The association of ARRB1 polymorphisms with response to antidepressant treatment in depressed patients

Kenneth Chappell, Abd El Kader Ait Tayeb, Romain Colle, Jérôme Bouligand, Khalil El-Asmar, Florence Gressier, Séverine Trabado, Denis Joseph David, Bruno Feve, Laurent Becquemont, Emmanuelle Corruble, Céline Verstuyft, Kenneth Chappell, Abd El Kader Ait Tayeb, Romain Colle, Jérôme Bouligand, Khalil El-Asmar, Florence Gressier, Séverine Trabado, Denis Joseph David, Bruno Feve, Laurent Becquemont, Emmanuelle Corruble, Céline Verstuyft

Abstract

Introduction: β-arrestin 1, a protein encoded by ARRB1 involved in receptor signaling, is a potential biomarker for the response to antidepressant drug (ATD) treatment in depression. We examined ARRB1 genetic variants for their association with response following ATD treatment in METADAP, a cohort of 6-month ATD-treated depressed patients. Methods: Patients (n = 388) were assessed at baseline (M0) and after 1 (M1), 3 (M3), and 6 months (M6) of treatment for Hamilton Depression Rating Scale (HDRS) changes, response, and remission. Whole-gene ARRB1 variants identified from high-throughput sequencing were separated by a minor allele frequency (MAF)≥5%. Frequent variants (i.e., MAF≥5%) annotated by RegulomeDB as likely affecting transcription factor binding were analyzed using mixed-effects models. Rare variants (i.e., MAF<5%) were analyzed using a variant set analysis. Results: The variant set analysis of rare variants was significant in explaining HDRS score changes (T = 878.9; p = 0.0033) and remission (T = -1974.1; p = 0.034). Rare variant counts were significant in explaining response (p = 0.016), remission (p = 0.022), and HDRS scores at M1 (p = 0.0021) and M3 (p=<0.001). rs553664 and rs536852 were significantly associated with the HDRS score (rs553664: p = 0.0055 | rs536852: p = 0.046) and remission (rs553664: p = 0.026 | rs536852: p = 0.012) through their interactions with time. At M6, significantly higher HDRS scores were observed in rs553664 AA homozygotes (13.98 ± 1.06) compared to AG heterozygotes (10.59 ± 0.86; p = 0.014) and in rs536852 GG homozygotes (14.88 ± 1.10) compared to AG heterozygotes (11.26 ± 0.95; p = 0.0061). Significantly lower remitter rates were observed in rs536852 GG homozygotes (8%, n = 56) compared to AG heterozygotes (42%, n = 105) at M6 (p = 0.0018). Conclusion: Our results suggest ARRB1 variants may influence the response to ATD treatment in depressed patients. Further analysis of functional ARRB1 variants and rare variant burden in other populations would help corroborate our exploratory analysis. β-arrestin 1 and genetic variants of ARRB1 may be useful clinical biomarkers for clinical improvement following ATD treatment in depressed individuals. Clinical Trial Registration: clinicaltrials.gov; identifier NCT00526383.

Keywords: ARRB1; high-throughput sequencing; major depressive disorder; pharmacogenetics; β Arrestin.

Conflict of interest statement

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Copyright © 2022 Chappell, Ait Tayeb, Colle, Bouligand, El-Asmar, Gressier, Trabado, David, Feve, Becquemont, Corruble and Verstuyft.

