Deze pagina is automatisch vertaald en de nauwkeurigheid van de vertaling kan niet worden gegarandeerd. Raadpleeg de Engelse versie voor een brontekst.

Influence of Caffeine Consumption on the Human Circadian System (CICAFF)

5 juni 2022 bijgewerkt door: Carolin Reichert, Psychiatric Hospital of the University of Basel

Influence of Caffeine Consumption on the Human Circadian System: Neurobehavioral, Hormonal and Cerebral Mechanisms

Surveys indicate that 85% of the adult population consume caffeine on a daily basis. Caffeine acts on sleep homeostatic mechanisms by antagonizing the sleep factor adenosine. Whether and how caffeine also impacts on the circadian regulation of sleep and -wakefulness is fairly unexplored. This study quantifies the influence of regular caffeine intake and its cessation on circadian promotion of sleep and wakefulness, on circadian hormonal markers, well-being, neurobehavioral performance and associated cerebral mechanisms. The knowledge is expected to contribute important insights on recent societal changes in sleep-wake behavior (e.g., shorter sleep duration and delayed sleep phase) and the related increase in people suffering from sleep problems.

Studie Overzicht

Gedetailleerde beschrijving

Surveys indicate that 85% of the adult population consume caffeine, often on a daily basis. Caffeine acts on sleep homeostatic mechanisms by antagonizing the sleep factor adenosine. Whether and how caffeine also impacts on the circadian regulation of sleep and -wakefulness is fairly unexplored. The circadian timing system promotes wakefulness at the end of the biological day ("wake maintenance zone") and promotes sleep after the onset of the endogenous melatonin secretion ("opening of sleep gate"). There is mounting evidence that circadian and sleep homeostatic mechanisms continuously interact at the neurobehavioral, hormonal and cerebral level. Furthermore, earlier evidence has shown that the strength of circadian wake-promotion and the timing of circadian rhythmicity differs according to a genetic predisposition in the adenosinergic system. Thus, it was assumed that the daily consumption of caffeine may substantially impact on both circadian and homeostatic sleep-wake processes at different systemic levels.

This study aimed at quantifying the influence of regular caffeine intake and its cessation on circadian promotion of sleep and wakefulness, on circadian hormonal markers, well-being, neurobehavioral performance and associated cerebral mechanisms. Specifically, the study investigated the effects of sleep-wake regulatory adaptations to regular caffeine consumption and acute caffeine cessation a) on night-time sleep structure and sleep intensity (electroencephalography, EEG), b) on circadian wake-promotion (nap sleep during the biological day) and circadian timing of hormonal rhythms, and c) on waking quality, as indexed by subjective ratings, objective measures of neurobehavioral performance, and cerebral mechanisms (EEG and functional magnetic resonance imaging [MRI]).

Twenty young healthy regular caffeine consumers were examined in a double-blind, placebo-controlled within-subjects design with three conditions: Regular caffeine intake, regular placebo intake, and cessation of regular caffeine intake. In the laboratory, circadian sleep-wake promotion was assessed by combining EEG and multimodal MRI techniques. Circadian timing was assessed by salivary melatonin and cortisol rhythms. Sleep and waking quality were quantified by continuous polysomnography (during sleep at night and during a nap in the evening), waking EEG, subjective ratings (sleepiness, mood, craving, withdrawal symptoms) and cognitive performance (vigilance and working memory). Each of the three laboratory parts lasted more than 40 h under strictly controlled conditions (i.e., dim light, constant ambient temperature etc.). Subsequent to each laboratory condition, actimetry and sleep diaries served to assess sleep- and waking patterns in the field under caffeine vs. placebo conditions.

The aim was to substantially advance the knowledge about the impact of the commonly encountered caffeine consumption on the sleep-wake regulatory system. Furthermore, the project was intended to substantially contribute to the understanding of complex interplay between sleep-wake regulatory mechanisms in response to acute or long-term changes in the adenosinergic system.

