vitro detection of SARS-CoV-2 in clinical laboratories. J Clin Microbiol doi:10.1128/JCM.00821-20.
    1. Pfefferle S, Reucher S, Nörz D, Lütgehetmann M. 2020. Evaluation of a quantitative RT-PCR assay for the detection of the emerging coronavirus SARS-CoV-2 using a high throughput system. Euro Surveill 25:2000152. doi:10.2807/1560-7917.ES.2020.25.9.2000152.
    1. Okamaoto K, Shirato K, Nao N, Saito S, Kageyama T, Hasegawa H, Suzuki T, Matsuyama S, Takeda M. 30 April 2020. An assessment of real-time RT-PCR kits for SARS-CoV-2 detection. Jpn J Infect Dis doi:10.7883/yoken.JJID.2020.108.

Source: PubMed

3
Předplatit