The PAGODAS protocol: pediatric assessment group of dengue and Aedes saliva protocol to investigate vector-borne determinants of Aedes-transmitted arboviral infections in Cambodia

Jessica E Manning, Fabiano Oliveira, Daniel M Parker, Chanaki Amaratunga, Dara Kong, Somnang Man, Sokunthea Sreng, Sreyngim Lay, Kimsour Nang, Soun Kimsan, Ly Sokha, Shaden Kamhawi, Michael P Fay, Seila Suon, Parker Ruhl, Hans Ackerman, Rekol Huy, Thomas E Wellems, Jesus G Valenzuela, Rithea Leang, Jessica E Manning, Fabiano Oliveira, Daniel M Parker, Chanaki Amaratunga, Dara Kong, Somnang Man, Sokunthea Sreng, Sreyngim Lay, Kimsour Nang, Soun Kimsan, Ly Sokha, Shaden Kamhawi, Michael P Fay, Seila Suon, Parker Ruhl, Hans Ackerman, Rekol Huy, Thomas E Wellems, Jesus G Valenzuela, Rithea Leang

Abstract

Background: Mosquito-borne arboviruses, like dengue virus, continue to cause significant global morbidity and mortality, particularly in Southeast Asia. When the infectious mosquitoes probe into human skin for a blood meal, they deposit saliva containing a myriad of pharmacologically active compounds, some of which alter the immune response and influence host receptivity to infection, and consequently, the establishment of the virus. Previous reports have highlighted the complexity of mosquito vector-derived factors and immunity in the success of infection. Cumulative evidence from animal models and limited data from humans have identified various vector-derived components, including salivary components, that are co-delivered with the pathogen and play an important role in the dissemination of infection. Much about the roles and effects of these vector-derived factors remain to be discovered.

Methods/design: We describe a longitudinal, pagoda (community)-based pediatric cohort study to evaluate the burden of dengue virus infection and document the immune responses to salivary proteins of Aedes aegypti, the mosquito vector of dengue, Zika, and chikungunya viruses. The study includes community-based seroprevalence assessments in the peri-urban town of Chbar Mon in Kampong Speu Province, Cambodia. The study aims to recruit 771 children between the ages of 2 and 9 years for a three year period of longitudinal follow-up, including twice per year (rainy and dry season) serosurveillance for dengue seroconversion and Ae. aegypti salivary gland homogenate antibody intensity determinations by ELISA assays. Diagnostic tests for acute dengue, Zika and chikungunya viral infections will be performed by RT-PCR.

Discussion: This study will serve as a foundation for further understanding of mosquito saliva immunity and its impact on Aedes-transmitted arboviral diseases endemic to Cambodia.

Trial registration: NCT03534245 registered on 23 May 2018.

Keywords: Arbovirus; Cohort; Mosquito; Saliva; Seroprevalence; Vaccines; Vector.

Conflict of interest statement

Ethics approval and consent to participate

This study protocol and informed consent form in both English and Khmer were reviewed and approved by the NIAID Institutional Review Board and the Cambodian National Ethics Committee on Human Research (FWA #10451/IRB #3143). Eligible participants have an equal opportunity to join the research. Information sessions are held in advance of a pagoda community’s designated recruitment week. On arrival to the pagoda, participants and their guardians receive an additional “picture book” containing detailed information about the research in Khmer text with pictorial aids to enhance understanding and support decision making. For children and their guardians who wish to participate, a signed written formal consent in Khmer is collected by a study team physician and witness after all questions are answered. Collected data will be presented in an aggregated form; respondents’ identity will remain anonymous in any publication generated from this study.

Consent for publication

Not applicable.