Studietype

Ingrijpend

Inschrijving (Werkelijk)

20

Fase

  • Niet toepasbaar

Contacten en locaties

In dit gedeelte vindt u de contactgegevens van degenen die het onderzoek uitvoeren en informatie over waar dit onderzoek wordt uitgevoerd.

Studie Locaties

    • Basel Stadt
      • Basel, Basel Stadt, Zwitserland, 4002
        • UPK Basel

Deelname Criteria

Onderzoekers zoeken naar mensen die aan een bepaalde beschrijving voldoen, de zogenaamde geschiktheidscriteria. Enkele voorbeelden van deze criteria zijn iemands algemene gezondheidstoestand of eerdere behandelingen.

Geschiktheidscriteria

Leeftijden die in aanmerking komen voor studie

18 jaar tot 35 jaar (Volwassen)

Accepteert gezonde vrijwilligers

Nee

Geslachten die in aanmerking komen voor studie

Mannelijk

Beschrijving

Inclusion Criteria:

  • Self-reported caffeine consumption: 300 mg - 600 mg daily
  • 18-35 years old
  • Healthiness

Exclusion criteria based on chronic or debilitating medical conditions:

Normal current health was established based on questionnaires, screenings of urine, and examination by the physician in charge. Given the wide range of illnesses encountered in medical practice, we only list those that were certainly reasons of exclusion:

  • Diseases of somatic origin: Cardiovascular-, respiratory-, gastrointestinal-, hematopoietic- visual- and immune system diseases, kidney and urinary tract, endocrine and metabolic diseases, neurologic diseases, infectious diseases, allergies (e.g. skin allergies, acute hay fever), thrombocytopenia or other dysfunction of the blood platelets.
  • Sleep disorders: Narcolepsy, sleep apnea (apnea index >10), periodic limb movements (PLMS >15), insomnia (polygraphically recorded sleep efficiency <70 %), hypersomnia, usual time in bed not between 6-9 h (assessed by [101]).
  • Chronobiologic disorders: Hypernychthemeral sleep/wake cycle, delayed sleep phase syndrome (waketime >2 h later than desired, or habitually after 10 am), advanced sleep phase syndrome (waketime >2 h earlier than desired or habitually before 5 am).
  • Drug/alcohol use, except caffeine: Volunteers must be drug-free (including nicotine and alcohol) for the entire duration of the study, with no history of drug (excluding caffeine) or alcohol dependency.

Exclusion criteria based on to the study requirements:

  • Self-reported caffeine consumption: < 300 mg and > 600 mg daily (as estimated from mean caffeine content per serving of caffeine containing beverages and food)
  • Body Mass Index (BMI) range: <18 and >26
  • Participation in other clinical trials <3 months prior to study begin
  • Shift work <3 months prior to study begin
  • Transmeridian travel (>2 time zones) <1 month prior to study begin
  • Extreme chronotype (Morningness-Eveningness Questionnaire <30 or >70)
  • Inability to follow procedures
  • Insufficient knowledge of project language (German)

Exclusion criteria based on MRI safety:

  • Metallic prosthesis or metallic implants or non-removable objects on the body (e.g. splinters, piercings)
  • Tattoos with larger diameter than 10 cm
  • Tattoos above the shoulder area
  • Claustrophobia
  • Contraceptive coil

Studie plan

Dit gedeelte bevat details van het studieplan, inclusief hoe de studie is opgezet en wat de studie meet.

Hoe is de studie opgezet?

Ontwerpdetails

  • Primair doel: Fundamentele wetenschap
  • Toewijzing: Gerandomiseerd
  • Interventioneel model: Crossover-opdracht
  • Masker: Verdrievoudigen

