Identification of targets for rational pharmacological therapy in childhood craniopharyngioma

Jacob M Gump, Andrew M Donson, Diane K Birks, Vladimir M Amani, Karun K Rao, Andrea M Griesinger, B K Kleinschmidt-DeMasters, James M Johnston, Richard C E Anderson, Amy Rosenfeld, Michael Handler, Lia Gore, Nicholas Foreman, Todd C Hankinson, Jacob M Gump, Andrew M Donson, Diane K Birks, Vladimir M Amani, Karun K Rao, Andrea M Griesinger, B K Kleinschmidt-DeMasters, James M Johnston, Richard C E Anderson, Amy Rosenfeld, Michael Handler, Lia Gore, Nicholas Foreman, Todd C Hankinson

Abstract

Introduction: Pediatric adamantinomatous craniopharyngioma (ACP) is a histologically benign but clinically aggressive brain tumor that arises from the sellar/suprasellar region. Despite a high survival rate with current surgical and radiation therapy (75-95 % at 10 years), ACP is associated with debilitating visual, endocrine, neurocognitive and psychological morbidity, resulting in excheptionally poor quality of life for survivors. Identification of an effective pharmacological therapy could drastically decrease morbidity and improve long term outcomes for children with ACP.

Results: Using mRNA microarray gene expression analysis of 15 ACP patient samples, we have found several pharmaceutical targets that are significantly and consistently overexpressed in our panel of ACP relative to other pediatric brain tumors, pituitary tumors, normal pituitary and normal brain tissue. Among the most highly expressed are several targets of the kinase inhibitor dasatinib - LCK, EPHA2 and SRC; EGFR pathway targets - AREG, EGFR and ERBB3; and other potentially actionable cancer targets - SHH, MMP9 and MMP12. We confirm by western blot that a subset of these targets is highly expressed in ACP primary tumor samples.

Conclusions: We report here the first published transcriptome for ACP and the identification of targets for rational therapy. Experimental drugs targeting each of these gene products are currently being tested clinically and pre-clinically for the treatment of other tumor types. This study provides a rationale for further pre-clinical and clinical studies of novel pharmacological treatments for ACP. Development of mouse and cell culture models for ACP will further enable the translation of these targets from the lab to the clinic, potentially ushering in a new era in the treatment of ACP.

Figures

Fig. 1
Fig. 1
Gene expression of potential targets for therapeutic intervention in ACP. Expression of the indicated genes in ACP relative to a broad range of pediatric and adult brain tumor types: atypical teratoid/rhabdoid tumor (AT/RT), choroid plexus papilloma (CPP), ependymoma (EPN), glioblastoma multiforme (GBM), medulloblastoma (MED), meningioma (MEN), pilocytic astrocytoma (PA), primitive neuroectodermal tumor (PNET); peripheral pediatric solid tumors: malignant peripheral nerve sheath tumors (MPNST), rhabdomyosarcoma (RMS); in addition to malignant (pituitary adenoma) and normal pituitary (PT and N_P respectively); and normal brain and choroid plexus (N_B and N_CP respectively). Dasatinib targets, LCK (lymphocyte-specific protein tyrosine kinase), EPHA2 (ephrin type-A receptor 2) and SRC (SRC proto-oncogene, non-receptor tyrosine kinase) (a). Sonic hedgehog homolog (b). Matrix metalloproteases 9 & 12 (c). EGF pathway genes (d). Values are expressed as log2 gene expression. Horizontal red bars represent the mean, and error bars represent standard error of the mean (SEM)
Fig. 2
Fig. 2
Overexpression of active protein isoforms for SHH, MMP9 and MMP12 in ACP relative to other common pediatric brain tumors and normal brain. Western blot analysis was used to determine latent preforms and cleaved active isoforms of the indicated proteins. (Abbr: AT/RT, atypical teratoid/rhabdoid tumor; EPN, ependymoma; GBM, glioblastoma; MED, medulloblastoma; PA, pilocytic astrocytoma; Norm, normal brain)
Fig. 3
Fig. 3
Transcriptome cluster analysis reveals similarities between ACP, meningioma and rhabdomyosarcoma, with no relationship to adult pituitary or pituitary adenoma. Unbiased hierarchical clustering analysis of a panel of craniopharyngioma tumor samples compared to other pediatric tumors, normal brain tissue, pituitary tissue and adult pituitary adenomas. The top 30 % most variant genes, were used to generate the clustering dendrogram above. (AT/RT, atypical teratoid/rhabdoid tumor; CPP, choroid plexus papilloma; MPNST, malignant peripheral nerve sheath tumor; GBM, glioblastoma multiforme)
Fig. 4
Fig. 4
Expression of the indicated genes in pediatric ACP. p63 gene expression in the indicated tumor and normal tissue types (a). Wnt pathway (b) and β-catenin (TCF/LEF) target gene expression (c). Genes at chromosome 4p5 locus (d). Values are expressed as log2 (a) or as fold-difference of individual ACP samples relative to the average of all other tumor and normal samples (b-d)
Fig. 5
Fig. 5
Expression of the indicated developmental and cancer-related genes in individual pediatric ACP samples. Epidermal growth factor (EGF) family genes (a). Genes involved in pituitary development (b). Developmental genes from the Notch (c), Six transcription factor (d), Sonic hedgehog (Shh) (e), Bone morphogenetic protein (BMP) and Fibroblast growth factor (FGF) (f) families. Values expressed are fold-difference of individual ACP samples relative to the average of all other tumor and normal samples

