Metabolic fate of fructose ingested with and without glucose in a mixed meal

Fanny Theytaz, Sara de Giorgi, Leanne Hodson, Nathalie Stefanoni, Valentine Rey, Philippe Schneiter, Vittorio Giusti, Luc Tappy, Fanny Theytaz, Sara de Giorgi, Leanne Hodson, Nathalie Stefanoni, Valentine Rey, Philippe Schneiter, Vittorio Giusti, Luc Tappy

Abstract

Ingestion of pure fructose stimulates de novo lipogenesis and gluconeogenesis. This may however not be relevant to typical nutritional situations, where fructose is invariably ingested with glucose. We therefore assessed the metabolic fate of fructose incorporated in a mixed meal without or with glucose in eight healthy volunteers. Each participant was studied over six hours after the ingestion of liquid meals containing either 13C-labelled fructose, unlabeled glucose, lipids and protein (Fr + G) or 13C-labelled fructose, lipids and protein, but without glucose (Fr), or protein and lipids alone (ProLip). After Fr + G, plasma 13C-glucose production accounted for 19.0% ± 1.5% and 13CO2 production for 32.2% ± 1.3% of 13C-fructose carbons. After Fr, 13C-glucose production (26.5% ± 1.4%) and 13CO2 production (36.6% ± 1.9%) were higher (p < 0.05) than with Fr + G. 13C-lactate concentration and very low density lipoprotein VLDL 13C-palmitate concentrations increased to the same extent with Fr + G and Fr, while chylomicron 13C-palmitate tended to increase more with Fr + G. These data indicate that gluconeogenesis, lactic acid production and both intestinal and hepatic de novo lipogenesis contributed to the disposal of fructose carbons ingested together with a mixed meal. Co-ingestion of glucose decreased fructose oxidation and gluconeogenesis and tended to increase 13C-pamitate concentration in gut-derived chylomicrons, but not in hepatic-borne VLDL-triacylglycerol (TG). This trial was approved by clinicaltrial. gov. Identifier is NCT01792089.

Figures

Figure 1
Figure 1
Graphical representation of metabolic tests. ProLip, protein and lipid; Fr, fructose; G, glucose.
Figure 2
Figure 2
Plasma glucose, insulin and glucagon responses to meal ingestion. The time course for plasma glucose (A), plasma insulin (C), plasma glucagon concentrations and their corresponding incremental area under the curve (iAUC) values (B, D and F) (mean ± SEM, n = 8). Test meals were given at t = 120 min. iAUC were compared by t-tests with Bonferroni’s correction. Glucagon was log-transformed before statistical analysis. ProLip, lipid and protein; Fr, lipid, protein and fructose; Fr + G, lipid, protein, fructose and glucose. * p < 0.05 vs. ProLip; $p < 0.05 vs. Fr.
Figure 3
Figure 3
Plasma fructose, lactate and 13C-lactate responses to test meal ingestion. Time course for plasma fructose (A), lactate (C) and 13C-lactate concentrations (E) and their corresponding iAUC (B, D and F) (n = 8). * p < 0.05 vs. ProLip; $p < 0.05 vs. Fr.
Figure 4
Figure 4
Plasma 6,6-2H2-glucose (A), plasma 13C-glucose (B) and breath 13CO2 (C) isotopic enrichments. (Mean ± SEM, n = 8). Test meals were given at t = 120 min. MPE: molar percent excess; APE: atom percent excess.
Figure 5
Figure 5
Plasma NEFA (A), total TG (C), VLDL-TG (E) and chylomicron-TG (G) responses to test meal ingestion and their corresponding iAUC (B, D, F and H) (n = 8). * p < 0.05 vs. ProLip, $p < 0.05 vs. Fr.
Figure 6
Figure 6
Plasma ApoB48 (A), ApoBtot (B), 13C-palmitate-VLDL (E), 13C-palmitate-chylomicrons (G) (n = 8). Additionally, their corresponding iAUC (B, D, F and H) (n = 8). * p < 0.05 vs. ProLip, $p < 0.05 vs. Fr.