Wapens en interventies

Deelnemersgroep / Arm
Interventie / Behandeling
Experimenteel: Caffeine-Caffeine (Condition "Caffeine")
Through the 9-day pre-ambulatory, 2-day laboratory, and 7-day post-ambulatory parts, participants received 150 mg caffeine x 3 times daily.
150 mg caffeine, 3 times/day (wakeup + 45 min, +255 min, and +475 min)
Experimenteel: Caffeine-Placebo (Condition "Withdrawal")
During the 9-day ambulatory part, participants received 150 mg caffeine x 3 times daily, followed by a switch to placebo (150 mg mannitol) from the 2nd intake of the 9th day onward, through the laboratory and the post-ambulatory parts.
150 mg caffeine, 3 times/day (wakeup + 45 min, +255 min, and +475 min)
Mannitol, 3 times/day (wakeup + 45 min, +255 min, and +475 min)
Andere namen:
  • Mannitol
Placebo-vergelijker: Placebo (Condition "Placebo")
Through the 9-day ambulatory and 2-day laboratory, and 7-day post-ambulatory parts, participants received 150 mg mannitol x 3 times daily.
Mannitol, 3 times/day (wakeup + 45 min, +255 min, and +475 min)
Andere namen:
  • Mannitol

Wat meet het onderzoek?