Figures

FIGURE 1
FIGURE 1
Timeline of β-arrestin 1 findings in psychopharmacology. Findings pertaining to β-arrestin 1 and ARRB1 across time. Colored boxes denote broad β-arrestin 1 findings (grey), β-arrestin 1 protein findings in the context of depression and/or antidepressants (blue), or genetic associations in the context of neuropsychiatric disorders (orange). Distance from timeline denotes whether studies were conducted entirely in human participants (furthest), partly (between), or in other models (closest).
FIGURE 2
FIGURE 2
ARRB1 transcript isoforms. Graphical representations of the two ARRB1 transcript isoforms along chromosome 11 (genomic position, x-axis). Exons and 5′- and 3′-untranslated regions are represented by vertical lines and arrows. Intronic sequences are represented by the intervening horizontal lines. Data were obtained from NCBI Genome Data Viewer, assembly GRCh37. p13 (accessed 15 August 2022).
FIGURE 3
FIGURE 3
ARRB1 genetic variant selection pipeline. Flowchart for ARRB1 genetic variant selection. Gray boxes correspond to analyzed variants. Indel, insertion/deletion; MAF, minor allele frequency; SNP, single nucleotide polymorphism.
FIGURE 4
FIGURE 4
Association of MAF (A) the probability of response, (B) the probability of remission, (C) the HDRS score at M1, and (D) the HDRS score at M3 (y-axis) according to the MAF<5% variant count (x-axis). HDRS, 17-item Hamilton Depression Rating Scale; M1, 1 month after beginning antidepressant treatment; M3, 3 months after beginning antidepressant treatment; MAF, minor allele frequency.
FIGURE 5
FIGURE 5
Average HDRS scores according to rs553664 and rs536852 genotypes over the course of antidepressant treatment. Average HDRS scores (y-axis) according to rs553664 (A) and rs536852 (B) genotypes (see legend) are shown across time (x-axis) after controlling for age, sex, antidepressant class, ethnicity, and significantly different demographic factors (see Supplementary Table S3). Error bars correspond to the standard error estimates from mixed-effects models. *: p < 0.0056 (0.05/9) **: p < 0.0011 (0.01/9). HDRS, 17-item Hamilton Depression Rating Scale; M0, baseline, prior to beginning antidepressant treatment; M1, 1 month after beginning antidepressant treatment; M3, 3 months after beginning antidepressant treatment; M6, 6 months after beginning antidepressant treatment.
FIGURE 6
FIGURE 6
Remission rates according to rs536852 genotypes over the course of antidepressant treatment. The probability of remission (y-axis) according to rs536852 genotypes (see legend) are shown across time (x-axis) after controlling for age, sex, antidepressant class, ethnicity, and significantly different demographic factors (see Supplementary Table S2). Error bars correspond to the standard error estimates from mixed-effects models. **: p < 0.0011 (0.01/9). M1, 1 month after beginning antidepressant treatment; M3, 3 months after beginning antidepressant treatment; M6, 6 months after beginning antidepressant treatment.

