INtervention for Cognitive Reserve Enhancement in delaying the onset of Alzheimer's Symptomatic Expression (INCREASE), a randomized controlled trial: rationale, study design, and protocol

Daniela C Moga, Brooke F Beech, Erin L Abner, Frederick A Schmitt, Riham H El Khouli, Ashley I Martinez, Lynne Eckmann, Mark Huffmyer, Rosmy George, Gregory A Jicha, Daniela C Moga, Brooke F Beech, Erin L Abner, Frederick A Schmitt, Riham H El Khouli, Ashley I Martinez, Lynne Eckmann, Mark Huffmyer, Rosmy George, Gregory A Jicha

Abstract

Background: The course of Alzheimer's disease (AD) includes a 10-20-year preclinical period with progressive accumulation of amyloid β (Aβ) plaques and neurofibrillary tangles in the absence of symptomatic cognitive or functional decline. The duration of this preclinical stage in part depends on the rate of pathologic progression, which is offset by compensatory mechanisms, referred to as cognitive reserve (CR). Comorbid medical conditions, psychosocial stressors, and inappropriate medication use may lower CR, hastening the onset of symptomatic AD. Here, we describe a randomized controlled trial (RCT) designed to test the efficacy of a medication therapy management (MTM) intervention to reduce inappropriate medication use, bolster cognitive reserve, and ultimately delay symptomatic AD.

Methods/design: Our study aims to enroll 90 non-demented community-dwelling adults ≥ 65 years of age. Participants will undergo positron emission tomography (PET) scans, measuring Aβ levels using standardized uptake value ratios (SUVr). Participants will be randomly assigned to MTM intervention or control, stratified by Aβ levels, and followed for 12 months via in-person and telephone visits. Outcomes of interest include: (1) medication appropriateness (measured with the Medication Appropriateness Index (MAI)); (2) scores from Trail Making Test B (TMTB), Montreal Cognitive Assessment (MoCA), and California Verbal Learning Test (CVLT); (3) perceived health status (measured with the SF-36). We will also evaluate pre- to post-intervention change in: (1) use of inappropriate medications as measured by MAI; 2) CR Change Score (CRCS), defined as the difference in scopolamine-challenged vs unchallenged cognitive scores at baseline and follow-up. Baseline Aβ SUVr will be used to examine the relative impact of preclinical AD (pAD) pathology on CRCS, as well as the interplay of amyloid burden with inappropriate medication use.

Discussion: This manuscript describes the protocol of INCREASE ("INtervention for Cognitive Reserve Enhancement in delaying the onset of Alzheimer's Symptomatic Expression"): a randomized controlled trial that investigates the impact of deprescribing inappropriate medications and optimizing medication regimens on potentially delaying the onset of symptomatic AD and AD-related dementias.

Trial registration: ClinicalTrials.gov, NCT02849639. Registered on 29 July 2016.

Keywords: Alzheimer’s disease; Beers criteria; Cognitive reserve; Comprehensive medication review; Dementia; Deprescribing; Inappropriate medication; Interdisciplinary; Medication therapy management; Patient-centered.

Conflict of interest statement

The authors declare that they have no competing interests.

Figures

Fig. 1
Fig. 1
Patient-centered medication therapy management intervention to address the complexity of inappropriate medication use and bolster cognitive reserve
Fig. 2
Fig. 2
INCREASE study procedures. TMTB Trail Making Test B, MoCA Montreal Cognitive Assessment, CVLT California Verbal Learning Test, PET positron emission tomography,  amyloid beta, SUVr standardized uptake value ratios
Fig. 3
Fig. 3
INCREASE study schedule of enrolment, interventions, and assessments (SPIRIT figure). NAART North American Adult Reading Test, TMTB Trail Making Test B, CVLT California Verbal Learning Test, MoCA Montreal Cognitive Assessment, SF-36 short-form 36, ECG electrocardiogram,  amyloid beta, PET positron emission tomography, MTM medication therapy management