Primaire uitkomstmaten

Uitkomstmaat
Maatregel Beschrijving
Tijdsspanne
Sleep polysomnography in normal baseline sleep
Tijdsspanne: First 8-hour nighttime sleep on the laboratory evening (Day 9)
Electrophysiological activities were measured by electroencephalography during sleep. Spectral analysis was performed using a Fast-Fourier transformation to quantify delta (0.75 - 4.5 Hz), theta (4.5 - 8 Hz), alpha (8 - 12 Hz), and sigma (12 - 16 Hz), and beta (16 - 32 Hz) power density . Sleep stages, i.e., non-rapid eye-movement (NREM) stage 1, NREM2, NREM3, NREM4, and REM sleep were determined by visual scoring per 30-second epoch in accordance with the guideline of American Academy of Sleep Medicine (AASM).Sleep stages were reported relative to total sleep time. Duration of sleep latencies was also reported.
First 8-hour nighttime sleep on the laboratory evening (Day 9)
Sleep polysomnography in an evening nap
Tijdsspanne: approx. 13.5-hour after wake-up time on the laboratory day (Day 10)
Electrophysiological activities were measured by electroencephalography during the sleep. Spectral analysis was performed using a Fast-Fourier transformation to quantify delta (0.75 - 4.5 Hz), theta (4.5 - 8 Hz), alpha (8 - 12 Hz), and sigma (12 - 16 Hz), and beta (16 - 32 Hz) power density . Sleep stages, i.e., non-rapid eye-movement (NREM) stage 1, NREM2, NREM3, NREM4, and REM sleep were determined by visual scoring per 30-second epoch in accordance with the guideline of American Academy of Sleep Medicine (AASM).Sleep stages were reported relative to total sleep time. Duration of sleep latencies was also reported.
approx. 13.5-hour after wake-up time on the laboratory day (Day 10)
Sleep polysomnography in a recovery sleep
Tijdsspanne: Second 8-hour nighttime sleep following 20-hour wakefulness on the laboratory day (Day 10)
Electrophysiological activities were measured by electroencephalography during the sleep. A Fast-Fourier Transformation was used to quantify slow wave activities (0.75 - 4.5 Hz), theta (4.5 - 8 Hz), alpha (8 - 12 Hz), and beta (12 - 16 Hz), and sleep stages, i.e., non-rapid eye-movement (NREM) stage 1, NREM2, NREM3, NREM4, and REM sleep were determined by visual scoring through each 30-second epoch in accordance with the guideline of American Academy of Sleep Medicine (AASM).
Second 8-hour nighttime sleep following 20-hour wakefulness on the laboratory day (Day 10)
Wake-EEG
Tijdsspanne: 14 measurements: (Day 9) -130, -20 minutes to the bedtime. (Day 10) +20, +140, +260, +370, +490, +600, +725, +867, +945, +1065, +1180, +1250 minutes after awakening.
Electrophysiological activities during wakefulness measured by electroencephalography during the sleep. A Fast-Fourier Transformation was used to quantify slow wave activities (0.75 - 4.5 Hz), theta (4.5 - 8 Hz), alpha (8 - 12 Hz), and beta (12 - 16 Hz).
14 measurements: (Day 9) -130, -20 minutes to the bedtime. (Day 10) +20, +140, +260, +370, +490, +600, +725, +867, +945, +1065, +1180, +1250 minutes after awakening.
Melatonin levels
Tijdsspanne: 33 samples: (Day 9) -310,-250,-190,-140,-110,-80,-50,-10 minutes to the bedtime. (Day 10) + 50,+110,+170,+230,+290,+350,+400,+460,+515,+580,+610,+670,+700,+735,+765,+935,+965,+995,+1055,+1075,+1115,+1145,+1170, +1190,+1250 after awakening.
The oscillation of melatonin levels across 43-hour laboratory stay were measured from the 33 salivary samples. The dim-light melatonin onset (DLMO) and average secretion level were analyzed and compared among three conditions.
33 samples: (Day 9) -310,-250,-190,-140,-110,-80,-50,-10 minutes to the bedtime. (Day 10) + 50,+110,+170,+230,+290,+350,+400,+460,+515,+580,+610,+670,+700,+735,+765,+935,+965,+995,+1055,+1075,+1115,+1145,+1170, +1190,+1250 after awakening.
Subjective sleepiness
Tijdsspanne: 33 samples: (Day 9) -310,-250,-190,-140,-110,-80,-50,-10 minutes to the bedtime. (Day 10) + 50,+110,+170,+230,+290,+350,+400,+460,+515,+580,+610,+670,+700,+735,+765,+935,+965,+995,+1055,+1075,+1115,+1145,+1170, +1190,+1250 after awakening.
Participants were asked to assess their perceived sleepiness by Karolinska Sleepiness Scale (KSS), where they answered 1 for very alert and 9 for very sleepy.
33 samples: (Day 9) -310,-250,-190,-140,-110,-80,-50,-10 minutes to the bedtime. (Day 10) + 50,+110,+170,+230,+290,+350,+400,+460,+515,+580,+610,+670,+700,+735,+765,+935,+965,+995,+1055,+1075,+1115,+1145,+1170, +1190,+1250 after awakening.
Vigilance
Tijdsspanne: 7 measurements: (Day 9) -160 minutes to the bedtime. (Day 10) +95, +335, +560, +795, +1040, +1235 minutes after awakening.
Vigilance was assessed by psychomotor vigilance tasks (PVT). Participants were asked to respond to each stimulus showing on a screen as soon as they can by keying down. The reaction times and lapses were used to indicate the vigilance.
7 measurements: (Day 9) -160 minutes to the bedtime. (Day 10) +95, +335, +560, +795, +1040, +1235 minutes after awakening.
Vigilance-related blood oxygen level-dependent activities
Tijdsspanne: +795 minutes after waking up on the laboratory day (Day 10)
Regional brain activation is measured by echo-planar-imaging (EPI) sequence in a 3T fMRI scanner during a psychomotor vigilance task (PVT).
+795 minutes after waking up on the laboratory day (Day 10)
Working memory-related blood oxygen level-dependent activities
Tijdsspanne: +775 after waking up on the laboratory day (Day 10)
Regional brain activation is measured by echo-planar-imaging (EPI) sequence in a 3T fMRI scanner during a working memory task (N-back).
+775 after waking up on the laboratory day (Day 10)
Blood oxygen level-dependent activities in resting state
Tijdsspanne: approx.13.7 hours after waking up on the laboratory day (Day 10)
Functional connectivity is measured by echo-planar-imaging (EPI) sequence in a 3T fMRI scanner during an eye-open resting state.
approx.13.7 hours after waking up on the laboratory day (Day 10)