References

    1. Hankinson TC, Fields EC, Torok MR, Beaty BL, Handler MH, Foreman NK, O’Neill BR, Liu AK. Limited utility despite accuracy of the national SEER dataset for the study of craniopharyngioma. J Neurooncol. 2012;110(2):271–278. doi: 10.1007/s11060-012-0966-5.
    1. Zacharia BE, Bruce SS, Goldstein H, Malone HR, Neugut AI, Bruce JN. Incidence, treatment and survival of patients with craniopharyngioma in the surveillance, epidemiology and end results program. Neuro Oncol. 2012;14(8):1070–1078. doi: 10.1093/neuonc/nos142.
    1. Muller HL. Childhood craniopharyngioma: treatment strategies and outcomes. Expert Rev Neurother. 2014;14(2):187–197. doi: 10.1586/14737175.2014.875470.
    1. Kawamata T, Kubo O, Hori T. Histological findings at the boundary of craniopharyngiomas. Brain Tumor Pathol. 2005;22(2):75–78. doi: 10.1007/s10014-005-0191-4.
    1. Muller HL, Gebhardt U, Schroder S, Pohl F, Kortmann RD, Faldum A, Zwiener I, Warmuth-Metz M, Pietsch T, Calaminus G, Kolb R, Wiegand C, Sorensen N, study committee of K Analyses of treatment variables for patients with childhood craniopharyngioma–results of the multicenter prospective trial KRANIOPHARYNGEOM 2000 after three years of follow-up. Horm Res Paediatr. 2010;73(3):175–180. doi: 10.1159/000284358.
    1. Ozyurt J, Thiel CM, Lorenzen A, Gebhardt U, Calaminus G, Warmuth-Metz M, Muller HL. Neuropsychological outcome in patients with childhood craniopharyngioma and hypothalamic involvement. J Pediatr. 2014;164(4):876–881. doi: 10.1016/j.jpeds.2013.12.010.
    1. Sughrue ME, Yang I, Kane AJ, Fang S, Clark AJ, Aranda D, Barani IJ, Parsa AT. Endocrinologic, neurologic, and visual morbidity after treatment for craniopharyngioma. J Neurooncol. 2011;101(3):463–476. doi: 10.1007/s11060-010-0265-y.
    1. Flitsch J, Muller HL, Burkhardt T. Surgical strategies in childhood craniopharyngioma. Front Endocrinol. 2011;2:96. doi: 10.3389/fendo.2011.00096.
    1. Klimo P, Jr., Venable GT, Boop FA, Merchant TE (2015) Recurrent craniopharyngioma after conformal radiation in children and the burden of treatment. J Neurosurg Pediatr:1–7. doi:10.3171/2014.10.PEDS14384
    1. Visser J, Hukin J, Sargent M, Steinbok P, Goddard K, Fryer C. Late mortality in pediatric patients with craniopharyngioma. J Neurooncol. 2010;100(1):105–111. doi: 10.1007/s11060-010-0145-5.
    1. Elliott RE, Sands SA, Strom RG, Wisoff JH. Craniopharyngioma Clinical Status Scale: a standardized metric of preoperative function and posttreatment outcome. Neurosurg Focus. 2010;28(4) doi: 10.3171/2010.2.FOCUS09304.
    1. Sterkenburg AS, Hoffmann A, Gebhardt U, Warmuth-Metz M, Daubenbuchel AM, Muller HL. Survival, hypothalamic obesity, and neuropsychological/psychosocial status after childhood-onset craniopharyngioma: newly reported long-term outcomes. Neuro Oncol. 2015
    1. Foreman NK, Faestel PM, Pearson J, Disabato J, Poole M, Wilkening G, Arenson EB, Greffe B, Thorne R. Health status in 52 long-term survivors of pediatric brain tumors. J Neurooncol. 1999;41(1):47–53. doi: 10.1023/A:1006145724500.
