Effect of low-intensity long-duration ultrasound on the symptomatic relief of knee osteoarthritis: a randomized, placebo-controlled double-blind study

David O Draper, Dominic Klyve, Ralph Ortiz, Thomas M Best, David O Draper, Dominic Klyve, Ralph Ortiz, Thomas M Best

Abstract

Background: Wearable long-duration low-intensity ultrasound is an emerging non-invasive and non-narcotic therapy for the daily treatment of musculoskeletal pain. The aim of this randomized, double-blind, placebo-controlled study was to examine whether long-duration low-intensity ultrasound was effective in treating pain and improving function in patients with knee osteoarthritis.

Methods: Ninety patients with moderate to severe knee pain and radiographically confirmed knee osteoarthritis (Kellgren-Lawrence grade I/II) were randomized for treatment with active (n = 55) or placebo (n = 35) devices applied daily to the treated knee. Investigators and subjects were blinded to treatment groups. Ultrasound (3 MHz, 0.132 W/cm2, 1.3 W) was applied with a wearable device for 4 h daily for 6 weeks, delivering 18,720 J per treatment. The primary outcome was change in pain intensity (numeric rating scale) assessed prior to intervention (baseline) and after 6 weeks. Secondary outcomes of functional change were measured at baseline and after 6 weeks using the Western Ontario McMaster Osteoarthritis Questionnaire (n = 84), along with range of motion (flexion, extension) and isometric muscle strength (flexion, extension and rotation) tests on the injured knee in a small pilot subset (n = 17).

Results: The study had a 93% retention rate, and there were no significant differences between the groups regarding demographic variables or baseline outcome measures. Patients treated with active therapy observed a significant mean NRS pain reduction over the 6-week study of 1.96 points for active (p < 0.0001), compared with a 0.85 points reduction for placebo (p = 0.13). The functional score was also significantly improved by 505 points for the active group over the 311-point improvement for placebo group compared to baseline (p = 0.02). In the pilot subset evaluated, rotational strength increased from baseline to 6 weeks (3.2 N, p = 0.03); however, no other measures were significant.

Conclusions: Long-duration low-intensity ultrasound significantly reduced pain and improved joint function in patients with moderate to severe osteoarthritis knee pain. The clinical findings suggest that ultrasound may be used as a conservative non-pharmaceutical and non-invasive treatment option for patients with knee osteoarthritis. Additional research is warranted on non-weight bearing joints of the musculoskeletal system as well as extended treatment time frames and follow-up.

Trial registration: NCT02083861, registered 11 March 2014, https://ichgcp.net/clinical-trials-registry/NCT02083861.

Keywords: Knee; Long duration; Low-intensity ultrasound; Musculoskeletal; Osteoarthritis; Pain; Sustained acoustic medicine.

Conflict of interest statement

Ethics approval and consent to participate

This study was approved by the institutional review board of Schulman Associates, and all patients provided informed consent to participate.

Consent for publication

All the patients in this study have given their informed consent for the article to be published.

Competing interests

The authors declare that they have no competing interests.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Figures

Fig. 1
Fig. 1
Wearable daily use ultrasound device. The wearable daily home-use long-duration low-intensity ultrasound device (SAM® Sport, ZetrOZ Systems LLC, Trumbull, CT) applied to the medial and lateral articulation points of the knee for the treatment of knee OA. The device is a prescription use only in the USA and has preconfigured ultrasound parameters of 3 MHz frequency and 1.3 W of energy for daily applied 4-h treatment
Fig. 2
Fig. 2
Study flow chart. Flow chart describing the progress of patients through the clinical trial on knee OA