References

    1. Anderson C. A., Pettersson F. H., Clarke G. M., Cardon L. R., Morris A. P., Zondervan K. T. (2010). Data quality control in genetic case-control association studies. Nat. Protoc. 5 (9), 1564–1573. 10.1038/nprot.2010.116
    1. Avissar S., Matuzany-Ruban A., Tzukert K., Schreiber G. (2004). [[bgr]]-Arrestin-1 levels: Reduced in leukocytes of patients with depression and elevated by antidepressants in rat brain. Am. J. Psychiatry 161 (11), 2066–2072. 10.1176/appi.ajp.161.11.2066
    1. Barrett J. C., Fry B., Maller J., Daly M. J. (2005). Haploview: Analysis and visualization of LD and haplotype maps. Bioinformatics 21 (2), 263–265. 10.1093/bioinformatics/bth457
    1. Bates D., Mächler M., Bolker B., Walker S. (2015). Fitting linear mixed-effects models using lme4. J. Stat. Softw. 67 (11), 1–48. 10.18637/jss.v067.i01
    1. Bender R., Lange S. (2001). Adjusting for multiple testing—When and how? J. Clin. Epidemiol. 54 (4), 343–349. 10.1016/S0895-4356(00)00314-0
    1. Bond R. A., Lucero Garcia-Rojas E. Y., Hegde A., Walker J. K. L. (2019). Therapeutic potential of targeting ß-arrestin. Front. Pharmacol. 10, 124. 10.3389/fphar.2019.00124
    1. Bouali N., Francou B., Bouligand J., Imanci D., Dimassi S., Tosca L., et al. (2017). New MCM8 mutation associated with premature ovarian insufficiency and chromosomal instability in a highly consanguineous Tunisian family. Fertil. Steril. 108 (4), 694–702. 10.1016/j.fertnstert.2017.07.015
    1. Boyle A. P., Hong E. L., Hariharan M., Cheng Y., Schaub M. A., Kasowski M., et al. (2012). Annotation of functional variation in personal genomes using RegulomeDB. Genome Res. 22 (9), 1790–1797. 10.1101/gr.137323.112
    1. Calabrese G., Sallese M., Stornaiuolo A., Palka G., De BlAsi A. (1994). Assignment of the β-arrestin 1 gene (ARRB1) to human chromosome 11q13. Genomics 24 (1), 169–171. 10.1006/geno.1994.1594
    1. Chang H. S., Won E. S., Lee H-Y., Ham B. J., Kim Y. G., Lee M. S. (2015). Association of ARRB1 polymorphisms with the risk of major depressive disorder and with treatment response to mirtazapine. J. Psychopharmacol. 29 (5), 615–622. 10.1177/0269881114554273
    1. Chappell K., Francou B., Habib C., Huby T., Leoni M., Cottin A., et al. (2021). Galaxy is a suitable bioinformatics platform for the molecular diagnosis of human genetic disorders using high-throughput sequencing data analysis. Five years of experience in a clinical laboratory. Clin. Chem. 2021, 313–321. 10.1093/clinchem/hvab220
    1. Chen H., Huffman J. E., Brody J. A., Wang C., Lee S., Li Z., et al. (2019). Efficient variant set mixed model association tests for continuous and binary traits in large-scale whole-genome sequencing studies. Am. J. Hum. Genet. 104 (2), 260–274. 10.1016/j.ajhg.2018.12.012
    1. Chottekalapanda R. U., Kalik S., Gresack J., Ayala A., Gao M., Wang W., et al. (2020). AP-1 controls the p11-dependent antidepressant response. Mol. Psychiatry 25 (7), 1364–1381. 10.1038/s41380-020-0767-8
    1. Colle R., Gressier F., Verstuyft C., Deflesselle E., Lepine J. P., Ferreri F., et al. (2015). Brain-derived neurotrophic factor Val66Met polymorphism and 6-month antidepressant remission in depressed Caucasian patients. J. Affect. Disord. 175, 233–240. 10.1016/j.jad.2015.01.013
    1. Corruble E., El Asmar K., Trabado S., Verstuyft C., Falissard B., Colle R., et al. (2015). Treating major depressive episodes with antidepressants can induce or worsen metabolic syndrome: Results of the METADAP cohort. World Psychiatry 14 (3), 366–367. 10.1002/wps.20260
    1. Cottingham C., Chen Y., Jiao K., Wang Q. (2011). The antidepressant desipramine is an arrestin-biased ligand at the α2a-adrenergic receptor driving receptor down-regulation in vitro and in vivo . J. Biol. Chem. 286 (41), 36063–36075. 10.1074/jbc.M111.261578
    1. Garces de los Fayos Alonso I., Liang H-C., Turner S. D., Lagger S., Merkel O., Kenner L. (2018). The role of activator protein-1 (AP-1) family members in CD30-positive lymphomas. Cancers 10 (4), 93. 10.3390/cancers10040093
    1. Golan M., Schreiber G., Avissar S. (2013). Antidepressant-induced differential ubiquitination of β-arrestins 1 and 2 in mononuclear leucocytes of patients with depression. Int. J. Neuropsychopharmacol. 16 (8), 1745–1754. 10.1017/S1461145713000291
    1. Golan M., Schreiber G., Avissar S. (2009). Antidepressants, β-arrestins and GRKs: From regulation of signal desensitization to intracellular multifunctional adaptor functions. Curr. Pharm. Des. 15 (14), 1699–1708. 10.2174/138161209788168038
