Is wetter better? An evaluation of over-the-counter personal lubricants for safety and anti-HIV-1 activity

Charlene S Dezzutti, Elizabeth R Brown, Bernard Moncla, Julie Russo, Marilyn Cost, Lin Wang, Kevin Uranker, Ratiya P Kunjara Na Ayudhya, Kara Pryke, Jim Pickett, Marc-André Leblanc, Lisa C Rohan, Charlene S Dezzutti, Elizabeth R Brown, Bernard Moncla, Julie Russo, Marilyn Cost, Lin Wang, Kevin Uranker, Ratiya P Kunjara Na Ayudhya, Kara Pryke, Jim Pickett, Marc-André Leblanc, Lisa C Rohan

Abstract

Because lubricants may decrease trauma during coitus, it is hypothesized that they could aid in the prevention of HIV acquisition. Therefore, safety and anti-HIV-1 activity of over-the-counter (OTC) aqueous- (n = 10), lipid- (n = 2), and silicone-based (n = 2) products were tested. The rheological properties of the lipid-based lubricants precluded testing with the exception of explant safety testing. Six aqueous-based gels were hyperosmolar, two were nearly iso-osmolar, and two were hypo-osmolar. Evaluation of the panel of products showed Gynol II (a spermicidal gel containing 2% nonoxynol-9), KY Jelly, and Replens were toxic to Lactobacillus. Two nearly iso-osmolar aqueous- and both silicone-based gels were not toxic toward epithelial cell lines or ectocervical or colorectal explant tissues. Hyperosmolar lubricants demonstrated reduction of tissue viability and epithelial fracture/sloughing while the nearly iso-osmolar and silicon-based lubricants showed no significant changes in tissue viability or epithelial modifications. While most of the lubricants had no measurable anti-HIV-1 activity, three lubricants which retained cell viability did demonstrate modest anti-HIV-1 activity in vitro. To determine if this would result in protection of mucosal tissue or conversely determine if the epithelial damage associated with the hyperosmolar lubricants increased HIV-1 infection ex vivo, ectocervical tissue was exposed to selected lubricants and then challenged with HIV-1. None of the lubricants that had a moderate to high therapeutic index protected the mucosal tissue. These results show hyperosmolar lubricant gels were associated with cellular toxicity and epithelial damage while showing no anti-viral activity. The two iso-osmolar lubricants, Good Clean Love and PRÉ, and both silicone-based lubricants, Female Condom 2 lubricant and Wet Platinum, were the safest in our testing algorithm.

Conflict of interest statement

Competing Interests: The authors have declared that no competing interests exist.