References

    1. Elliott S.S., Keim N.L., Stern J.S., Teff K., Havel P.J. Fructose, weight gain, and the insulin resistance syndrome. Am. J. Clin. Nutr. 2002;76:911–922.
    1. Vos M.B., Kimmons J.E., Gillespie C., Welsh J., Blanck H.M. Dietary fructose consumption among US children and adults: The Third National Health and Nutrition Examination Survey. Medscape J. Med. 2008;10:160.
    1. Bray G.A. Soft drink consumption and obesity: It is all about fructose. Curr. Opin. Lipidol. 2010;21:51–57. doi: 10.1097/MOL.0b013e3283346ca2.
    1. Bizeau M.E., Pagliassotti M.J. Hepatic adaptations to sucrose and fructose. Metabolism. 2005;54:1189–1201. doi: 10.1016/j.metabol.2005.04.004.
    1. Tappy L., Lê K.A. Metabolic effects of fructose and the worldwide increase in obesity. Physiol. Rev. 2010;90:23–46. doi: 10.1152/physrev.00019.2009.
    1. Delarue J., Normand S., Pachiaudi C., Beylot M., Lamisse F., Riou J.P. The contribution of naturally labelled 13C fructose to glucose appearance in humans. Diabetologia. 1993;36:338–345. doi: 10.1007/BF00400238.
    1. Tounian P., Schneiter P., Henry S., Jéquier E., Tappy L. Effects of infused fructose on endogenous glucose production, gluconeogenesis, and glycogen metabolism. Am. J. Physiol. 1994;267:E710–E717.
    1. Tran C., Jacot-Descombes D., Lecoultre V., Fielding B.A., Carrel G., Lê K.A., Schneiter P., Bortolotti M., Frayn K.N., Tappy L. Sex differences in lipid and glucose kinetics after ingestion of an acute oral fructose load. Br. J. Nutr. 2010;104:1139–1147. doi: 10.1017/S000711451000190X.
    1. Nilsson L.H., Hultman E. Liver and muscle glycogen in man after glucose and fructose infusion. Scand. J. Clin. Lab. Investig. 1974;33:5–10. doi: 10.3109/00365517409114190.
    1. Chong M.F., Fielding B.A., Frayn K.N. Mechanisms for the acute effect of fructose on postprandial lipemia. Am. J. Clin. Nutr. 2007;85:1511–1520.
    1. Parks E.J., Skokan L.E., Timlin M.T., Dingfelder C.S. Dietary sugars stimulate fatty acid synthesis in adults. J. Nutr. 2008;138:1039–1046.
    1. Haidari M., Leung N., Mahbub F., Uffelman K.D., Kohen-Avramoglu R., Lewis G.F., Adeli K. Fasting and postprandial overproduction of intestinally derived lipoproteins in an animal model of insulin resistance. Evidence that chronic fructose feeding in the hamster is accompanied by enhanced intestinal de novo lipogenesis and ApoB48-containing lipoprotein overproduction. J. Biol. Chem. 2002;30:31646–31655.
    1. Lewis G.F., Uffelman K., Naples M., Szeto L., Haidari M., Adeli K. Intestinal lipoprotein overproduction, a newly recognized component of insulin resistance, is ameliorated by the insulin sensitizer rosiglitazone: Studies in the fructose-fed Syrian golden hamster. Endocrinology. 2005;146:247–255. doi: 10.1210/en.2004-1143.
    1. Egli L., Lecoultre V., Theytaz F., Campos V., Hodson L., Schneiter P., Mittendorfer B., Patterson B.W., Fielding B.A., Gerber P.A., et al. Exercise prevents fructose-induced hypertriglyceridemia in healthy young subjects. Diabetes. 2013;62:2259–2265. doi: 10.2337/db12-1651.
    1. Faeh D., Minehira K., Schwarz J.M., Periasamy R., Park S., Tappy L. Effect of fructose overfeeding and fish oil administration on hepatic de novo lipogenesis and insulin sensitivity in healthy men. Diabetes. 2005;54:1907–1913. doi: 10.2337/diabetes.54.7.1907.
    1. Jeppesen J., Chen Y.D., Zhou M.Y., Wang T., Reaven G.M. Effect of variations in oral fat and carbohydrate load on postprandial lipemia. Am. J. Clin. Nutr. 1995;62:1201–1205.
    1. Corpe C.P., Burant C.F., Hoekstra J.H. Intestinal fructose absorption: Clinical and molecular aspects. J. Pediatr. Gastroenterol. Nutr. 1999;28:364–374. doi: 10.1097/00005176-199904000-00004.