    1. Muller HL. Craniopharyngioma. Handb Clin Neurol. 2014;124:235–253. doi: 10.1016/B978-0-444-59602-4.00016-2.
    1. Brastianos PK, Taylor-Weiner A, Manley PE, Jones RT, Dias-Santagata D, Thorner AR, Lawrence MS, Rodriguez FJ, Bernardo LA, Schubert L, Sunkavalli A, Shillingford N, Calicchio ML, Lidov HG, Taha H, Martinez-Lage M, Santi M, Storm PB, Lee JY, Palmer JN, Adappa ND, Scott RM, Dunn IF, Laws ER, Jr, Stewart C, Ligon KL, Hoang MP, Van Hummelen P, Hahn WC, Louis DN, et al. Exome sequencing identifies BRAF mutations in papillary craniopharyngiomas. Nat Genet. 2014;46(2):161–165. doi: 10.1038/ng.2868.
    1. Sekine S, Shibata T, Kokubu A, Morishita Y, Noguchi M, Nakanishi Y, Sakamoto M, Hirohashi S. Craniopharyngiomas of adamantinomatous type harbor beta-catenin gene mutations. Am J Pathol. 2002;161(6):1997–2001. doi: 10.1016/S0002-9440(10)64477-X.
    1. Kato K, Nakatani Y, Kanno H, Inayama Y, Ijiri R, Nagahara N, Miyake T, Tanaka M, Ito Y, Aida N, Tachibana K, Sekido K, Tanaka Y. Possible linkage between specific histological structures and aberrant reactivation of the Wnt pathway in adamantinomatous craniopharyngioma. J Pathol. 2004;203(3):814–821. doi: 10.1002/path.1562.
    1. Buslei R, Nolde M, Hofmann B, Meissner S, Eyupoglu IY, Siebzehnrubl F, Hahnen E, Kreutzer J, Fahlbusch R. Common mutations of beta-catenin in adamantinomatous craniopharyngiomas but not in other tumours originating from the sellar region. Acta Neuropathol. 2005;109(6):589–597. doi: 10.1007/s00401-005-1004-x.
    1. Oikonomou E, Barreto DC, Soares B, De Marco L, Buchfelder M, Adams EF. Beta-catenin mutations in craniopharyngiomas and pituitary adenomas. J Neurooncol. 2005;73(3):205–209. doi: 10.1007/s11060-004-5232-z.
    1. Larkin SJ, Preda V, Karavitaki N, Grossman A, Ansorge O. BRAF V600E mutations are characteristic for papillary craniopharyngioma and may coexist with CTNNB1-mutated adamantinomatous craniopharyngioma. Acta Neuropathol. 2014;127(6):927–929. doi: 10.1007/s00401-014-1270-6.
    1. Holsken A, Kreutzer J, Hofmann BM, Hans V, Oppel F, Buchfelder M, Fahlbusch R, Blumcke I, Buslei R. Target gene activation of the Wnt signaling pathway in nuclear beta-catenin accumulating cells of adamantinomatous craniopharyngiomas. Brain Pathol. 2009;19(3):357–364. doi: 10.1111/j.1750-3639.2008.00180.x.
    1. Martinez-Barbera JP (2015) Molecular and cellular pathogenesis of Adamantinomatous Craniopharyngioma. Neuropathol Appl Neurobiol. doi:10.1111/nan.12226.
    1. Holsken A, Gebhardt M, Buchfelder M, Fahlbusch R, Blumcke I, Buslei R. EGFR signaling regulates tumor cell migration in craniopharyngiomas. Clin Cancer Res. 2011;17(13):4367–4377. doi: 10.1158/1078-0432.CCR-10-2811.
    1. Stache C, Holsken A, Schlaffer SM, Hess A, Metzler M, Frey B, Fahlbusch R, Flitsch J, Buchfelder M, Buslei R. Insights into the infiltrative behavior of adamantinomatous craniopharyngioma in a new xenotransplant mouse model. Brain Pathol. 2015;25(1):1–10. doi: 10.1111/bpa.12148.