Figures

Figure 1. Impact of the over-the-counter lubricants…
Figure 1. Impact of the over-the-counter lubricants on Lactobacillus species viability.
Lactobacillus species (L. crispatus (open bar); L. jensenii 25258 (diagonal line bar); L. jensenii 28Ab (diamond hatch bar)) were cultured in the presence of lubricants for 30 min then plated. The reduction of colony forming units was compared to control cultures. The data are presented as the Log10 growth compared to the control cultures.
Figure 2. Impact of the over-the-counter aqueous-based…
Figure 2. Impact of the over-the-counter aqueous-based lubricants on epithelial cell line viability.
Caco-2 (upper panel) and HEC-1-A (lower panel) epithelial cells were treated with serial dilutions of the indicated lubricants for 24 h and their viability was measured and presented as the %Viability of the control (untreated) cells. The data presented are the mean ± standard deviation of 5 independent experiments.
Figure 3. Impact of the over-the-counter silicone-based…
Figure 3. Impact of the over-the-counter silicone-based lubricants on epithelial cell lines.
(A) Caco-2 and HEC-1-A epithelial cell lines were treated with Female Condom 2 (FC 2) lubricant or Wet Platinum for 15, 30 or 60 min and %Viability of the control (untreated) cells was measured. (B) TZM-bl cells were treated with FC2 lubricant or Wet Platinum for 15, 30, or 60 min and %Viability or %Anti-HIV-1 activity of the control (untreated) cells was measured. The data presented are the mean ± standard deviation of 5 independent experiments.
Figure 4. Effect of the over-the-counter aqueous-based…
Figure 4. Effect of the over-the-counter aqueous-based lubricants on epithelial cell line monolayer integrity.
(A) Caco-2 or (B) HEC-1-A epithelial cell lines were grown on transwell supports until a polarized monolayer was established. A 1∶10 dilution of each of the lubricants was applied to the apical surface to allow for even spread over the cell surface, and the monolayers were followed over a 24 h period. The data presented are the mean ± standard deviation of 5 independent experiments.
Figure 5. Effect of the over-the-counter silicone-based…
Figure 5. Effect of the over-the-counter silicone-based lubricants on epithelial cell line monolayer integrity.
(A) Female Condom 2 lubricant (FC2) or (B) Wet Platinum were evaluated for their impact on Caco-2 and HEC-1-A epithelial cell line monolayers. Lubricant was directly applied to the apical surface of the monolayers for 60 min and then medium containing fluorescent microbeads was applied. Baselateral supernatant was collected over a 24 h period and the fluorescence was measured. The data presented are the %Transmission and represents the mean ± standard deviation of 5 independent experiments.
Figure 6. Impact of the over-the-counter lubricants…
Figure 6. Impact of the over-the-counter lubricants on colorectal (CR) and ectocervical (CVX) tissue viability and architecture.
Ex vivo tissue was placed in transwell supports with the luminal surface exposed to the air. The edges were sealed to ensure the lubricant was exposed to the luminal epithelium in duplicate cultures. After an overnight exposure, tissue was washed with one piece further cultured in medium containing 1-(4,5-dimethylthiazol-2-yl)-3,5-diphenylformazan for the MTT assay (A) or the other piece fixed in paraformaldehyde for hematoxylin and eosin staining of CR tissue (B) and CVX tissue (C). The MTT assay represents the mean ± standard deviation of a minimum of 5 independent tissues. The histology is representative of one of those tissues.
Figure 7. Effect lubricants have on HIV-1…
Figure 7. Effect lubricants have on HIV-1 infection of ectocervical tissue.
Ectocervical tissue was placed in transwell supports with the luminal surface exposed to the air. The edges were sealed to ensure the lubricant was exposed to the luminal epithelium in duplicate cultures. Tissues were cultured with the indicated lubricant overnight. Controls consisted of no treatment or additional well reserved for 0.1% EDTA. After washing, the control tissues and those exposed to lubricants were rested for 2 h while the reserved tissue was treated with 0.1% EDTA during the 2 h. The EDTA-treated tissues were then washed and all tissues were exposed to HIV-1 overnight. The tissues were washed and cultured for 21 days; the medium in the basolateral chamber was replenished every 3 to 4 days. HIV-1 replication was monitored in saved supernatant by p24 ELISA. At study end, tissue was fixed and stained for HIV-1 infected cells by immunohistochemistry. The data shown represent the median ± the 95% confidence interval of 4 to 5 independent tissues. The immunohistochemistry is representative of one of those tissues.