References

    1. Alzheimer's Association . Alzheimer’s facts and figures. 2019.
    1. Hebert LE, et al. Annual incidence of Alzheimer disease in the United States projected to the years 2000 through 2050. Alzheimer Dis Assoc Disord. 2001;15(4):169–173. doi: 10.1097/00002093-200110000-00002.
    1. Changing the trajectory of Alzheimer’s disease: How a treatment by 2025 saves lives and dollars. 2015. . Accessed 1 Oct 2019.
    1. Sperling RA, et al. Toward defining the preclinical stages of Alzheimer’s disease: recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimers Dement. 2011;7(3):280–292. doi: 10.1016/j.jalz.2011.03.003.
    1. Stern Y. Cognitive reserve in ageing and Alzheimer’s disease. Lancet Neurol. 2012;11(11):1006–1012. doi: 10.1016/S1474-4422(12)70191-6.
    1. Charlesworth CJ, et al. Polypharmacy among adults aged 65 years and older in the United States: 1988-2010. J Gerontol A Biol Sci Med Sci. 2015;70(8):989–995. doi: 10.1093/gerona/glv013.
    1. Middleton LE, Yaffe K. Promising strategies for the prevention of dementia. Arch Neurol. 2009;66(10):1210–1215. doi: 10.1001/archneurol.2009.201.
    1. Angevaren M, Aufdemkampe G, Verhaar HJJ, Aleman A, Vanhees L. Physical activity and enhanced fitness to improve cognitive function in older people without known cognitive impairment. Cochrane Database Syst Rev. 2008;(3):CD005381. 10.1002/14651858.CD005381.pub3
    1. Kramer AF, et al. Fitness, aging and neurocognitive function. Neurobiol Aging. 2005;26(Suppl 1):124–127. doi: 10.1016/j.neurobiolaging.2005.09.009.
    1. Fabiani M, Buckley J, Gratton G, Coles MGH, Donkin E. The training of complex task performance. Acta Psychol. 1989;71:259–299. doi: 10.1016/0001-6918(89)90012-7.
    1. Gopher D, Well M, Bareket T. Transfer of skill from a computer game trainer to flight. Hum Factors. 1994;36(3):387–405. doi: 10.1177/001872089403600301.
    1. Orrell M, Sahakian B. Education and dementia. BMJ. 1995;310(6985):951–952. doi: 10.1136/bmj.310.6985.951.
    1. Fotuhi M, Mohassel P, Yaffe K. Fish consumption, long-chain omega-3 fatty acids and risk of cognitive decline or Alzheimer disease: a complex association. Nat Clin Pract Neurol. 2009;5(3):140–152.
    1. Gillette Guyonnet S, et al. IANA task force on nutrition and cognitive decline with aging. J Nutr Health Aging. 2007;11(2):132–152.
    1. Kang JH, et al. A randomized trial of vitamin E supplementation and cognitive function in women. Arch Intern Med. 2006;166(22):2462–2468. doi: 10.1001/archinte.166.22.2462.
    1. Yaffe K, et al. Impact of antioxidants, zinc, and copper on cognition in the elderly: a randomized, controlled trial. Neurology. 2004;63(9):1705–1707. doi: 10.1212/01.WNL.0000142969.19465.8F.
    1. Moulder KL, et al. Dominantly Inherited Alzheimer Network: facilitating research and clinical trials. Alzheimers Res Ther. 2013;5(5):48. doi: 10.1186/alzrt213.
    1. Sperling RA, et al. The A4 study: stopping AD before symptoms begin? Sci Transl Med. 2014;6(228):228fs13. doi: 10.1126/scitranslmed.3007941.
    1. Lau DT, et al. Polypharmacy and potentially inappropriate medication use among community-dwelling elders with dementia. Alzheimer Dis Assoc Disord. 2010;24(1):56–63. doi: 10.1097/WAD.0b013e31819d6ec9.
    1. By the American Geriatrics Society Beers Criteria Update Expert Panel American Geriatrics Society 2019 updated AGS Beers criteria(R) for potentially inappropriate medication use in older adults. J Am Geriatr Soc. 2019;67(4):674–694. doi: 10.1111/jgs.15767.