    1. Hamilton M. (1960). A rating scale for depression. J. Neurol. Neurosurg. Psychiatry 23 (1), 56–62. 10.1136/jnnp.23.1.56
    1. Herdegen T., Waetzig V. (2001). AP-1 proteins in the adult brain: Facts and fiction about effectors of neuroprotection and neurodegeneration. Oncogene 20 (19), 2424–2437. 10.1038/sj.onc.1204387
    1. Hong M. J., Yoo S. S., Choi J. E., Kang H. G., Do S. K., Lee J. H., et al. (2018). Functional intronic variant of SLC5A10 affects DRG2 expression and survival outcomes of early-stage non-small-cell lung cancer. Cancer Sci. 109 (12), 3902–3909. 10.1111/cas.13814
    1. Huo Y., Li S., Liu J., Li X., Luo X. J. (2019). Functional genomics reveal gene regulatory mechanisms underlying schizophrenia risk. Nat. Commun. 10, 670. 10.1038/s41467-019-08666-4
    1. Klein K., Tremmel R., Winter S., Fehr S., Battke F., Scheurenbrand T., et al. (2019). A new panel-based next-generation sequencing method for ADME genes reveals novel associations of common and rare variants with expression in a human liver cohort. Front. Genet. 10, 7. 10.3389/fgene.2019.00007
    1. Knaus B. J., Grünwald N. J. (2017). vcfr: a package to manipulate and visualize variant call format data in R. Mol. Ecol. Resour. 17 (1), 44–53. 10.1111/1755-0998.12549
    1. Kovacs J. J., Hara M. R., Davenport C. L., Kim J., Lefkowitz R. J. (2009). Arrestin development: Emerging roles for β-arrestins in developmental signaling pathways. Dev. Cell. 17 (4), 443–458. 10.1016/j.devcel.2009.09.011
    1. Lee S., Wu M. C., Lin X. (2012). Optimal tests for rare variant effects in sequencing association studies. Biostat. Oxf. Engl. 13 (4), 762–775. 10.1093/biostatistics/kxs014
    1. Lee S. Y., Hong M. J., Jeon H-S., Choi Y. Y., Choi J. E., Kang H. G., et al. (2015). Functional intronic ERCC1 polymorphism from regulomeDB can predict survival in lung cancer after surgery. Oncotarget 6 (27), 24522–24532. 10.18632/oncotarget.4083
    1. Lefkowitz R. J., Shenoy S. K. (2005). Transduction of receptor signals by beta-arrestins. Science 308 (5721), 512–517. 10.1126/science.1109237
    1. Lenth R. (2022). emmeans: Estimated marginal means, aka least-squares means. Available at: .
    1. Lesch K. P., Heils A. (2000). Serotonergic gene transcriptional control regions: Targets for antidepressant drug development? Int. J. Neuropsychopharmacol. 3 (1), 67–79. 10.1017/S1461145700001747
    1. Li S., Li Y., Li X., Liu J., Huo Y., Wang J., et al. (2020). Regulatory mechanisms of major depressive disorder risk variants. Mol. Psychiatry 25 (9), 1926–1945. 10.1038/s41380-020-0715-7
    1. Lipina T. V., Fletcher P. J., Lee F. H., Wong A. H. C., Roder J. C. (2013). Disrupted-In-Schizophrenia-1 Gln31Leu polymorphism results in social anhedonia associated with monoaminergic imbalance and reduction of CREB and β-arrestin-1, 2 in the nucleus accumbens in a mouse model of depression. Neuropsychopharmacology 38 (3), 423–436. 10.1038/npp.2012.197
    1. Machiela M. J., Chanock S. J. (2015). LDlink: A web-based application for exploring population-specific haplotype structure and linking correlated alleles of possible functional variants. Bioinformatics 31 (21), 3555–3557. 10.1093/bioinformatics/btv402
    1. Mallinckrodt C. H., Sanger T. M., Dubé S., DeBrota D. J., Molenberghs G., Carroll R. J., et al. (2003). Assessing and interpreting treatment effects in longitudinal clinical trials with missing data. Biol. Psychiatry 53 (8), 754–760. 10.1016/S0006-3223(02)01867-X
    1. Matuzany-Ruban A., Avissar S., Schreiber G. (2005). Dynamics of beta-arrestin1 protein and mRNA levels elevation by antidepressants in mononuclear leukocytes of patients with depression. J. Affect. Disord. 88 (3), 307–312. 10.1016/j.jad.2005.08.007
    1. Mendez-David I., El-Ali Z., Hen R., Falissard B., Corruble E., Gardier A. M., et al. (2013). A method for biomarker measurements in peripheral blood mononuclear cells isolated from anxious and depressed mice: β-Arrestin 1 protein levels in depression and treatment. Front. Pharmacol. 4, 124. 10.3389/fphar.2013.00124
    1. Momozawa Y., Akiyama M., Kamatani Y., Arakawa S., Yasuda M., Yoshida S., et al. (2016). Low-frequency coding variants in CETP and CFB are associated with susceptibility of exudative age-related macular degeneration in the Japanese population. Hum. Mol. Genet. 25 (22), 5027–5034. 10.1093/hmg/ddw335
    1. Morales J., Welter D., Bowler E. H., Cerezo M., Harris L. W., McMahon A. C., et al. (2018). A standardized framework for representation of ancestry data in genomics studies, with application to the NHGRI-EBI GWAS Catalog. Genome Biol. 19 (1), 21. 10.1186/s13059-018-1396-2