Competing interests

The authors declare that they have no competing interests.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Figures

Fig. 1
Fig. 1
Primary study area. The inset map (bottom right) indicates the location of Chbar Mon town, Kampong Speu (red cross) in Cambodia. The main map indicates the study area (with a green outline) and recruitment sites (green triangles) where participants are recruited for immunological indicators of mosquito exposure

References

    1. Bhatt S, Gething PW, Brady OJ, Messina JP, Farlow AW, Moyes CL, et al. The global distribution and burden of dengue. Nature. 2013;496:504–507. doi: 10.1038/nature12060.
    1. Fauci AS, Morens DM. Zika virus in the Americas - yet another arbovirus threat. N Engl J Med. 2016;374:601–604. doi: 10.1056/NEJMp1600297.
    1. Weaver SC, Lecuit M. Chikungunya virus and the global spread of a mosquito-borne disease. N Engl J Med. 2015;372:1231–1239. doi: 10.1056/NEJMra1406035.
    1. Bernard E, Hamel R, Neyret A, Ekchariyawat P, Molès J-P, Simmons G, et al. Human keratinocytes restrict chikungunya virus replication at a post-fusion step. Virology. 2015;476:1–10. doi: 10.1016/j.virol.2014.11.013.
    1. Briant L, Desprès P, Choumet V, Missé D. Role of skin immune cells on the host susceptibility to mosquito-borne viruses. Virology. 2014;464–465:26–32. doi: 10.1016/j.virol.2014.06.023.
    1. Dudley DM, Newman CM, Lalli J, Stewart LM, Koenig MR, Weiler AM, et al. Infection via mosquito bite alters Zika virus tissue tropism and replication kinetics in rhesus macaques. Nat Commun. 2017;8:2096. doi: 10.1038/s41467-017-02222-8.
    1. Pingen M, Bryden SR, Pondeville E, Schnettler E, Kohl A, Merits A, et al. Host inflammatory response to mosquito bites enhances the severity of arbovirus infection. Immunity. 2016;44:1455–1469. doi: 10.1016/j.immuni.2016.06.002.
    1. Puiprom O, Morales Vargas RE, Potiwat R, Chaichana P, Ikuta K, Ramasoota P, et al. Characterization of chikungunya virus infection of a human keratinocyte cell line: role of mosquito salivary gland protein in suppressing the host immune response. Infect Genet Evol. 2013;17:210–215. doi: 10.1016/j.meegid.2013.04.005.
    1. Jin L, Guo X, Shen C, Hao X, Sun P, Li P, et al. Salivary factor LTRIN from Aedes aegypti facilitates the transmission of Zika virus by interfering with the lymphotoxin-β receptor. Nat Immunol. 2018;19:342–353. doi: 10.1038/s41590-018-0063-9.
    1. Conway MJ, Watson AM, Colpitts TM, Dragovic SM, Li Z, Wang P, et al. Mosquito saliva serine protease enhances dissemination of dengue virus into the mammalian host. J Virol. 2014;88:164–175. doi: 10.1128/JVI.02235-13.
    1. Conway MJ, Colpitts TM, Fikrig E. Role of the vector in arbovirus transmission. Annu Rev Virol. 2014;1:71–88. doi: 10.1146/annurev-virology-031413-085513.
    1. Surasombatpattana P, Ekchariyawat P, Hamel R, Patramool S, Thongrungkiat S, Denizot M, et al. Aedes aegypti saliva contains a prominent 34-kDa protein that strongly enhances dengue virus replication in human keratinocytes. J Invest Dermatol. 2014;134:281–284. doi: 10.1038/jid.2013.251.
    1. Conway MJ, Londono-Renteria B, Troupin A, Watson AM, Klimstra WB, Fikrig E, et al. Aedes aegypti D7 saliva protein inhibits dengue virus infection. PLoS Negl Trop Dis. 2016;10:e0004941. doi: 10.1371/journal.pntd.0004941.