    1. Steinman Michael A., Beizer Judith L., DuBeau Catherine E., Laird Rosemary D., Lundebjerg Nancy E., Mulhausen Paul. How to Use the American Geriatrics Society 2015 Beers Criteria-A Guide for Patients, Clinicians, Health Systems, and Payors. Journal of the American Geriatrics Society. 2015;63(12):e1–e7. doi: 10.1111/jgs.13701.
    1. Farrell B, Szeto W, Shamji S. Drug-related problems in the frail elderly. Can Fam Physician. 2011;57(2):168–169.
    1. Davidoff AJ, et al. Prevalence of potentially inappropriate medication use in older adults using the 2012 Beers criteria. J Am Geriatr Soc. 2015;63(3):486–500. doi: 10.1111/jgs.13320.
    1. Moga DC, et al. Optimizing medication appropriateness in older adults: a randomized clinical interventional trial to decrease anticholinergic burden. Alzheimers Res Ther. 2017;9(1):36. doi: 10.1186/s13195-017-0263-9.
    1. Steinman MA. Polypharmacy and the balance of medication benefits and risks. Am J Geriatr Pharmacother. 2007;5(4):314–316. doi: 10.1016/j.amjopharm.2007.12.009.
    1. Hanlon JT, et al. A method for assessing drug therapy appropriateness. J Clin Epidemiol. 1992;45(10):1045–1051. doi: 10.1016/0895-4356(92)90144-C.
    1. Harris PA, et al. The REDCap consortium: Building an international community of software platform partners. J Biomed Inform. 2019;95:103208. doi: 10.1016/j.jbi.2019.103208.
    1. Harris PA, et al. Research electronic data capture (REDCap)--a metadata-driven methodology and workflow process for providing translational research informatics support. J Biomed Inform. 2009;42(2):377–381. doi: 10.1016/j.jbi.2008.08.010.
    1. Snyder PJ, et al. Microdosing of scopolamine as a “cognitive stress test”: rationale and test of a very low dose in an at-risk cohort of older adults. Alzheimers Dement. 2014;10(2):262–267. doi: 10.1016/j.jalz.2014.01.009.
    1. Clark CM, et al. Use of florbetapir-PET for imaging beta-amyloid pathology. JAMA. 2011;305(3):275–283. doi: 10.1001/jama.2010.2008.
    1. Fleisher AS, et al. Using positron emission tomography and florbetapir F18 to image cortical amyloid in patients with mild cognitive impairment or dementia due to Alzheimer disease. Arch Neurol. 2011;68(11):1404–11. doi: 10.1001/archneurol.2011.150.
    1. Sperling R, Mormino E, Johnson K. The evolution of preclinical Alzheimer’s disease: implications for prevention trials. Neuron. 2014;84(3):608–622. doi: 10.1016/j.neuron.2014.10.038.
    1. Doraiswamy PM, et al. Amyloid-beta assessed by florbetapir F 18 PET and 18-month cognitive decline: a multicenter study. Neurology. 2012;79(16):1636–1644. doi: 10.1212/WNL.0b013e3182661f74.
    1. Hanlon JT, et al. A randomized, controlled trial of a clinical pharmacist intervention to improve inappropriate prescribing in elderly outpatients with polypharmacy. Am J Med. 1996;100(4):428–437. doi: 10.1016/S0002-9343(97)89519-8.
    1. By the American Geriatrics Society Beers Criteria Update Expert Panel. American Geriatrics Society 2015 updated Beers criteria for potentially inappropriate medication use in older adults. J Am Geriatr Soc. 2015;63(11):2227–46. 10.1111/jgs.13702. Epub 2015 Oct 8.
    1. Hanlon Joseph T., Semla Todd P., Schmader Kenneth E. Alternative Medications for Medications in the Use of High-Risk Medications in the Elderly and Potentially Harmful Drug-Disease Interactions in the Elderly Quality Measures. Journal of the American Geriatrics Society. 2015;63(12):e8–e18. doi: 10.1111/jgs.13807.
    1. Crossing the quality chasm: a new health system for the 21st century. Washington (DC); 2001. . Accessed 1 Oct 2019.