References

    1. Jones DL, Weiss SM, Chitalu N, Bwalya V, Villar O (2008) Acceptability of microbicidal surrogates among Zambian women. Sex Transm Dis 35: 147–153.
    1. Jones DL, Weiss SM, Chitalu N, Mumbi M, Shine A, et al. (2008) Acceptability and use of sexual barrier products and lubricants among HIV-seropositive Zambian men. AIDS Patient Care STDS 22: 1015–1020.
    1. Short MB, Zimet GD, Black W, Rosenthal SL (2010) Enrolment of young adolescents in a microbicide acceptability study. Sex Transm Infect 86: 71–73.
    1. Tanner AE, Zimet G, Fortenberry JD, Reece M, Graham C, et al. (2009) Young women’s use of a vaginal microbicide surrogate: the role of individual and contextual factors in acceptability and sexual pleasure. J Sex Res 46: 15–23.
    1. El-Sadr WM, Mayer KH, Maslankowski L, Hoesley C, Justman J, et al. (2006) Safety and acceptability of cellulose sulfate as a vaginal microbicide in HIV-infected women. AIDS 20: 1109–1116.
    1. Malonza IM, Mirembe F, Nakabiito C, Odusoga LO, Osinupebi OA, et al. (2005) Expanded Phase I safety and acceptability study of 6% cellulose sulfate vaginal gel. AIDS 19: 2157–2163.
    1. Schwartz JL, Mauck C, Lai JJ, Creinin MD, Brache V, et al. (2006) Fourteen-day safety and acceptability study of 6% cellulose sulfate gel: a randomized double-blind Phase I safety study. Contraception 74: 133–140.
    1. Tabet SR, Callahan MM, Mauck CK, Gai F, Coletti AS, et al. (2003) Safety and Acceptability of Penile Application of 2 Candidate Topical Microbicides: BufferGel and PRO 2000 Gel: 3 Randomized Trials in Healthy Low-Risk Men and HIV-Positive Men. J Acquir Immune Defic Syndr 33: 476–483.
    1. Williams DL, Newman DR, Ballagh SA, Creinin MD, Barnhart K, et al. (2007) Phase I safety trial of two vaginal microbicide gels (Acidform or BufferGel) used with a diaphragm compared to KY jelly used with a diaphragm. Sex Transm Dis 34: 977–984.
    1. Doh AS, Ngoh N, Roddy R, Lai JJ, Linton K, et al. (2007) Safety and acceptability of 6% cellulose sulfate vaginal gel applied four times per day for 14 days. Contraception 76: 245–249.
    1. Greene E, Batona G, Hallad J, Johnson S, Neema S, et al. (2010) Acceptability and adherence of a candidate microbicide gel among high-risk women in Africa and India. Cult Health Sex 12: 739–754.
    1. Jones HE, Chaikummao S, van de Wijgert JH, Friedland BA, Manopaiboon C, et al. (2009) Acceptability of a carrageenan-based candidate vaginal microbicide and matching placebo: findings from a phase II safety trial among women in Chiang Rai, Thailand. J Womens Health (Larchmt) 18: 1003–1010.
    1. Martin S, Blanchard K, Manopaiboon C, Chaikummao S, Schaffer K, et al. (2010) Carraguard acceptability among men and women in a couples study in Thailand. J Womens Health (Larchmt) 19: 1561–1567.
    1. Guimaraes MD, Vlahov D, Castilho EA (1997) Postcoital vaginal bleeding as a risk factor for transmission of the human immunodeficiency virus in a heterosexual partner study in Brazil. Rio de Janeiro Heterosexual Study Group. Arch Intern Med 157: 1362–1368.
    1. Norvell MK, Benrubi GI, Thompson RJ (1984) Investigation of microtrauma after sexual intercourse. J Reprod Med 29: 269–271.
    1. Padian NS, Abrams J, Skurnick JH, Van Devanter NL, O’Brien TR (1995) Risk factors for postcoital bleeding among women with or at risk for infection with human immunodeficiency virus. J Infect Dis 172: 1084–1087.
    1. Shattock RJ, Moore JP (2003) Inhibiting sexual transmission of HIV-1 infection. Nat Rev Microbiol 1: 25–34.