    1. McCracken MK, Christofferson RC, Grasperge BJ, Calvo E, Chisenhall DM, Mores CN. Aedes aegypti salivary protein “aegyptin” co-inoculation modulates dengue virus infection in the vertebrate host. Virology. 2014;468–470:133–139. doi: 10.1016/j.virol.2014.07.019.
    1. Gomes R, Teixeira C, Teixeira MJ, Oliveira F, Menezes MJ, Silva C, et al. Immunity to a salivary protein of a sand fly vector protects against the fatal outcome of visceral leishmaniasis in a hamster model. Proc Natl Acad Sci USA. 2008;105:7845–7850. doi: 10.1073/pnas.0712153105.
    1. Kamhawi S, Belkaid Y, Modi G, Rowton E, Sacks D. Protection against cutaneous leishmaniasis resulting from bites of uninfected sand flies. Science. 2000;290:1351–1354. doi: 10.1126/science.290.5495.1351.
    1. Elanga Ndille E, Doucoure S, Poinsignon A, Mouchet F, Cornelie S, D’Ortenzio E, et al. Human IgG antibody response to Aedes Nterm-34kDa salivary peptide, an epidemiological tool to assess vector control in chikungunya and dengue transmission area. PLoS Negl Trop Dis. 2016;10:e0005109. doi: 10.1371/journal.pntd.0005109.
    1. Londono-Renteria B, Cardenas JC, Cardenas LD, Christofferson RC, Chisenhall DM, Wesson DM, et al. Use of anti-Aedes aegypti salivary extract antibody concentration to correlate risk of vector exposure and dengue transmission risk in Colombia. PLoS One. 2013;8:e81211. doi: 10.1371/journal.pone.0081211.
    1. Machain-Williams C, Mammen MP, Zeidner NS, Beaty BJ, Prenni JE, Nisalak A, et al. Association of human immune response to Aedes aegypti salivary proteins with dengue disease severity. Parasite Immunol. 2012;34:15–22. doi: 10.1111/j.1365-3024.2011.01339.x.
    1. Duong V, Ong S, Leang R, Huy R, Ly S, Mounier U, et al. Low circulation of Zika virus, Cambodia, 2007–2016. Emerg Infect Dis. 2017;23:296–299. doi: 10.3201/eid2302.161432.
    1. Statistics Bureau, Japan. Chapter 10. Projections on Cambodia Growth. 2013. . Accessed 15 Jan 2018.
    1. Allen T, Murray KA, Zambrana-Torrelio C, Morse SS, Rondinini C, Marco MD, et al. Global hotspots and correlates of emerging zoonotic diseases. Nat Commun. 2017;8:1124. doi: 10.1038/s41467-017-00923-8.
    1. Huy R, Buchy P, Conan A, Ngan C, Ong S, Ali R, et al. National dengue surveillance in Cambodia 1980–2008: epidemiological and virological trends and the impact of vector control. Bull World Health Organ. 2010;88:650–657. doi: 10.2471/BLT.09.073908.
    1. Vong S, Khieu V, Glass O, Ly S, Duong V, Huy R, et al. Dengue incidence in urban and rural Cambodia: results from population-based active fever surveillance, 2006–2008. PLoS Negl Trop Dis. 2010;4:e903. doi: 10.1371/journal.pntd.0000903.
    1. Vong S, Goyet S, Ly S, Ngan C, Huy R, Duong V, et al. Under-recognition and reporting of dengue in Cambodia: a capture-recapture analysis of the National Dengue Surveillance System. Epidemiol Amp Infect. 2012;140:491–499. doi: 10.1017/S0950268811001191.
    1. Robinson M, Conan A, Duong V, Ly S, Ngan C, Buchy P, et al. A model for a chikungunya outbreak in a rural Cambodian setting: implications for disease control in uninfected areas. PLoS Negl Trop Dis. 2014;8:e3120. doi: 10.1371/journal.pntd.0003120.