    1. McGuinness O.P., Cherrington A.D. Effects of fructose on hepatic glucose metabolism. Curr. Opin. Clin. Nutr. Metab. Care. 2003;6:441–448.
    1. Elia M., Livesey G. Energy expenditure and fuel selection in biological systems: The theory and practice of calculations based on indirect calorimetry and tracer methods. World Rev. Nutr. Diet. 1992;70:68–131.
    1. Petersen K.F., Laurent D., Yu C., Cline G.W., Shulman G.I. Stimulating effects of low-dose fructose on insulin-stimulated hepatic glycogen synthesis in humans. Diabetes. 2001;50:1263–1268. doi: 10.2337/diabetes.50.6.1263.
    1. Bickerton A.S., Roberts R., Fielding B.A., Hodson L., Blaak E.E., Wagenmakers A.J., Gilbert M., Karpe F., Frayn K.N. Preferential uptake of dietary fatty acids in adipose tissue and muscle in the postprandial period. Diabetes. 2007;56:168–176. doi: 10.2337/db06-0822.
    1. Paquot N., Schneiter P.H., Jéquier E., Gaillard R., Lefèbvre P.J., Scheen A., Tappy L. Effects of ingested fructose and infused glucagon on endogenous glucose production in obese NIDDM patients, obese non-diabetic patients, and healthy subjects. Diabetologia. 1996;39:580–586. doi: 10.1007/BF00403305.
    1. Ferrannini E., Bjorkman O., Reichard G., Pilo A., Olsson M., Wahren J., DeFronzo R.A. The disposal of an oral glucose load in healthy subjects. A quantitative study. Diabetes. 1985;34:580–588. doi: 10.2337/diab.34.6.580.
    1. Sun S.Z., Empie M.W. Fructose metabolism in humans—What isotopic tracer studies tell us. Nutr. Metab. (Lond.) 2012;9:89. doi: 10.1186/1743-7075-9-89.
    1. Crescenzo R., Bianco F., Falcone I., Coppola P., Liverini G., Iossa S. Increased hepatic de novo lipogenesis and mitochondrial efficiency in a model of obesity induced by diets rich in fructose. Eur. J. Nutr. 2013;52:537–545. doi: 10.1007/s00394-012-0356-y.
    1. Xiao C., Dash S., Morgantini C., Lewis G.F. Novel role of enteral monosaccharides in intestinal lipoprotein production in healthy humans. Arterioscler. Thromb. Vasc. Biol. 2013;33:1056–1062. doi: 10.1161/ATVBAHA.112.300769.
    1. Groot P.H., de Boer B.C., Haddeman E., Houtsmuller U.M., Hülsmann W.C. Effect of dietary fat composition on the metabolism of triacylglycerol-rich plasma lipoproteins in the postprandial phase in meal-fed rats. J. Lipid Res. 1988;29:541–551.
    1. Lê K.A., Ith M., Kreis R., Faeh D., Bortolotti M., Tran C., Boesch C., Tappy L. Fructose overconsumption causes dyslipidemia and ectopic lipid deposition in healthy subjects with and without a family history of type 2 diabetes. Am. J. Clin. Nutr. 2009;89:1760–1765. doi: 10.3945/ajcn.2008.27336.
    1. Gibson P.R., Newnham E., Barrett J.S., Shepherd S.J., Muir J.G. Review article: Fructose malabsorption and the bigger picture. Aliment. Pharmacol. Ther. 2007;25:349–363.
    1. Jones H.F., Butler R.N., Brooks D.A. Intestinal fructose transport and malabsorption in humans. Am. J. Physiol. Gastrointest. Liver Physiol. 2011;300:G202–G206. doi: 10.1152/ajpgi.00457.2010.
    1. Hudgins L.C., Parker T.S., Levine D.M., Hellerstein M.K. A dual sugar challenge test for lipogenic sensitivity to dietary fructose. J. Clin. Endocrinol. Metab. 2011;96:861–868. doi: 10.1210/jc.2010-2007.
    1. Mori K., Ishida T., Yasuda T., Monguchi T., Sasaki M., Kondo K., Hasokawa M., Nakajima. H., Haraguchi Y., Sun L., Shinohara M., Toh R., Nishimura K., Hirata K. Fasting serum concentration of apolipoprotein B48 represents residual risks in patients with new-onset and chronic coronary artery disease. Clin. Chim. Acta. 2013;421:51–56. doi: 10.1016/j.cca.2013.02.005.

Source: PubMed

3
Iratkozz fel