    1. Kuntz JL, et al. Patient-centered interventions to improve medication management and adherence: a qualitative review of research findings. Patient Educ Couns. 2014;97(3):310–326. doi: 10.1016/j.pec.2014.08.021.
    1. Lauver DR, et al. Patient-centered interventions. Res Nurs Health. 2002;25(4):246–255. doi: 10.1002/nur.10044.
    1. Tombaugh TN. Trail Making Test A and B: normative data stratified by age and education. Arch Clin Neuropsychol. 2004;19(2):203–214. doi: 10.1016/S0887-6177(03)00039-8.
    1. Weintraub S, et al. The Alzheimer’s Disease Centers’ Uniform Data Set (UDS): the neuropsychologic test battery. Alzheimer Dis Assoc Disord. 2009;23(2):91–101. doi: 10.1097/WAD.0b013e318191c7dd.
    1. Nasreddine ZS, et al. The Montreal Cognitive Assessment, MoCA: a brief screening tool for mild cognitive impairment. J Am Geriatr Soc. 2005;53(4):695–699. doi: 10.1111/j.1532-5415.2005.53221.x.
    1. Nasreddine ZS, Phillips N, Chertkow H. Normative data for the Montreal Cognitive Assessment (MoCA) in a population-based sample. Neurology. 2012;78(10):765–766. doi: 10.1212/01.wnl.0000413072.54070.a3.
    1. Woods SP, et al. The California Verbal Learning Test--second edition: test-retest reliability, practice effects, and reliable change indices for the standard and alternate forms. Arch Clin Neuropsychol. 2006;21(5):413–420. doi: 10.1016/j.acn.2006.06.002.
    1. Costa AS, et al. Alternate-form reliability of the Montreal cognitive assessment screening test in a clinical setting. Dement Geriatr Cogn Disord. 2012;33(6):379–384. doi: 10.1159/000340006.
    1. Schmitt FA, et al. University of Kentucky Sanders-Brown healthy brain aging volunteers: donor characteristics, procedures and neuropathology. Curr Alzheimer Res. 2012;9(6):724–733. doi: 10.2174/156720512801322591.
    1. Bottiggi KA, et al. Concomitant use of medications with anticholinergic properties and acetylcholinesterase inhibitors: impact on cognitive and physical functioning in Alzheimer disease. Am J Geriatr Psychiatry. 2007;15(4):357–359. doi: 10.1097/JGP.0b013e31802dd354.
    1. Jicha GA, Carr SA. Conceptual evolution in Alzheimer’s disease: implications for understanding the clinical phenotype of progressive neurodegenerative disease. J Alzheimers Dis. 2010;19(1):253–272. doi: 10.3233/JAD-2010-1237.
    1. Stewart AL, Ware JE, Jr, Brook RH. Advances in the measurement of functional status: construction of aggregate indexes. Med Care. 1981;19(5):473–488. doi: 10.1097/00005650-198105000-00001.
    1. Gilson BS, et al. The sickness impact profile. Development of an outcome measure of health care. Am J Public Health. 1975;65(12):1304–1310. doi: 10.2105/AJPH.65.12.1304.
    1. Weinberger M, et al. An evaluation of a brief health status measure in elderly veterans. J Am Geriatr Soc. 1991;39(7):691–694. doi: 10.1111/j.1532-5415.1991.tb03623.x.
    1. Hanlon JT, Schmader KE. The medication appropriateness index at 20: where it started, where it has been, and where it may be going. Drugs Aging. 2013;30(11):893–900. doi: 10.1007/s40266-013-0118-4.
    1. Bottiggi KA, et al. Long-term cognitive impact of anticholinergic medications in older adults. Am J Geriatr Psychiatry. 2006;14(11):980–984. doi: 10.1097/01.JGP.0000224619.87681.71.
    1. Fredrickson A, et al. The use of effect sizes to characterize the nature of cognitive change in psychopharmacological studies: an example with scopolamine. Hum Psychopharmacol. 2008;23(5):425–436. doi: 10.1002/hup.942.
    1. Stern Y, et al. Whitepaper: Defining and investigating cognitive reserve, brain reserve, and brain maintenance. Alzheimers Dement. 2018. 10.1016/j.jalz.2018.07.219.

Source: PubMed

3
Iratkozz fel