    1. Gordon A, Kuan G, Mercado JC, Gresh L, Avilés W, Balmaseda A, et al. The Nicaraguan pediatric dengue cohort study: incidence of inapparent and symptomatic dengue virus infections, 2004–2010. PLoS Negl Trop Dis. 2013;7:e2462. doi: 10.1371/journal.pntd.0002462.
    1. NW 1615 L. St, Washington S 800, Inquiries D 20036 U-419-4300 | M-419-4372 | M. Buddhists. Pew Research Center’s Religion & Public Life Project. 2012. . Accessed 20 Aug 2018.
    1. Dhanoa A, Hassan SS, Jahan NK, Reidpath DD, Fatt QK, Ahmad MP, et al. Seroprevalence of dengue among healthy adults in a rural community in Southern Malaysia: a pilot study. Infect Dis Poverty. 2018;7:1. doi: 10.1186/s40249-017-0384-1.
    1. Imai N, Dorigatti I, Cauchemez S, Ferguson NM. Estimating dengue transmission intensity from sero-prevalence surveys in multiple countries. PLoS Negl Trop Dis. 2015;9:e0003719. doi: 10.1371/journal.pntd.0003719.
    1. Vongpunsawad S, Intharasongkroh D, Thongmee T, Poovorawan Y. Seroprevalence of antibodies to dengue and chikungunya viruses in Thailand. PloS One. 2017;12:e0180560. doi: 10.1371/journal.pone.0180560.
    1. Harris PA, Taylor R, Thielke R, Payne J, Gonzalez N, Conde JG. Research electronic data capture (REDCap) - a metadata-driven methodology and workflow process for providing translational research informatics support. J Biomed Inform. 2009;42:377–381. doi: 10.1016/j.jbi.2008.08.010.
    1. Local Indicators of Spatial Association - LISA - Anselin - 1995 - Geographical Analysis - Wiley Online Library. . Accessed 28 Mar 2018.
    1. Fay MP, Proschan MA. Wilcoxon-Mann-Whitney or t-test? On assumptions for hypothesis tests and multiple interpretations of decision rules. Stat Surv. 2010;4:1–39. doi: 10.1214/09-SS051.
    1. Durnez L, Mao S, Denis L, Roelants P, Sochantha T, Coosemans M. Outdoor malaria transmission in forested villages of Cambodia. Malar J. 2013;12:329. doi: 10.1186/1475-2875-12-329.
    1. Duong V, Choeung R, Gorman C, Laurent D, Crabol Y, Mey C, et al. Isolation and full-genome sequences of Japanese encephalitis virus genotype I strains from Cambodian human patients, mosquitoes and pigs. J Gen Virol. 2017;98:2287–2296. doi: 10.1099/jgv.0.000892.
    1. McDonald PT. Population characteristics of domestic Aedes aegypti (Diptera: Culicidae) in villages on the Kenya Coast I. Adult survivorship and population size. J Med Entomol. 1977;14:42–8.
    1. Ribeiro JMC, Martin-Martin I, Arcà B, Calvo E. A deep insight into the sialome of male and female Aedes aegypti mosquitoes. PloS One. 2016;11:e0151400. doi: 10.1371/journal.pone.0151400.
    1. Surasombatpattana P, Patramool S, Luplertlop N, Yssel H, Missé D. Aedes aegypti saliva enhances dengue virus infection of human keratinocytes by suppressing innate immune responses. J Invest Dermatol. 2012;132:2103–2105. doi: 10.1038/jid.2012.76.
    1. Doucoure S, Drame PM. Salivary Biomarkers in the Control of Mosquito-Borne Diseases. Insects. 2015;6(4):961–76.
    1. Sagna AB, Yobo MC, Elanga Ndille E, Remoue F. New immuno-epidemiological biomarker of human exposure to Aedes vector bites: from concept to applications. Trop Med Infect Dis. 2018;3:80.
