Randomized, placebo-controlled trial of mipomersen in patients with severe hypercholesterolemia receiving maximally tolerated lipid-lowering therapy

Mary P McGowan, Jean-Claude Tardif, Richard Ceska, Lesley J Burgess, Handrean Soran, Ioanna Gouni-Berthold, Gilbert Wagener, Scott Chasan-Taber, Mary P McGowan, Jean-Claude Tardif, Richard Ceska, Lesley J Burgess, Handrean Soran, Ioanna Gouni-Berthold, Gilbert Wagener, Scott Chasan-Taber

Abstract

Objectives: Mipomersen, an antisense oligonucleotide targeting apolipoprotein B synthesis, significantly reduces LDL-C and other atherogenic lipoproteins in familial hypercholesterolemia when added to ongoing maximally tolerated lipid-lowering therapy. Safety and efficacy of mipomersen in patients with severe hypercholesterolemia was evaluated.

Methods and results: Randomized, double-blind, placebo-controlled, multicenter trial. Patients (n = 58) were ≥18 years with LDL-C ≥7.8 mmol/L or LDL-C ≥5.1 mmol/L plus CHD disease, on maximally tolerated lipid-lowering therapy that excluded apheresis. Weekly subcutaneous injections of mipomersen 200 mg (n = 39) or placebo (n = 19) were added to lipid-lowering therapy for 26 weeks.

Main outcome: percent reduction in LDL-C from baseline to 2 weeks after the last dose of treatment. Mipomersen (n = 27) reduced LDL-C by 36%, from a baseline of 7.2 mmol/L, for a mean absolute reduction of 2.6 mmol/L. Conversely, mean LDL-C increased 13% in placebo (n = 18) from a baseline of 6.5 mmol/L (mipomersen vs placebo p<0.001). Mipomersen produced statistically significant (p<0.001) reductions in apolipoprotein B and lipoprotein(a), with no change in high-density lipoprotein cholesterol. Mild-to-moderate injection site reactions were the most frequently reported adverse events with mipomersen. Mild-to-moderate flu-like symptoms were reported more often with mipomersen. Alanine transaminase increase, aspartate transaminase increase, and hepatic steatosis occurred in 21%, 13% and 13% of mipomersen treated patients, respectively. Adverse events by category for the placebo and mipomersen groups respectively were: total adverse events, 16(84.2%), 39(100%); serious adverse events, 0(0%), 6(15.4%); discontinuations due to adverse events, 1(5.3%), 8(20.5%) and cardiac adverse events, 1(5.3%), 5(12.8%).

Conclusion: Mipomersen significantly reduced LDL-C, apolipoprotein B, total cholesterol and non-HDL-cholesterol, and lipoprotein(a). Mounting evidence suggests it may be a potential pharmacologic option for lowering LDL-C in patients with severe hypercholesterolemia not adequately controlled using existing therapies. Future studies will explore alternative dosing schedules aimed at minimizing side effects.

Trial registration: ClinicalTrials.gov NCT00794664.

Conflict of interest statement

Competing Interests: MPM has consulted for and participated in two Genzyme Advisory Board Meetings. She is currently an employee of Genzyme; however, this manuscript was completed prior to this employment. MPM was the lead investigator and developed the manuscript. She has served on the following speaker's bureaus: Glaxo Smith Kline and Merck-Schering Plough. JCT acknowledges grants from Genzyme to his institution. RC is an advisory board member for: Genzyme, KOWA, and MSD; and is a speaker for Abbott, ASTRA-ZENECA, MSD, Pfizer, and Sanofi. LJB reports no conflicts. HS received fees for lectures and consultancy work from Genzyme as well as research grants from MSD Sharp & Dohme and Pfizer. IGB received payments for lectures and speakers bureaus from MSD Sharp & Dohme and Genzyme. She has received travel expenses and meeting expenses from Otsuka and Novartis as well as a grant for research from Bayer Healthcare. GW and is an employee of Genzyme, a Sanofi Company. SCT is a past employee of Genzyme. This does not alter the authors’ adherence to all PLOS One policies on sharing data and materials.

Figures

Figure 1. Patient Disposition – Consort Diagram.
Figure 1. Patient Disposition – Consort Diagram.
Figure 2. Mean Absolute Reduction in LDL-C…
Figure 2. Mean Absolute Reduction in LDL-C (value closest to 2 weeks after the end of study treatment).
Figure 3. Mean Percent Change from Baseline…
Figure 3. Mean Percent Change from Baseline to Week 28.
Error bars indicate 95% CI. Placebo (n  = 18); mipomersen 200 mg weekly (n  = 39). (A) Low-density lipoprotein cholesterol (LDL-C) (B) Apolipoprotein B (Apo B) (C) Lipoprotein(a) (Lp(a)) (D) Non-high density lipoprotein cholesterol (non-HDL-C) (E) Total Cholesterol.