Secundaire uitkomstmaten

Uitkomstmaat
Maatregel Beschrijving
Tijdsspanne
Cerebral blood flow
Tijdsspanne: approx. 13.5 hours after waking up on the laboratory day (Day 10)
Arterial Spin Labeling sequence was used to measure the changes in cerebral blood flow induced by caffeine intake and caffeine cessation.
approx. 13.5 hours after waking up on the laboratory day (Day 10)
Caffeine concentrations
Tijdsspanne: 12 samples: (Day 9) -185 minutes to the bedtime. (Day 10) +15, +120, +240, +300, +480, +590, +735, +825, +975, +1085, +1195 minutes after awakening.
Caffeine concentrations were measured from salivary and perspiratory samples.
12 samples: (Day 9) -185 minutes to the bedtime. (Day 10) +15, +120, +240, +300, +480, +590, +735, +825, +975, +1085, +1195 minutes after awakening.
Working memory
Tijdsspanne: 7 measurements: (Day 9) -140 minutes to the bedtime. (Day 10) +75, +315, +540, +775, +1020, +1215 minutes after awakening.
Working memory capacity was measured by N-Back tasks, where participants had a high workload condition (3-back) and a low workload condition (0-back).
7 measurements: (Day 9) -140 minutes to the bedtime. (Day 10) +75, +315, +540, +775, +1020, +1215 minutes after awakening.
Sleep diary
Tijdsspanne: Upon wake-up and bedtime during the ambulatory parts (Day1 to Day8 and Day11 to Day17)
A daily log was used to record the participant's bed- and wakeup time, self-report sleep quality, tiredness, and activities during the day including caffeine intake.
Upon wake-up and bedtime during the ambulatory parts (Day1 to Day8 and Day11 to Day17)
Actimetry
Tijdsspanne: Constant recording from Day1 to Day17.
Participants wore an actiwatch to record the muscle tone in order to track the body movement and sleep-wake behaviors constantly throughout the entire study.
Constant recording from Day1 to Day17.

Medewerkers en onderzoekers

Hier vindt u mensen en organisaties die betrokken zijn bij dit onderzoek.

Onderzoekers

  • Hoofdonderzoeker: Carolin Reichert, Dr., UPK Basel

Publicaties en nuttige links

De persoon die verantwoordelijk is voor het invoeren van informatie over het onderzoek stelt deze publicaties vrijwillig ter beschikking. Dit kan gaan over alles wat met het onderzoek te maken heeft.

Algemene publicaties

Studie record data

Deze datums volgen de voortgang van het onderzoeksdossier en de samenvatting van de ingediende resultaten bij ClinicalTrials.gov. Studieverslagen en gerapporteerde resultaten worden beoordeeld door de National Library of Medicine (NLM) om er zeker van te zijn dat ze voldoen aan specifieke kwaliteitscontrolenormen voordat ze op de openbare website worden geplaatst.

Bestudeer belangrijke data

Studie start (Werkelijk)

9 mei 2016

Primaire voltooiing (Werkelijk)

8 oktober 2017

Studie voltooiing (Werkelijk)

17 december 2017

Studieregistratiedata

Eerst ingediend

25 mei 2022

Eerst ingediend dat voldeed aan de QC-criteria

5 juni 2022

Eerst geplaatst (Werkelijk)

8 juni 2022

Updates van studierecords

Laatste update geplaatst (Werkelijk)

8 juni 2022

Laatste update ingediend die voldeed aan QC-criteria

5 juni 2022

Laatst geverifieerd

1 juni 2022

Meer informatie

Termen gerelateerd aan deze studie

Informatie over medicijnen en apparaten, studiedocumenten

Bestudeert een door de Amerikaanse FDA gereguleerd geneesmiddel

Nee

Bestudeert een door de Amerikaanse FDA gereguleerd apparaatproduct

Nee

product vervaardigd in en geëxporteerd uit de V.S.

Nee

Deze informatie is zonder wijzigingen rechtstreeks van de website clinicaltrials.gov gehaald. Als u verzoeken heeft om uw onderzoeksgegevens te wijzigen, te verwijderen of bij te werken, neem dan contact op met register@clinicaltrials.gov. Zodra er een wijziging wordt doorgevoerd op clinicaltrials.gov, wordt deze ook automatisch bijgewerkt op onze website .

3
Abonneren