    1. Andoniadou CL, Gaston-Massuet C, Reddy R, Schneider RP, Blasco MA, Le Tissier P, Jacques TS, Pevny LH, Dattani MT, Martinez-Barbera JP. Identification of novel pathways involved in the pathogenesis of human adamantinomatous craniopharyngioma. Acta Neuropathol. 2012;124(2):259–271. doi: 10.1007/s00401-012-0957-9.
    1. Gaston-Massuet C, Andoniadou CL, Signore M, Jayakody SA, Charolidi N, Kyeyune R, Vernay B, Jacques TS, Taketo MM, Le Tissier P, Dattani MT, Martinez-Barbera JP. Increased Wingless (Wnt) signaling in pituitary progenitor/stem cells gives rise to pituitary tumors in mice and humans. Proc Natl Acad Sci U S A. 2011;108(28):11482–11487. doi: 10.1073/pnas.1101553108.
    1. Voronkov A, Krauss S. Wnt/beta-catenin signaling and small molecule inhibitors. Curr Pharm Des. 2013;19(4):634–664. doi: 10.2174/138161213804581837.
    1. Geeleher P, Cox NJ, Huang RS. Clinical drug response can be predicted using baseline gene expression levels and in vitro drug sensitivity in cell lines. Genome Biol. 2014;15(3):R47. doi: 10.1186/gb-2014-15-3-r47.
    1. Hoffman LM, Donson AM, Nakachi I, Griesinger AM, Birks DK, Amani V, Hemenway MS, Liu AK, Wang M, Hankinson TC, Handler MH, Foreman NK. Molecular sub-group-specific immunophenotypic changes are associated with outcome in recurrent posterior fossa ependymoma. Acta Neuropathol. 2014;127(5):731–745. doi: 10.1007/s00401-013-1212-8.
    1. Dias-Santagata D, Akhavanfard S, David SS, Vernovsky K, Kuhlmann G, Boisvert SL, Stubbs H, McDermott U, Settleman J, Kwak EL, Clark JW, Isakoff SJ, Sequist LV, Engelman JA, Lynch TJ, Haber DA, Louis DN, Ellisen LW, Borger DR, Iafrate AJ. Rapid targeted mutational analysis of human tumours: a clinical platform to guide personalized cancer medicine. EMBO Mol Med. 2010;2(5):146–158. doi: 10.1002/emmm.201000070.
    1. Wu Z, Irizarry RA, Gentleman R, Martinez-Murillo F, Spencer F. A model-based background adjustment for oligonucleotide expression arrays. J Am Stat Assoc. 2004;99:909–917. doi: 10.1198/016214504000000683.
    1. Michaelis KA, Knox AJ, Xu M, Kiseljak-Vassiliades K, Edwards MG, Geraci M, Kleinschmidt-DeMasters BK, Lillehei KO, Wierman ME. Identification of growth arrest and DNA-damage-inducible gene beta (GADD45beta) as a novel tumor suppressor in pituitary gonadotrope tumors. Endocrinology. 2011;152(10):3603–3613. doi: 10.1210/en.2011-0109.
    1. Edgar R, Domrachev M, Lash AE. Gene Expression Omnibus: NCBI gene expression and hybridization array data repository. Nucleic Acids Res. 2002;30(1):207–210. doi: 10.1093/nar/30.1.207.
    1. Smyth GK. Linear models and empirical bayes methods for assessing differential expression in microarray experiments. Stat Appl Genet Mol Biol. 2004;3:Article3.
    1. Dennis G, Jr, Sherman BT, Hosack DA, Yang J, Gao W, Lane HC, Lempicki RA. DAVID: Database for Annotation, Visualization, and Integrated Discovery. Genome Biol. 2003;4(5):P3. doi: 10.1186/gb-2003-4-5-p3.