References

    1. National Lipid Association Expert panel on Familial Hypercholesterolemia (2011) Familial hypercholesterolemias: Prevalence, genetics, diagnosis and screening recommendations from the National Lipid Association Expert panel on Familial Hypercholesterolemia. J Clin Lipidol 5: S9–S17.
    1. Civeira F, for the International Panel on Management of Familial Hypercholesterolemia (2004) Guidelines for the diagnosis and management of heterozygous familial hypercholesterolemia. Atherosclerosis 173(1): 55–68.
    1. Avis HJ, Visser MN, Stein EA, Wijburg FA, Trip MD, et al. (2007) A systematic review and meta-analysis of statin therapy in children with familial hypercholesterolemia. Arterioscler Thromb Vasc Biol 27(8): 1803–1810.
    1. Rodenburg J, Vissers MN, Wiegman A, van Trotsenburg AS, van der Graaf A, et al. (2007) Statin treatment in children with familial hypercholesterolemia: the younger, the better. Circulation 116(6): 664–668.
    1. Marais AD (2004) Familial hypercholesterolaemia. Clin Biochem Rev 25(1): 49–68.
    1. Hudgins LC, Gordon BR, Parker TS, Saal SD, Levine DM, et al. (2002) LDL Apheresis: an effective and safe treatment for refractory hypercholesterolemia. Cardiovasc Drug Rev 20(4): 271–280.
    1. Moriarty PM, Gibson CA, Flechsenhar K (2007) Familial hypercholesterolemia and lipid apheresis. In: Davidson MH, Toth PP, Maki KC, eds. Contemporary Cardiology: Therapeutic Lipidology. Totowa, NJ: Humana Press; 267–289p.
    1. Raal FJ, Santos RD, Blom DJ, Marais AD, Charng MJ, et al. (2010) Mipomersen, an apolipoprotein B synthesis inhibitor, for lowering of LDL cholesterol concentrations in patients with homozygous familial hypercholesterolaemia: a randomised, double-blind, placebo-controlled trial. Lancet 375(9719): 998–1006.
    1. Stein EA, Dufour R, Gagne C, Gaudet D, East C, et al... (2010) Abstract: 5036 A randomized, double-blind, placebo-controlled study to assess efficacy and safety of mipomersen as add-on therapy in heterozygous familial hypercholesterolemia patients with coronary artery disease. Eur Heart J 31(Abstract Suppl): 898.
    1. Eckstein F (2007) The versatility of oligonucleotides as potential therapeutics. Expert Opin Biol Ther 7(7): 1021–1034.
    1. National Cholesterol Education Program. (NCEP) Expert Panel on Detection, Evaluation, and Treatment of High Blood Cholesterol in Adults (Adult Treatment Panel III) (2002) Third Report of the National Cholesterol Education Program (NCEP) Expert Panel on Detection, Evaluation, and Treatment of High Blood Cholesterol in Adults (Adult Treatment Panel III) final report. Circulation. 106(25): 3143–3421.
    1. National Institute for Health and Clinical Excellence. (2008) Identification and management of familial hypercholesterolaemia. NICE clinical guideline 71. Available: . Accessed 2012 Mar 20.
    1. Thompson GR (2008) HEART-UK LDL Apheresis Working Group (2008) Recommendations for the use of LDL Apheresis. Atherosclerosis 198: 247–255.
    1. Graham I, Atar D, Borch-Johnsen K, Boysen G, Burell G, et al. (2007) European Society of Cardiology (ESC) Committee for Practice Guidelines (CPG). European guidelines on cardiovascular disease prevention in clinical practice: executive summary: Fourth Joint Task Force of the European Society of Cardiology and Other Societies on Cardiovascular Disease Prevention in Clinical Practice (Constituted by representatives of nine societies and by invited experts). Eur Heart J 28(19): 2375–2414.
    1. Yokoo T, Bydder M, Hamilton G, Middleton MS, Gamst AC, et al. (2009) Nonalcoholic fatty liver disease: diagnostic and fat-grading accuracy of low-flip-angle multiecho gradient-recalled-echo MR imaging at 1.5T. Radiology 251(1): 67–76.