    1. Fontaine A, Pascual A, Orlandi-Pradines E, Diouf I, Remoué F, Pagès F, et al. Relationship between exposure to vector bites and antibody responses to mosquito salivary gland extracts. PLoS One. 2011;6:e29107. doi: 10.1371/journal.pone.0029107.
    1. Krzywinski J, Grushko OG, Besansky NJ. Analysis of the complete mitochondrial DNA from Anopheles funestus: an improved dipteran mitochondrial genome annotation and a temporal dimension of mosquito evolution. Mol Phylogenet Evol. 2006;39:417–423. doi: 10.1016/j.ympev.2006.01.006.
    1. Carvalho AM, Fukutani KF, Sharma R, Curvelo RP, Miranda JC, Barral A, et al. Seroconversion to Lutzomyia intermedia LinB-13 as a biomarker for developing cutaneous leishmaniasis. Sci Rep. 2017;7:3149. doi: 10.1038/s41598-017-03345-0.
    1. Oliveira F, Traoré B, Gomes R, Faye O, Gilmore DC, Keita S, et al. Delayed-type hypersensitivity to sand fly saliva in humans from a leishmaniasis-endemic area of Mali is TH1-mediated and persists to midlife. J Invest Dermatol. 2013;133:452–459. doi: 10.1038/jid.2012.315.
    1. Reed SG, Coler RN, Mondal D, Kamhawi S, Valenzuela JG. Leishmania vaccine development: exploiting the host-vector-parasite interface. Expert Rev Vaccines. 2016;15:81–90. doi: 10.1586/14760584.2016.1105135.
    1. Carnley BP, Prior JF, Gilbert A, Lim E, Devenish R, Sing H, et al. The prevalence and molecular basis of hemoglobinopathies in Cambodia. Hemoglobin. 2006;30:463–470. doi: 10.1080/03630260600868071.
    1. Nakao S, Lai CJ, Young NS. Dengue virus, a flavivirus, propagates in human bone marrow progenitors and hematopoietic cell lines. Blood. 1989;74:1235–1240.
    1. Sornjai W, Khungwanmaythawee K, Svasti S, Fucharoen S, Wintachai P, Yoksan S, et al. Dengue virus infection of erythroid precursor cells is modulated by both thalassemia trait status and virus adaptation. Virology. 2014;471–473:61–71. doi: 10.1016/j.virol.2014.10.004.
    1. Natesirinilkul R, Tantiworawit A, Charoenkwan P. Clinical course of dengue in patients with thalassaemia. Paediatr Int Child Health. 2013;33:32–36. doi: 10.1179/2046905512Y.0000000020.
    1. UNICEF - Media Centre - Nation-wide Japanese Encephalitis vaccination campaign launched in Cambodia and to be introduced into routine immunization schedule. 1 March 2016. . Accessed 9 Aug 2018.
    1. Doucoure S, Mouchet F, Cournil A, Le Goff G, Cornelie S, Roca Y, et al. Human antibody response to Aedes aegypti saliva in an urban population in Bolivia: a new biomarker of exposure to dengue vector bites. Am J Trop Med Hyg. 2012;87:504–510. doi: 10.4269/ajtmh.2012.11-0477.
    1. Ya-Umphan P, Cerqueira D, Parker DM, Cottrell G, Poinsignon A, Remoue F, et al. Use of an Anopheles salivary biomarker to assess malaria transmission risk along the Thailand-Myanmar border. J Infect Dis. 2017;215:396–404.
    1. Wongkoon S, Jaroensutasinee M, Jaroensutasinee K. Distribution, seasonal variation & dengue transmission prediction in Sisaket, Thailand. Indian J Med Res. 2013;138:347–353.
    1. Mweya CN, Kimera SI, Stanley G, Misinzo G, Mboera LEG. Climate change influences potential distribution of infected Aedes aegypti co-occurrence with dengue epidemics risk areas in Tanzania. PLoS One. 2016;11:e0162649. doi: 10.1371/journal.pone.0162649.

Source: PubMed

3
Abonneren