    1. Coplan PM, Gortmaker S, Hernandez-Avila M, Spiegelman D, Uribe-Zuniga P, et al. (1996) Human immunodeficiency virus infection in Mexico City. Rectal bleeding and anal warts as risk factors among men reporting sex with men. Am J Epidemiol 144: 817–827.
    1. Carballo-Dieguez A, Stein Z, Saez H, Dolezal C, Nieves-Rosa L, et al. (2000) Frequent use of lubricants for anal sex among men who have sex with men: the HIV prevention potential of a microbicidal gel. Am J Public Health 90: 1117–1121.
    1. DHHS (2003) Over-the-counter drug products; safety and efficacy review. In: FDA, Federal Register. 75585–75591.
    1. Rohan LC, Moncla BJ, Kunjara Na Ayudhya RP, Cost M, Huang Y, et al. (2010) In vitro and ex vivo testing of tenofovir shows it is effective as an HIV-1 microbicide. PLoS ONE 5: e9310.
    1. Fogh J, Wright WC, Loveless JD (1977) Absence of HeLa cell contamination in 169 cell lines derived from human tumors. J Natl Cancer Inst 58: 209–214.
    1. Kuramoto H (1972) Studies of the growth and cytogenetic properties of human endometrial adenocarcinoma in culture and its development into an established line. Acta Obstet Gynaecol Jpn 19: 47–58.
    1. Wei X, Decker JM, Liu H, Zhang Z, Arani RB, et al. (2002) Emergence of resistant human immunodeficiency virus type 1 in patients receiving fusion inhibitor (T-20) monotherapy. Antimicrob Agents Chemother 46: 1896–1905.
    1. Moncla BJ, Hillier SL (2005) Why nonoxynol-9 may have failed to prevent acquisition of Neisseria gonorrhoeae in clinical trials. Sex Transm Dis 32: 491–494.
    1. Moncla BJ, Pryke K, Isaacs CE (2008) Killing of Neisseria gonorrhoeae, Streptococcus agalactiae (group B streptococcus), Haemophilus ducreyi and vaginal Lactobacillus by 3-O-octyl-sn-glycerol. Antimicrob Agents Chemother 52: 1023–1027.
    1. Dezzutti CS, James VN, Ramos A, Sullivan ST, Siddig A, et al. (2004) In vitro comparison of topical microbicides for prevention of human immunodeficiency virus type 1 transmission. Antimicrob Agents Chemother 48: 3834–3844.
    1. Abner SR, Guenthner PC, Guarner J, Hancock KA, Cummins JE Jr, et al. (2005) A human colorectal explant culture to evaluate topical microbicides for the prevention of HIV infection. J Infect Dis 192: 1545–1556.
    1. Cummins JE Jr, Guarner J, Flowers L, Guenthner PC, Bartlett J, et al. (2007) Preclinical testing of candidate topical microbicides for anti-human immunodeficiency virus type 1 activity and tissue toxicity in a human cervical explant culture. Antimicrob Agents Chemother 51: 1770–1779.
    1. Wang L, Schnaare RL, Dezzutti C, Anton PA, Rohan LC (2011) Rectal microbicides: clinically relevant approach to the design of rectal specific placebo formulations. AIDS Res Ther 8: 12.
    1. Atashili J, Poole C, Ndumbe PM, Adimora AA, Smith JS (2008) Bacterial vaginosis and HIV acquisition: a meta-analysis of published studies. AIDS 22: 1493–1501.
    1. Fuchs EJ, Lee LA, Torbenson MS, Parsons TL, Bakshi RP, et al. (2007) Hyperosmolar sexual lubricant causes epithelial damage in the distal colon: potential implication for HIV transmission. J Infect Dis 195: 703–710.
    1. Leyva F, Fuchs EJ, Ventuneac A, Carballo-Dieguez A, Lee LA, et al... (2011) Comparison of 3 Rectal Douches as Safe, Preferred Delivery Vehicle for Rectal Microbicides. 18th Conference on Retroviruses and Opportunistic Infections. Boston, MA. #993.
    1. Blaskewicz CD, Pudney J, Anderson DJ (2011) Structure and function of intercellular junctions in human cervical and vaginal mucosal epithelia. Biol Reprod 85: 97–104.