    1. Thomas PD, Kejariwal A, Campbell MJ, Mi H, Diemer K, Guo N, Ladunga I, Ulitsky-Lazareva B, Muruganujan A, Rabkin S, Vandergriff JA, Doremieux O. PANTHER: a browsable database of gene products organized by biological function, using curated protein family and subfamily classification. Nucleic Acids Res. 2003;31(1):334–341. doi: 10.1093/nar/gkg115.
    1. da Huang W, Sherman BT, Lempicki RA. Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat Protoc. 2009;4(1):44–57. doi: 10.1038/nprot.2008.211.
    1. Beaty NB, Ahn E. Images in clinical medicine. Adamantinomatous craniopharyngioma containing teeth. N Engl J Med. 2014;370(9):860. doi: 10.1056/NEJMicm1308260.
    1. Muller C, Adroos N, Lockhat Z, Slavik T, Kruger H. Toothy craniopharyngioma: a literature review and case report of craniopharyngioma with extensive odontogenic differentiation and tooth formation. Childs Nerv Syst. 2011;27(2):323–326. doi: 10.1007/s00381-010-1296-6.
    1. Cao J, Lin JP, Yang LX, Chen K, Huang ZS. Expression of aberrant beta-catenin and impaired p63 in craniopharyngiomas. Br J Neurosurg. 2010;24(3):249–256. doi: 10.3109/02688690903576237.
    1. Gomes DC, Jamra SA, Leal LF, Colli LM, Campanini ML, Oliveira RS, Martinelli CE, Jr, Elias PC, Moreira AC, Machado HR, Saggioro F, Neder L, Castro M, Antonini SR. Sonic Hedgehog pathway is upregulated in adamantinomatous craniopharyngiomas. Eur J Endocrinol. 2015;172(5):603–608. doi: 10.1530/EJE-14-0934.
    1. Willmarth NE, Ethier SP. Autocrine and juxtacrine effects of amphiregulin on the proliferative, invasive, and migratory properties of normal and neoplastic human mammary epithelial cells. J Biol Chem. 2006;281(49):37728–37737. doi: 10.1074/jbc.M606532200.
    1. Adamson TE, Wiestler OD, Kleihues P, Yasargil MG. Correlation of clinical and pathological features in surgically treated craniopharyngiomas. J Neurosurg. 1990;73(1):12–17. doi: 10.3171/jns.1990.73.1.0012.
    1. Lubansu A, Ruchoux MM, Brotchi J, Salmon I, Kiss R, Lefranc F. Cathepsin B, D and K expression in adamantinomatous craniopharyngiomas relates to their levels of differentiation as determined by the patterns of retinoic acid receptor expression. Histopathology. 2003;43(6):563–572. doi: 10.1111/j.1365-2559.2003.01751.x.
    1. Xia Z, Liu W, Li S, Jia G, Zhang Y, Li C, Ma Z, Tian J, Gong J. Expression of matrix metalloproteinase-9, type IV collagen and vascular endothelial growth factor in adamantinous craniopharyngioma. Neurochem Res. 2011;36(12):2346–2351. doi: 10.1007/s11064-011-0560-9.
    1. Martinez-Barbera JP, Buslei R. Adamantinomatous craniopharyngioma: pathology, molecular genetics and mouse models. J Pediatr Endocrinol Metab. 2015;28(1–2):7–17.
    1. Cushing H. Intracranial tumours. Baltimore, Md: C. C. Thomas, Springfield, Ill; 1932.
    1. Bernstein ML, Buchino JJ. The histologic similarity between craniopharyngioma and odontogenic lesions: a reappraisal. Oral Surg Oral Med Oral Pathol. 1983;56(5):502–511. doi: 10.1016/0030-4220(83)90098-1.
    1. Steinbok P, Hukin J. Intracystic treatments for craniopharyngioma. Neurosurg Focus. 2010;28(4) doi: 10.3171/2010.1.FOCUS09315.

Source: PubMed

3
Předplatit