    1. Marcovina SM, Albers JJ, Henderson LO, Hannon WH (1993) International Federation of Clinical Chemistry standardization project for measurements of apolipoproteins A-I and B. III. Comparability of apolipoprotein A-I values by use of international reference material. Clin Chem 39(5): 773–781.
    1. Marcovina SM, Albers JJ, Kennedy H, Mei JV, Henderson LO, et al. (1994) International Federation of Clinical Chemistry standardization project for measurements of apolipoproteins A-I and B. IV. Comparability of apolipoprotein B values by use of international reference material. Clin Chem 40(4): 586–592.
    1. Nordestgaard BG, Chapman MJ, Ray K, Borén J, Andreotti F, et al. (2010) European Atherosclerosis Society Consensus Panel. European Atherosclerosis Society Consensus Panel. Lipoprotein(a) as a cardiovascular risk factor: current status. Eur Heart J 31(23): 2844–2853.
    1. McKenney JM, Jones PH, Bays HE, Knopp RH, Kashyap ML, et al. (2007) Comparative effects on lipid levels of combination therapy with a statin and extended-release niacin or ezetimibe versus a statin alone (the COMPELL study). Atherosclerosis 192(2): 432–437.
    1. Cholesterol Treatment Trialists’ (CTT) Collaboration, Baigent C, Blackwell L, Emberson J, Holland LE, et al (2010) Efficacy and safety of more intensive lowering of LDL cholesterol: a meta-analysis of data from 170,000 participants in 26 randomised trials. Lancet 376(9753): 1670–1681.
    1. Preiss D, Sattar N (2009) Lipids, lipid modifying agents and cardiovascular risk: a review of the evidence. Clin Endocrinol (Oxf) 70(6): 815–828.
    1. Gould AL, Davies GM, Alemao E, Yin DD, Cook JR (2007) Cholesterol reduction yields clinical benefits: meta-analysis including recent trials. Clin Ther 29(5): 778–794.
    1. Baigent C, Keech A, Kearney PM, Blackwell L, Buck G, et al. (2005) Cholesterol Treatment Trialists' (CTT) Collaborators. Cholesterol Treatment Trialists’ (CTT) Collaborators. Efficacy and safety of cholesterol-lowering treatment: a prospective meta-analysis of data from 90,056 participants in 14 randomised trials of statins. Lancet 366(9493): 1267–1278.
    1. Akdim F, Stroes ES, Sijbrands EJ, Tribble DL, Trip MD, et al. (2010) Efficacy and safety of mipomersen, an antisense inhibitor of apolipoprotein B, in hypercholesterolemic subjects receiving stable statin therapy. J Am Coll Cardiol 55(15): 1611–1618.
    1. Akdim F, Visser ME, Tribble DL, Baker BF, Stroes ES, et al. (2010) Effect of mipomersen, an apolipoprotein B synthesis inhibitor, on low-density lipoprotein cholesterol in patients with familial hypercholesterolemia. Am J Cardiol 105(10): 1413–1419.
    1. Geary RS (2009) Antisense oligonucleotide pharmacokinetics and metabolism. Expert Opin Drug Metab Toxicol 5(4): 381–391.
    1. Glueck CJ, Gartside P, Fallat RW, Sielski J, Steiner PM (1976) Longevity syndromes: Familial hypobeta and familial hyperalpha lipoproteinemia. J Lab Clin Med 88(6): 941–957.
    1. Sankatsing RR, Fouchier SW, de Haan S, Hutten BA, de Groot E, et al. (2005) Hepatic and cardiovascular consequences of familial hypobetalipoproteinemia. Arterioscler Thromb Vasc Biol 25(9): 1979–1984.
    1. Bhardwaj SS, Chalasani N (2007) Lipid-lowering agents that cause drug-induced hepatotoxicity. Clin Liver Dis 11(3): 597–613.
    1. Akdim F, Tribble DL, Flaim JD, Yu R, Su J, et al. (2011) Efficacy of apolipoprotein B synthesis inhibition in subjects with mild-to-moderate hyperlipidaemia. Eur Heart J 32(21): 2650–2659.
    1. Visser ME, Wagener G, Baker BF, Geary RS, Donovan JM, et al. (2012) Mipomersen, an apolipoprotein B synthesis inhibitor, lowers low-density lipoprotein cholesterol in high-risk statin-intolerant patients: a randomized, double-blind, placebo-controlled trial. Eur Heart J 33(9): 1142–1149.

Source: PubMed

3
Iratkozz fel