    1. Wira CR, Grant-Tschudy KS, Crane-Godreau MA (2005) Epithelial cells in the female reproductive tract: a central role as sentinels of immune protection. Am J Reprod Immunol 53: 65–76.
    1. Beer BE, Doncel GF, Krebs FC, Shattock RJ, Fletcher PS, et al. (2006) In vitro preclinical testing of nonoxynol-9 as potential anti-human immunodeficiency virus microbicide: a retrospective analysis of results from five laboratories. Antimicrob Agents Chemother 50: 713–723.
    1. Baron S, Poast J, Nguyen D, Cloyd MW (2001) Practical prevention of vaginal and rectal transmission of HIV by adapting the oral defense: use of commercial lubricants. AIDS Res Hum Retroviruses 17: 997–1002.
    1. Nguyen D, Lee H, Poast J, Cloyd MW, Baron S (2004) Preventing sexual transmission of HIV: anti-HIV bioregulatory and homeostatic components of commercial sexual lubricants. J Biol Regul Homeost Agents 18: 268–274.
    1. Moench TR, Mumper RJ, Hoen TE, Sun M, Cone RA (2010) Microbicide excipients can greatly increase susceptibility to genital herpes transmission in the mouse. BMC Infect Dis 10: 331.
    1. Nishihata T, Lee CS, Rytting JH, Higuchi T (1987) The synergistic effects of concurrent administration to rats of EDTA and sodium salicylate on the rectal absorption of sodium cefoxitin and the effects of inhibitors. J Pharm Pharmacol 39: 180–184.
    1. Nishihata T, Tomida H, Frederick G, Rytting JH, Higuchi T (1985) Comparison of the effects of sodium salicylate, disodium ethylenediaminetetraacetic acid and polyoxyethylene-23-lauryl ether as adjuvants for the rectal absorption of sodium cefoxitin. J Pharm Pharmacol 37: 159–163.
    1. Okada H (2001) Vaginal Drug Delivery; Hillery AM, Lloyd W, editors. New York: Taylor & Francis, Inc.
    1. Jamieson DJ, Steege JF (1996) The prevalence of dysmenorrhea, dyspareunia, pelvic pain, and irritable bowel syndrome in primary care practices. Obstet Gynecol 87: 55–58.
    1. Basrani B, Lemonie C (2005) Chlorhexidine gluconate. Aust Endod J 31: 48–52.
    1. Digison MB (2007) A review of anti-septic agents for pre-operative skin preparation. Plast Surg Nurs 27: 185–189.
    1. Ojha P, Maikhuri JP, Gupta G (2003) Effect of spermicides on Lactobacillus acidophilus in vitro-nonoxynol-9 vs. Sapindus saponins. Contraception 68: 135–138.
    1. Watts DH, Rabe L, Krohn MA, Aura J, Hillier SL (1999) The effects of three nonoxynol-9 preparations on vaginal flora and epithelium. J Infect Dis 180: 426–437.
    1. Begay O, Jean-Pierre N, Abraham CJ, Chudolij A, Seidor S, et al. (2011) Identification of Personal Lubricants That Can Cause Rectal Epithelial Cell Damage and Enhance HIV Type 1 Replication in Vitro. AIDS Res Hum Retroviruses 27: 1019–1024.
    1. Maguire RA, Bergman N, Phillips DM (2001) Comparison of microbicides for efficacy in protecting mice against vaginal challenge with herpes simplex virus type 2, cytotoxicity, antibacterial properties, and sperm immobilization. Sex Transm Dis 28: 259–265.
    1. Sudol KM, Phillips DM (2004) Relative safety of sexual lubricants for rectal intercourse. Sex Transm Dis 31: 346–349.
    1. Adriaens E, Remon JP (2008) Mucosal irritation potential of personal lubricants relates to product osmolality as detected by the slug mucosal irritation assay. Sex Transm Dis 35: 512–516.
    1. Hillier SL, Moench T, Shattock R, Black R, Reichelderfer P, et al. (2005) In vitro and in vivo: the story of nonoxynol 9. J Acquir Immune Defic Syndr 39: 1–8.
    1. Phillips DM, Taylor CL, Zacharopoulos VR, Maguire RA (2000) Nonoxynol-9 causes rapid exfoliation of sheets of rectal epithelium. Contraception 62: 149–154.