References

    1. Lawrence RC, Felson DT, Helmick CG, Arnold LM, Choi H, Deyo RA, et al. Wolfe, estimates of the prevalence of arthritis and other rheumatic conditions in the United States. Part II. Arthritis Rheum. 2008;58(1):26–35.
    1. Bolen J, Schieb L, Hootman JM, Helmick CG, Theis K, Murphy LB, Langmaid G. Differences in the prevalence and severity of arthritis among racial/ethnic groups in the United States, National Health Interview Survey, 2002, 2003, and 2006. Prev Chronic Dis. 2010;7(3):A64.
    1. Torio C, Andrews R. National inpatient hospital costs: the most expensive conditions by payer, 2011, in HCUP Statistical Brief #160. Agency for Healthcare Research and Quality: Rockville; 2013.
    1. Hochberg MC, Altman RD, April KT, Benkhalti M, Guyatt G, McGowan J, et al. American College of Rheumatology 2012 recommendations for the use of nonpharmacologic and pharmacologic therapies in osteoarthritis of the hand, hip, and knee. Arthritis Care Res (Hoboken) 2012;64(4):465–467. doi: 10.1002/acr.21596.
    1. Balmaceda CM. Evolving guidelines in the use of topical nonsteroidal anti-inflammatory drugs in the treatment of osteoarthritis. BMC Musculoskelet Disord. 2014;15:27. doi: 10.1186/1471-2474-15-27.
    1. van Laar M, Pergolizzi JV, Jr, Mellinghoff HU, Merchante IM, Nalamachu S, O'Brien J, et al. Pain treatment in arthritis-related pain: beyond NSAIDs. Open Rheumatol J. 2012;6:320–330. doi: 10.2174/1874312901206010320.
    1. Summary of recommendations . Treatment of osteoarthritis of the knee, 2nd edition. American Academy of Orthopedic Surgeons. 2013. pp. 1–24.
    1. Cleveland RJ, Luong ML, Knight JB, Schoster B, Renner JB, Jordan JM, et al. Callahan, independent associations of socioeconomic factors with disability and pain in adults with knee osteoarthritis. BMC Musculoskelet Disord. 2013;14:297. doi: 10.1186/1471-2474-14-297.
    1. Rutjes AW, Nuesch E, Sterchi R, Juni P. Therapeutic ultrasound for osteoarthritis of the knee or hip. Cochrane Database Syst Rev. 2010;1:CD003132.
    1. Zeng C, Li H, Yang T, Deng ZH, Yang Y, Zhang Y, Ding X, Lei GH. Effectiveness of continuous and pulsed ultrasound for the management of knee osteoarthritis: a systematic review and network meta-analysis. Osteoarthr Cartil. 2014;22(8):1090–1099. doi: 10.1016/j.joca.2014.06.028.
    1. Zhang C, Xie Y, Luo X, Ji Q, Lu C, He C, Wang P. Effects of therapeutic ultrasound on pain, physical functions and safety outcomes in patients with knee osteoarthritis: a systematic review and meta-analysis. Clin Rehabil. 2016;30(10):960–971. doi: 10.1177/0269215515609415.
    1. Kellgren JH, Lawrence JS. Radiological assessment of osteo-arthrosis. Ann Rheum Dis. 1957;16:494–502. doi: 10.1136/ard.16.4.494.
    1. Williamson A, Hoggart B. Pain: a review of three commonly used pain rating scales. J Clin Nurs. 2005;14(7):798–804. doi: 10.1111/j.1365-2702.2005.01121.x.
    1. Loyola-Sánchez A, Richardson J, MacIntyre NJ. Efficacy of ultrasound therapy for the management of knee osteoarthritis: a systematic review with meta-analysis. Osteoarthr Cartil. 2010;18(9):1117–1126. doi: 10.1016/j.joca.2010.06.010.
    1. Köybaşi M, Borman P, Kocaoğlu S, Ceceli E. The effect of additional therapeutic ultrasound with primary hip osteoarthritis: a randomized placebo-controlled study. Clin Rheumatol. 2010;29(12):1387–1394. doi: 10.1007/s10067-010-1468-5.
    1. Özgönenel L, Aytekin E, Durmuşoǧlu G. A double-blind trial of clinical effects of therapeutic ultrasound in knee osteoarthritis. Ultrasound Med Biol. 2009;35(1):44–49. doi: 10.1016/j.ultrasmedbio.2008.07.009.
    1. Yeğin T, Altan L, Aksoy MK. The effect of therapeutic ultrasound on pain and physical function in patients with knee osteoarthritis. Ultrasound Med Biol. 2017;43(1):187–194. doi: 10.1016/j.ultrasmedbio.2016.08.035.
    1. Loyola-Sánchez A, Richardson J, Beattie KA, Otero-Fuentes C, Adachi JD, MacIntyre NJ. Effect of low-intensity pulsed ultrasound on the cartilage repair in people with mild to moderate knee osteoarthritis: a double-blinded, randomized, placebo-controlled pilot study. Arch Phys Med Rehabil. 2012;93(1):35–42. doi: 10.1016/j.apmr.2011.07.196.
    1. Leong DJ, Zhang H, Xu L, Tang J, Hirsh DM, et al. Therapeutic ultrasound: osteoarthritis symptom-modification and potential for disease modification. J Surgery. 2013;1(2):5.
    1. Naito K, Watari T, Muta T, Furuhata A, Iwase H, Igarashi M, Kurosawa H, Nagaoka I, Kaneko K. Low-intensity pulsed ultrasound (LIPUS) increases the articular cartilage type II collagen in a rat osteoarthritis model. J Orthop Res. 2010;28(3):361–369.
    1. Gurkan I, Ranganathan A, Yang X, Horton WE, Todman M, Huckle J, Pleshko N, Spencer RG. Modification of osteoarthritis in the guinea pig with pulsed low-intensity ultrasound treatment. Osteoarthr Cartil. 2010;18(5):724–733. doi: 10.1016/j.joca.2010.01.006.
    1. Chung JI, Min BH, Baik EJ. Effect of continuous-wave low-intensity ultrasound in inflammatory resolution of arthritis-associated synovitis. Phys Ther. 2016;96(6):808–817. doi: 10.2522/ptj.20140559.

Source: PubMed

3
Iratkozz fel