    1. Muthén B., Asparouhov T., Hunter A., Leuchter A. F. (2011). Growth modeling with non-ignorable dropout: Alternative analyses of the STAR*D antidepressant trial. Psychol. Methods 16 (1), 17–33. 10.1037/a0022634
    1. O’Leary N. A., Wright M. W., Brister J. R., Ciufo S., Haddad D., McVeigh R., et al. (2016). Reference sequence (RefSeq) database at NCBI: Current status, taxonomic expansion, and functional annotation. Nucleic Acids Res. 44, D733–D745. 10.1093/nar/gkv1189
    1. Parruti G., Peracchia F., Sallese M., Ambrosini G., MasiniM., Rotilio D., et al. (1993). Molecular analysis of human beta-arrestin-1: Cloning, tissue distribution, and regulation of expression. Identification of two isoforms generated by alternative splicing. J. Biol. Chem. 268 (13), 9753–9761. 10.1016/S0021-9258(18)98412-7
    1. Petit A. C., El Asmar K., David D. J., Gardier A. M., Becquemont L., Feve B., et al. (2018). The association of β-arrestin2 polymorphisms with response to antidepressant treatment in depressed patients. Prog. Neuropsychopharmacol. Biol. Psychiatry 81, 74–79. 10.1016/j.pnpbp.2017.10.006
    1. Piechota M., Golda S., Ficek J., Jantas D., Przewlocki R., Korostynski M. (2015). Regulation of alternative gene transcription in the striatum in response to antidepressant drugs. Neuropharmacology 99, 328–336. 10.1016/j.neuropharm.2015.08.006
    1. Pittenger C., Duman R. S. (2008). Stress, depression, and neuroplasticity: A convergence of mechanisms. Neuropsychopharmacology 33 (1), 88–109. 10.1038/sj.npp.1301574
    1. R Core Team (2020). R: A language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing. Available at: .
    1. Rush A. J., Kraemer H. C., Sackeim H. A., Fava M., Trivedi M. H., Frank E., et al. (2006). Report by the ACNP Task Force on response and remission in major depressive disorder. Neuropsychopharmacology 31 (9), 91841–91853. 10.1038/sj.npp.1301131
    1. Sasayama D., Hiraishi A., Tatsumi M., Kamijima K., Ikeda M., Umene-Nakano W., et al. (2013). Possible association of CUX1 gene polymorphisms with antidepressant response in major depressive disorder. Pharmacogenomics J. 13 (4), 354–358. 10.1038/tpj.2012.18
    1. Shukla A. K., Xiao K., Lefkowitz R. J. (2011). Emerging paradigms of β-arrestin-dependent seven transmembrane receptor signaling. Trends biochem. Sci. 36 (9), 457–469. 10.1016/j.tibs.2011.06.003
    1. Shyn S., Shi J., Kraft J., Potash J. B., Knowles J. A., Weissman M. M., et al. (2011).Novel loci for major depression identified by genome-wide association study of Sequenced Treatment Alternatives to Relieve Depression and meta-analysis of three studies./article-title. Mol. Psychiatry 16 (2), 202–215. 10.1038/mp.2009.125
    1. Sun D., Ma J. Z., Payne T. J., Li M. D. (2008). Beta-arrestins 1 and 2 are associated with nicotine dependence in European American smokers. Mol. Psychiatry 13 (4), 398–406. 10.1038/sj.mp.4002036
    1. The ENCODE Project Consortium (2012). An integrated Encyclopedia of DNA elements in the human genome. Nature 489 (7414), 57–74. 10.1038/nature11247
    1. Trivedi M. H., Hollander E., Nutt D., Blier P. (2008). Clinical evidence and potential neurobiological underpinnings of unresolved symptoms of depression. J. Clin. Psychiatry 69 (2), 246–258. 10.4088/jcp.v69n0211
    1. Trivedi M. H., Rush A. J., Wisniewski S. R., Nierenberg A. A., Warden D., Ritz L., et al. (2006). Evaluation of outcomes with citalopram for depression using measurement-based care in STAR*D: Implications for clinical practice. Am. J. Psychiatry 163 (1), 28–40. 10.1176/appi.ajp.163.1.28
    1. Violin J. D., Lefkowitz R. J. (2007). Beta-arrestin-biased ligands at seven-transmembrane receptors. Trends Pharmacol. Sci. 28 (8), 416–422. 10.1016/j.tips.2007.06.006
    1. Ward L. D., Kellis M. (2016). HaploReg v4: Systematic mining of putative causal variants, cell types, regulators and target genes for human complex traits and disease. Nucleic Acids Res. 44, D877–D881. 10.1093/nar/gkv1340
    1. World Health Organization (2017). Depression and other common mental disorders: Global health estimates. Geneva: World Health Organization.
    1. Zheng X., Levine D., Shen J., Gogarten S. M., Laurie C., Weir B. S. (2012). A high-performance computing toolset for relatedness and principal component analysis of SNP data. Bioinformatics 28 (24), 3326–3328. 10.1093/bioinformatics/bts606

Source: PubMed

3
Předplatit