    1. Tien D, Schnaare RL, Kang F, Cohl G, McCormick TJ, et al. (2005) In vitro and in vivo characterization of a potential universal placebo designed for use in vaginal microbicide clinical trials. AIDS Res Hum Retroviruses 21: 845–853.
    1. Nance CL, Siwak EB, Shearer WT (2009) Preclinical development of the green tea catechin, epigallocatechin gallate, as an HIV-1 therapy. J Allergy Clin Immunol 123: 459–465.
    1. Isaacs CE, Wen GY, Xu W, Jia JH, Rohan L, et al. (2008) Epigallocatechin gallate inactivates clinical isolates of herpes simplex virus. Antimicrob Agents Chemother 52: 962–970.
    1. Abdool Karim SS, Richardson BA, Ramjee G, Hoffman IF, Chirenje ZM, et al. (2011) Safety and effectiveness of BufferGel and 0.5% PRO2000 gel for the prevention of HIV infection in women. AIDS 25: 957–966.
    1. McCormack S, Ramjee G, Kamali A, Rees H, Crook AM, et al. (2010) PRO2000 vaginal gel for prevention of HIV-1 infection (Microbicides Development Programme 301): a phase 3, randomised, double-blind, parallel-group trial. Lancet 376: 1329–1337.
    1. Abdool Karim Q, Abdool Karim SS, Frohlich JA, Grobler AC, Baxter C, et al. (2010) Effectiveness and safety of tenofovir gel, an antiretroviral microbicide, for the prevention of HIV infection in women. Science 329: 1168–1174.
    1. MTN statement (2011) Decision to Discontinue Use of Tenofovir Gel in VOICE, a Major HIV Prevention Study in Women. .
    1. Van Damme L, Chandeying V, Ramjee G, Rees H, Sirivongrangson P, et al. (2000) Safety of multiple daily applications of COL-1492, a nonoxynol-9 vaginal gel, among female sex workers. COL-1492 Phase II Study Group. AIDS 14: 85–88.
    1. Van Damme L, Govinden R, Mirembe FM, Guedou F, Solomon S, et al. (2008) Lack of effectiveness of cellulose sulfate gel for the prevention of vaginal HIV transmission. N Engl J Med 359: 463–472.
    1. Mesquita PM, Cheshenko N, Wilson SS, Mhatre M, Guzman E, et al. (2009) Disruption of tight junctions by cellulose sulfate facilitates HIV infection: model of microbicide safety. J Infect Dis 200: 599–608.
    1. Guenthner PC, Secor WE, Dezzutti CS (2005) Trichomonas vaginalis-induced epithelial monolayer disruption and human immunodeficiency virus type 1 (HIV-1) replication: implications for the sexual transmission of HIV-1. Infect Immun 73: 4155–4160.
    1. Cone RA, Hoen T, Wong X, Abusuwwa R, Anderson DJ, et al. (2006) Vaginal microbicides: detecting toxicities in vivo that paradoxically increase pathogen transmission. BMC Infect Dis 6: 90.
    1. Galen BT, Martin AP, Hazrati E, Garin A, Guzman E, et al. (2007) A comprehensive murine model to evaluate topical vaginal microbicides: mucosal inflammation and susceptibility to genital herpes as surrogate markers of safety. J Infect Dis 195: 1332–1339.
    1. Wilson SS, Cheshenko N, Fakioglu E, Mesquita PM, Keller MJ, et al. (2009) Susceptibility to genital herpes as a biomarker predictive of increased HIV risk: expansion of a murine model of microbicide safety. Antivir Ther 14: 1113–1124.
    1. Fuchs EJ, Grohskopf LA, Lee LA, Hendrix CW. (2008) Detecting Rectal Epithelial Disruption using Radioisotopes: A Simple Test to Identify Potential HIV Microbicide Toxicity. Microbicides 2008 New Delhi, India. Abst #209.
    1. Gorbach PM, Weiss RE, Fuchs E, Jeffries RA, Hezerah M, et al. (2012) The slippery slope: lubricant use and rectal sexually transmitted infections: a newly identified risk. Sex Transm Dis 39: 59–64.

Source: PubMed

3
Předplatit